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1. Introduction 

The incidence of lifestyle diseases like diabetes mellitus, dyslipidemia, overweight/obesity, 

hypertension and cardiovascular diseases is rising. The prevalence of these diseases has 

reached alarming proportions, especially among Indians in recent years due to rapid 

economic development and increasing westernization of lifestyle in the past few decades 

(Oberoi and Kansra, 2020; Pappachan, 2011). 

1.1 Diabetes Mellitus  

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated levels of 

blood glucose. Two primary mechanisms have been proposed to understand the pathogenesis 

of DM, autoimmune destruction of the pancreatic β-cells resulting in scanty insulin 

production (type 1 diabetes); and endogenous resistance of body cells to the insulin action 

(type 2 diabetes) (ADA, 2014). Chronic hyperglycemia in DM leads to several macrovascular 

(ischaemic heart disease, stroke, and peripheral artery disease) and microvascular 

(neuropathy, nephropathy, and retinopathy) complications (Chawla et al., 2016). 

1.2 Classification 

There are three main types of DM: type 1 diabetes (T1D), type 2 diabetes (T2D) and 

gestational diabetes (GDM) 

a) T1D, also known as "juvenile/childhood-onset diabetes" or "insulin-dependent diabetes", 

is characterized by autoimmune β-cell destruction, leading to absolute insulin deficiency. The 

treatment requires regular administration of insulin or its analogues (ADA, 2019). It 

represents 5-10% of the total number of diabetic cases. The exact cause of T1D is not yet 

known. However, a complex interaction of environmental and genetic factors leads to the 

development of T1D in early childhood (WHO, 2016).  

b) T2D, also known as "adult-onset diabetes" or "non-insulin dependent diabetes", is 

characterized by progressive loss of insulin secretion by β-cells leading to insulin resistance 

(ADA, 2019; WHO, 2016). Thus, T2D is the result of ineffective response of the body to the 

insulin produced. T2D represents 95% of all diabetic cases. Ethnicity, family history 

combined with obesity, unhealthy dietary pattern and limited physical exercise are the 

primary causes of T2D (WHO, 2016). The grey zone of the transition from normoglycemia to 

DM is often characterized by "Impaired Glucose Tolerance" (IGT) or "Impaired Fasting 

Glycemia" (IFG). The latter is generally recognized as prediabetes and it is estimated that 

about 1 out of 4 individuals with IGT/IFG will progress to T2D within a period of 3-5 years 
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(Nathan et al., 2007). "Prediabetes" is the term used for people with IGT/IFG (IDF Diabetes 

Atlas, 2019). 

c) GDM: It is the condition of elevated blood glucose levels during pregnancy in women 

without a previous DM history (ADA, 2018). In this case, the infants are at high risk of 

developing DM later in their adulthood. 

 

1.3 Epidemiology 

Recent findings suggest that the burden of DM has risen significantly over the past decade 

and may be considered a growing epidemic. The majority of diagnosed cases lie between the 

fourth and seventh decade of life (Ogurtsova et al., 2017). Currently, 9.3% of the adult 

population is diagnosed with DM. The total number is predicted to rise to 578 million 

(10.2%) by 2030 and to 700 million (10.9%) by 2045 (IDF Diabetes Atlas, 2019). According 

to the IDF estimates, the worldwide prevalence of DM is summarised in Fig. 1.1. India ranks 

second in the world, having 77 million people suffering from DM, and it is estimated that by 

2030 and 2045, the numbers will touch 101 million and 134.2 million, respectively, and the 

number of people having undiagnosed DM is 43.9 million, which accounts for 57% of the 

population (IDF Diabetes Atlas, 2019). Increased rates of urbanization and socio-economic 

transitions i.e., rural to urban migration, sedentary lifestyle, and other lifestyle disorders are 

the main reasons for the regional disparities (Tamayo et al., 2014). While the global 

prevalence of diabetes in urban areas is 10.8%, in rural areas, it is lower, at 7.2%. However, 

this gap is closing, with rural prevalence rising (IDF Diabetes Atlas, 2019). Currently, the 

number of people with T1D is 4.56 billion (0-19 years). However, T2D often remains 

undiagnosed, hence no reports show its true prevalence (WHO, 2016). In 2017, the cases of 

DM diagnosed in women aged 20-79 years were 8.4% compared with 9.1% observed among 

men, and it is expected that the percentages will rise to 9.7% and 10%, respectively 

(Ogurtsova et al., 2017).  

The increasing prevalence of diabetes worldwide is driven by a complex interplay of 

socioeconomic, demographic, environmental and genetic factors. The continued rise is 

primarily due to an upsurge in T2D and related risk factors, including rising levels of obesity, 

unhealthy diets, and widespread physical inactivity. Also, the levels of childhood-onset T1D 

are also on the rise. 
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Figure 1.1 Worldwide prevalence of diabetes mellitus. (IDF Diabetes Atlas, 2019) 

1.4 Diagnostic Criteria for Diabetes Mellitus 

Prediabetes and DM can be diagnosed through blood tests by monitoring fasting blood 

glucose levels (FBG) after eight fasting hours. The glycated haemoglobin (HbA1c) provides 

an estimate of the previous three months' blood glucose levels. Currently, the WHO and IDF 

recommend a two-hour oral glucose tolerance test (OGTT) to detect IGT and IFG.  

 

Figure 1.2 Diagnostic criteria for diabetes mellitus. (WHO, 2016) 
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For T1D, in the presence of symptoms (polyuria, polydipsia and unexplained weight loss), 

the diagnosis becomes possible without OGTT if the following are present; a random venous 

blood glucose concentration ≥ of 11.1 mmol/l or a fasting blood glucose concentration ≥ of 

7.0 mmol/l (whole blood ≥ 6.1 mmol/l or HbA1c ≥ 6.5%). The diagnosis criteria for diabetes, 

IGT and IFG are summarised in Fig. 1.2. 

1.5 Pathogenesis of Diabetes Mellitus 

Pancreatic β-cell dysfunction and cell death are vital processes in developing T1D and T2D 

(Cnop et al., 2005). The pathogenesis of T1D and T2D is fundamentally distinct, 

differentially impacting early β-cell dysfunction (immune-mediated and metabolic in T1D 

and T2D, respectively) and cell fate (massive versus mild- to- moderate β-cell loss) (Eizirik 

et al., 2020). Cytokines (IL-1β and IFNγ) can lead to β-cell dysfunction and death in T1D 

(Ramos-Rodriguez et al., 2019). In contrast, hyperglycemia and free fatty acids (FFAs) might 

elicit cellular stress (oxidative stress, ER stress, and inflammation), impairing β-cell function 

and survival in T2D. Understanding the mechanisms behind β-cell failure is critical to 

prevent or revert DM. 

1.5.1 Type 1 Diabetes Pathogenesis  

T1D is caused by autoimmune-mediated (CD8+ T cells recognizing and targeting specific 

antigens expressed on the β-cell surface in the context of HLA class I) β-cell apoptosis, and 

dysfunction leading to the lifelong need for exogenous insulin therapy. T1D is the 

consequence of a complex interaction between invading or resident macrophages and T cells. 

The interaction leads to the release of chemokines and cytokines in the islet 

microenvironment. This delivers cell–cell pro-apoptotic signals, and β-cells via signals 

generated physiologically (for instance, degradation products of insulin or other components 

of the β-cell dense core granules) or by stress, injury or dying β-cells, attracts and activate 

immune cells to the islets (Eizirik et al., 2009; Gonzalez- Duque et al., 2018; Thomaidou et 

al., 2018). This interaction depends on the host genetic background, age and environmental 

factors such as viral infections and diet, among others (DiMeglio et al., 2018; Ilonen et al., 

2019; Op de Beeck et al., 2016). Pathogenic crosstalk between immune cells and β-cells can 

trigger local inflammation (insulitis) and progressive β-cell dysfunction and death, mainly via 

apoptosis (DiMeglio et al., 2018; Eizirik et al., 2009; Todd, 2010). Alternatively, local 

mechanisms might be arrested that dampen the immune response and restore physiology 

(Colli et al., 2018; Martinov and Fife, 2020). Some individuals from families affected by T1D 

show evidence of β-cell dysfunction, such as decreased first phase glucose-stimulated C-
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peptide release or increased circulating proinsulin–insulin ratios and absence of β-cell 

autoantibodies (Sims and DiMeglio, 2019). This observation suggests that β-cell dysfunction 

could precede the autoimmune assault in T1D or reflect 'scars' of a previous, resolved 

autoimmune episode. The prevalence of T1D in children is doubling every 25 years 

(Patterson et al., 2019) and causes an average loss of 11–12 years of life expectancy (Huo et 

al., 2016). A three-stage classification system has been proposed for T1D.  Stage 1 defines 

the presence of β-cell autoimmunity (i.e., two or more types of autoantibodies) in 

normoglycemic individuals. Stage 2 marked by dysglycemia (but no overt diabetes mellitus) 

in the presence of β-cell autoimmunity and stage 3 as clinical T1D (Insel et al., 2015). 

Presently, no therapeutic approaches exist that prevent or cure T1D (DiMeglio et al., 2018; 

Greenbaum et al., 2018), although a recent trial in stage 2 patients, using a monoclonal 

antibody against CD3 (a surface molecule present on CD8+ T cells), delayed, but did not 

prevent disease onset by ~2 years (Herold et al., 2019). 

1.5.2 Type 2 Diabetes Pathogenesis 

In T2D, relative insulin deficiency due to β-cell dysfunction is a critical factor in developing 

disease that often coexists with insulin resistance (Cnop et al., 2007; Lyssenko et al., 2005; 

Weyer et al., 1999). Although T2D represents the bulk (80%) of all DM cases, it remains an 

ill-defined form of the disease and a diagnosis of exclusion: no specific diagnostic criteria 

exist for T2D. Clustering approaches using age at diagnosis as well as BMI, HbA1c, HOMA 

estimates of β-cell function and insulin resistance, and glutamic acid decarboxylase 

autoantibodies have subtyped patients into moderate or severe forms of T2D, with a 

predominance of insulin resistance or insulinopenia (Ahlqvist et al., 2018). Obesity, energy- 

rich 'western' diets, older age and sedentary lifestyle are key risk factors for T2D (Zheng et 

al., 2018) that have led to a four-fold increase in the number of cases over the last four 

decades (NCD Risk Factor Collaboration, 2016). These risk factors can precipitate both β-

cell failure and insulin resistance. Many drug classes exist to manage T2D, none of which 

have been shown to modify the progressive decline in β-cell function over time. β-cell insults 

include cytokine-induced inflammation, obesity, insulin resistance, and overconsumption of 

saturated fat and FFA. Apart from the loss of β-cell function and mass, islet integrity is also 

compromised, which could diminish its incretin function, probably due to disturbed cell-cell 

communication (Halban et al., 2014). The factors implicated in the pathogenesis of T2D are 

summarized in Fig. 1.3. 
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Figure 1.3 Effect of stressors on the β-cell in the pathogenesis of T2D. The hypernutritional state 

in obesity, hyperglycemia and hyperlipidemia leads to an increased metabolic load coupled with 

insulin resistance and chronic inflammation. The pancreatic islet response to this new environment is 

likely to be variable among individuals with different genetic susceptibility, including inflammatory 

stress, ER stress, and metabolic and oxidative stress (e.g., glucotoxicity, lipotoxicity, and 

glucolipotoxicity), amyloid stress, and loss of islet cell integrity. If untreated, these interrelated 

stressors could increase with time, promoting β-cell dysfunction (coupled with increased glucagon 

secretion). Ultimately the loss of β-cell mass and possibly dedifferentiation marks the onset of T2D 

(Halban et al., 2014). 

1.5.2.1 Role of Genetic Factors in T2D pathogenesis 

An individual's risk of developing T2D is determined by a complex interplay between genetic 

and environmental/ lifestyle factors. Genotype plays an important role as studies on 

monozygotic twins showed a 76 % concordance for T2D and a 96 % concordance for 

impaired glucose tolerance. Furthermore, a family history of T2D doubles an individual's risk 

of developing the disease (Medici et al., 1999). Epidemiological evidence showed a dramatic 

increase in T2D over the past 60 years, suggesting that besides genetic factors, alterations in 

dietary habits, sedentary lifestyle and increased consumption of calorie-rich foods lead to 

T2D (Scully, 2012). T2D is a polygenic disease, and current evidences favour the idea that in 

most individuals, the risk of developing the disease is determined by the combination of 

several genetic variants at multiple gene loci, each of which confer only a marginal increase 

in disease risk (Lyssenko and Laakso, 2013). Thus, T2D is distinct from monogenic forms of 

diabetes, such as maturity-onset diabetes of the young (MODY) and neonatal diabetes (Gloyn 

et al., 2004). As T2D is a polygenic disorder, different combinations of genes in different 
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individuals result in phenotypic variations. The best method for identifying genes 

contributing to polygenic diseases is genome-wide association studies (GWAS). These are 

based on the association of common genetic variants i.e., single-nucleotide polymorphisms 

(SNPs) with a given phenotype, such as hyperglycemia. To date, more than 70 gene loci are 

found to be associated with T2D in large-cohort studies (Mahajan et al., 2014), and majority 

of these loci are implicated in β-cell functioning. GWAS studies involve large cohort size 

(sometimes >100,000 people) to generate sufficient statistical power. However, as a 

consequence of GWAS design and the genetic architecture of T2D, causal variants and genes 

cannot be easily inferred from genetic association studies, hindering the functional 

interpretation and clinical translation. GWAS is designed to detect SNPs (located in linkage 

disequilibrium with other variants) that act as a proxy for disease-associated regions or loci, 

and not necessarily the actual causal variants (Slatkin, 2008). Moreover, association is found 

in the non-coding regions which influence the disease risk by regulating the genes. The SNPs 

in non-coding regions are named after the nearest protein coding genes, but this proximity 

actually does not imply its causality (Maurano et al., 2012). Thus, it is important to find both 

the gene and a causal variant affecting disease susceptibility. For instance, a causal variant in 

melatonin receptor 1B (MTNR1B) gene has been implicated in T2D risk with a functional 

link. The risk allele (rs10830963 G allele) creates a binding site for the transcription factor 

NEUROD1 and is associated with preferential binding in human pancreatic β-cells. This 

event also implicates increased FOXA2-bound enhancer activity and MTNR1B expression 

(Bouatia-Naji et al., 2009). Another meticulous approach revealed the direct influence of a 

subset of diabetes risk loci on impaired insulin secretion ex-vivo, providing mechanistic 

insights into the role of these genetic variants (Rosengren et al., 2012). High-throughput 

screens also facilitate the transition from T2D GWAS association signals to individual 

functional follow-up studies by prioritising candidate causal genes based on functional data 

(Grotz et al., 2017). 

Furthermore, it should be noted that ethnicity greatly influences the distribution of gene 

polymorphisms and particularly cytokine genes polymorphisms (Hoffman et al., 2002) and 

thus, association studies must be carried out in different ethnicities to substantiate the 

association of causal genetic variants with their functional link in disease susceptibility.  

1.5.2.2 Cytokines, Oxidative Stress, ER Stress and Inflammation 
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Obesity leads to inflammation due to secretion of the pro-inflammatory cytokines, leading to 

insulin resistance. Proinflammatory cytokines cause β-cell death via the induction of 

mitochondrial stress and other responses (Cnop et al., 2005; Gurgul-Convey et al., 2011). 

Cytokines secreted by immune cells that have infiltrated the pancreas are crucial mediators of 

β-cell destruction (Lin et al., 2012). Besides, oxidative stress is thought to be a primary cause 

of insulin resistance in a hyperglycemic state. Enhanced generation of reactive oxygen 

species (ROS) and oxidative stress occurs in mitochondria due to an overload of glucose and 

oxidative phosphorylation. Endoplasmic reticulum (ER) stress also plays an essential role as 

it is also a source of ROS. The interconnection between organelles through mitochondrial-

associated membranes (MAMs) generate ROS in mitochondria promoting ER stress. 

Therefore, a state of stress and mitochondrial dysfunction are consequences of this vicious 

cycle. ER stress is also associated with β-cell apoptosis in T2D (Marchetti et al., 2007). 

Further, the limited glycolytic capacity of β-cells can generate ROS, and the ensuing 

oxidative stress can uncouple glucose-sensing from insulin secretion (Robertson, 2004). β-

cells are highly dependent on ATP production for endogenous incretins that potentiate 

glucose-stimulated insulin secretion (GSIS) and are vulnerable to excess ROS because of 

their inherently low expression of antioxidant enzymes (Simmons, 2007). The imbalance or 

reduced availability of nutrients to β-cells, increased ROS production, lower ATP synthesis, 

and inadequate antioxidant balance may predispose to β-cell death /dysfunction (Reusens et 

al., 2011). Hyperglycemia and hyperlipidemia (high FFA), which lead to glucotoxicity and 

lipotoxicity, have been implicated in the development of cellular stress in β-cells and 

peripheral tissues. Factors responsible for insulin resistance and β-cell loss are shown in Fig. 

1.4.   
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Figure 1.4 Cellular stress, insulin resistance and β-cell apoptosis. Glucotoxicity and lipotoxicity 

lead to ER stress, oxidative stress, and inflammation via ROS generated in the ER and mitochondria. 

Binding of saturated FFAs to GPCRs results in decreased insulin production and β-cell apoptosis, 

causing insulin resistance in peripheral tissues (Burgos-Morón et al., 2019). 

1.5.2.3 Obesity and Insulin Resistance 

Macrophage accumulation in obese adipose tissue is typical, and here they secrete pro-

inflammatory cytokines that modulate adipose tissue glucose and lipid metabolism (Tateya et 

al., 2013). The activation status of infiltrating macrophages is vital in the progression of 

metabolic diseases. Two different polarisation states of macrophages, M1 (pro-inflammatory) 

and M2 (anti-inflammatory) have been characterized so far. The proinflammatory M1 form is 

stimulated by pro-inflammatory mediators such as lipopolysaccharide (LPS), tumour necrosis 

factor-alpha (TNF-𝛼), and interferon-gamma (IFN-𝛾). These macrophages produce and 

secrete TNF-𝛼, IL-1, and IL-6, enhancing the inflammatory response. 

Interestingly, a diet high in lipid content was shown to polarise Kupffer cells of the liver 

towards the M1 phenotype. These cells are resident macrophages of the liver, and this 

polarization was associated with the pathogenesis of obesity-induced insulin resistance and 

fatty liver disease, and an increased c-Jun N-terminal protein kinase (JNK1) activation (Naso 

et al., 2015). Interestingly, removal of Kupffer cells in the liver can improve insulin 

sensitivity during the consumption of a high-fat diet (Naso et al., 2015). Besides, TNF-𝛼 

production by M1 macrophages in the liver can promote increased hepatic glucose output via 
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gluconeogenesis and reduced glycogen content. It can also lead to simultaneous enhanced 

lipid production and storage by inhibiting intracellular lipases, thereby making fatty acids 

available for triacylglycerol (TAG) synthesis. Thus, elevated TNF-𝛼 in the obese liver may 

increase blood glucose levels and promote fatty liver disease (Gao et al., 2010).  

Conversely, the M2 anti-inflammatory phenotype has significantly reduced pro-inflammatory 

characteristics, and these cells release high levels of anti-inflammatory cytokines, IL-10. 

Therefore, maintenance of the M2 phenotype over the M1 phenotype is desirable and 

essential for appropriate glucose and lipid production and subsequent release. Moreover, 

amyloid plaques, which characterize islets in T2D, consist mainly of islet amyloid 

polypeptide (IAPP). Under conditions of chronic hyperglycemia/hyperlipidemia, (pro)IAPP 

synthesis increases in β-cells, parallel to proinsulin, and reaches threshold levels that allow 

proapoptotic IAPP oligomers to form (Montane et al., 2012).  This induces IL-1β release to 

recruit macrophages and enhance local islet inflammation (Masters et al., 2010). These data 

suggest that the high nutrient milieu observed in T2D may activate circulating macrophages 

that could lead to chronic low-grade inflammation, a hallmark of obesity and T2D. Moreover, 

interactions of macrophages and the production of pro-inflammatory cytokines can negatively 

affect metabolic processes in tissues that are physiological targets for insulin. These 

inflammatory reactions may lead to hyperglycemia and dyslipidemia, which are hallmark 

characteristics of obesity and T2D. 

1.5.2.3.1 Insulin Signalling 

Insulin is released into blood by β-cells in response to elevated blood glucose levels 

following food ingestion. Insulin elicits its anabolic effects via association with the 

transmembrane insulin receptor (IR) present in target tissues. These key membrane-bound 

receptors are present in cells that store surplus carbohydrate in the form of glycogen (liver 

and muscle) or as triacylglycerol (adipose tissue). The IR is a heterotetrameric tyrosine kinase 

receptor, comprises of four polypeptide subunits (two extracellular 𝛼-subunits and two 

transmembrane 𝛽-subunits). The interaction of receptor with insulin induces 

autophosphorylation of the receptor at tyrosine residues (Tyr1158, Tyr1162, and Tyr1163) 

(White et al., 1988), initiating the recruitment and phosphorylation of the intracellular adapter 

proteins (insulin receptor substrate, IRS). Thirteen different IRS isoforms have been 

described.  Of these, isoforms 1 and 2 have been studied extensively since they are widely 

distributed among different cell types and are mainly activated in skeletal muscle (Corcoran 
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et al., 2007). Isoforms 1 and 2 are responsible for approximately 75% of insulin-stimulated 

blood glucose uptake in the body (Corcoran et al., 2007; Shulman et al., 1990). 

Phosphorylated IRS1 and, to a lesser extent, IRS2 induces activation of the PI3K lipid kinase 

via binding with the p85 regulatory subunit of PI3K. Activated PI3K converts 

phosphatidylinositol 3,4-bisphosphate (PIP2) to PI(3,4)P2 and phosphatidylinositol 3,4,5 

triphosphate (PIP3) via the p110 catalytic subunit. This conversion activates 3-

phosphoinositide-dependent protein kinase 1 (PDK1) that subsequently recruits and 

phosphorylates protein kinase B (pAkt) at the plasma membrane. PDK1 can also activate 

atypical protein kinase C (aPKC), regulating glucose metabolism (White, 2003). Downstream 

of these interactions, pAkt has over 100 substrates that regulate many cellular processes, 

including cell proliferation, differentiation, endocytosis, survival and glucose homeostasis 

(Manning and Cantley, 2007). Three isoforms of Akt exist, and Akt2 is most abundant in 

insulin-sensitive tissues. 

Interestingly, when Akt2 was deleted in knockout mice, increased insulin resistance was 

observed, illustrating the essential physiological role played by Akt2 in mediating glucose 

homeostasis (Cho et al., 2001). Mechanistically, Akt is an essential regulator of translocation 

of glucose transported type 4 (GLUT4) vesicles to the plasma membrane, which is critical for 

the intracellular uptake of free glucose in insulin-sensitive tissues (Henriksen et al., 2011; 

Taniguchi et al., 2006). Appropriate insulin signalling may be interrupted because of either 

genetic alterations or physical changes affecting any of the above-mentioned signalling 

nodes, which may manifest as insulin resistance. Mutations and serine hyperphosphorylation 

of IRS proteins are mainly associated with development of insulin resistance, as they 

decrease IRS interaction with PI3K. Araki et al., (1994) have showed that homozygous 

disruption of IRS1 transcription led to mild insulin resistance, while IRS2-knockout mice 

exhibited severe insulin resistance (Kubota et al., 2000). 

Furthermore, in T2D patients, many precise amino acid substitutions, e.g., Gly972Arg 

(Mart'ınez-G'omez et al., 2011) in IRS1 proteins, alter protein function but some of these 

substitutions have been controversial. Hyperphosphorylation of Serine at Ser302, Ser307, 

Ser612, and Ser632 in IRS1 is responsible for increased insulin resistance (Saini, 2010). 

Uncontrolled pro-inflammatory cytokine synthesis and secretion and activation of 

proinflammatory signalling proteins such as TNF-𝛼 and the isoform 1 of JNK1 are 

responsible for fatty tissue expansion, which can induce serine hyperphosphorylation in IRS1 

(Hotamisligil et al., 1996; Stuart et al., 2014), especially at residue Ser636. However, it is not 
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known which specific serine residues, or a combination require hyperphosphorylation to elicit 

the insulin-resistant phenotype, as excessive phosphorylation at Ser337 and Ser636 has been 

demonstrated in muscle samples from patients with metabolic syndrome, but not at Ser307, 

Ser789. or Ser1101 as reported by others (Stuart et al., 2014). Moreover, serine 

hyperphosphorylation at residue Ser312 marks IRS1/2 for degradation, which dampens the 

IR-mediated signalling relay. Taken together, these data not only demonstrate the complexity 

of the role played by IRS proteins but also their importance in modulating insulin resistance. 

The role of inflammation in disrupted insulin signalling and insulin resistance is shown in 

Fig. 1.5. 

 

Figure 1.5 Role of inflammation in insulin resistance. Overnutrition leads to high levels of lipids 

and glucose and, overtime development of obesity and metabolic syndrome (MetS), ultimately 

causing chronic low-grade inflammation. High nutrients can modulate insulin resistance by altering 

the insulin-signalling cascade through IRS1, PI3K, and AKT phosphorylation changes. High lipids 

can also promote inflammation through ceramide generation, and increased glucose increases overall 

oxidative stress. During T2D progression, the insulin resistant tissues promote the exhaustion of 

insulin secreting β-cells, which activates defensive mechanisms leading to lower insulin release 

(Keane et al., 2015). 

 

1.5.2.3.2 Tumour Necrosis Factor Alpha (TNF-α) 

TNF-α is a potent immunoregulatory cytokine produced by many cells, including adipocytes, 

keratinocytes, mast cells, Langerhans cells, monocytes and macrophages. It is implicated in 

the pathogenesis of a wide range of human diseases, including diabetes (Chen et al., 2002). 

Hotamisligil et al., (1993) have reported TNF-α to be the first proinflammatory cytokine 
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associated with obesity and related insulin resistance. TNF-α can activate the mitogen-

activated protein kinase (MAPK) and nuclear factor kappa B (NF-kB) signalling pathways, 

resulting in the release of other pro-inflammatory cytokines such as IL-1β and IL-6 (McArdle 

et al., 2013). Yuan et al., (2001) identified the IKKB pathway as a target for TNF-α induced 

insulin resistance. Kern et al., (1995) showed that obese individuals have 2.5-fold more TNF-

α in their adipose tissue than lean controls. Hotamisligil et al., (1994) demonstrated that TNF-

α participates in obesity-related systemic insulin resistance by inhibiting insulin receptor 

tyrosine kinase activity in skeletal muscle and adipose tissues. Peraldi et al., (1996) also 

reported that recombinant human TNF-α inhibits the insulin-dependent tyrosine 

phosphorylation of the insulin receptor and the insulin receptor substrate 1 (IRS-1) in 

adipocytes and myeloid 32D cells. Later, studies suggested that the defect in insulin 

signalling could be attributed to serine phosphorylation of IRS1 at serine-307 residue by 

activation of JNK1, providing the first explanation relating inflammation and insulin 

resistance (Aguirre et al., 2000; Hotamisligil et al., 1996). At a molecular level, stimulation of 

cells with TNF-α or increased levels of free fatty acids inhibited phosphorylation of serine 

residues of IRS1 (Aguirre et al., 2000). Also, treatment of 3T3-L1 adipocytes with TNF-α 

resulted in reduced GLUT4 protein levels along with decreased activity of protein kinase B 

(Akt) (Ruan et al., 2002). Apart from inhibiting the insulin signalling pathway, TNF-α also 

impairs insulin secretion (Tsiotra et al., 2001). Neutralization of TNF-α led to improved 

insulin sensitivity in animal models and human subjects (Kern et al., 1995; Uysal et al., 

1997). Taken together, these data demonstrated that TNF-α is a key mediator of insulin 

resistance in obesity, and neutralizing it might ameliorate obesity-induced insulin resistance 

in T2D patients. Furthermore, in humans, the gene for TNF-α maps to chromosome 6p21.3 

and eight SNPs (−1031T/C, −863C/A, −857C/T, −575G/A, −376G/A, −308G/A, −244G/A, 

and −238G/A) have been identified within the TNF-α promoter (Bayley et al., 2004). One of 

the promoter SNPs in the TNF-α gene (-308 G/A) showed a two-fold increase in TNF-α 

transcript levels (Guzmán-Flores et al., 2011; Kroeger et al., 1997) and altered circulating 

FFAs in obese T2D patients (Fontaine-Bisson et al., 2007). Several studies showed 

association of TNF-α promoter SNPs with T2D (Banerjee et al., 2014) 

 

1.5.2.4 GPCRs in β-Cell Dysfunction and Insulin Resistance 

Currently, there are more than 30 G protein-coupled receptors (GPCRs) that have been 

implicated in the development and progression of β-cell dysfunction, insulin resistance, 

obesity and T2D, as shown in Fig. 1.6 (Riddy et al., 2018). 
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Figure 1.6 Involvement of GPCRs in the development and/or progression of β-cell dysfunction, 

insulin resistance and obesity-induced T2D. (Riddy et al., 2018) 

 

1.5.2.4.1 Melatonin Receptors in β-cell Dysfunction and Insulin Resistance 

The pineal gland primarily secretes melatonin (MT) during the dark phase. Melatonin is also 

secreted to a lesser extent from the innate immune system, the gastrointestinal tract and the 

retina. The effects of MT are mediated by two homologous but distinct GPCRs, namely MT1 

and MT2 receptors (MTRs), encoded by two separate genes, MTNR1A and MTNR1B, 

respectively. MTRs are Gαi coupled and expressed in a cell-specific manner in mice and 

humans. MTRs are involved in numerous physiological and neuroendocrine functions. In 

humans, MTNR1B locates on chromosome 11q14.3. Interest in MT in the pathogenesis of 

T2D have mainly come from three independent genome-wide association studies that led to 

the identification of several polymorphisms located near the MTNR1B gene. These were 

associated with increased fasting blood glucose, a reduction of early insulin response to 

glucose, and ultimately an increased risk of developing T2D (Bouatia-Naji et al., 2009; 

Lyssenko et al., 2009). This genetic association is robust and subsequently replicated by 

several groups in other populations (Renström et al., 2015; Ronn et al., 2009). However, the 

influence of MT on insulin secretion is still debated, with conflicting results generated in 

vitro using rodent and human islets (Costes et al., 2015; Lyssenko et al., 2009). Furthermore, 

MTRs are expressed at low levels in both α- and β-cells. Tuomi et al., (2016) have 

demonstrated that the common rs10830963 variant located in the MTNR1B intron is an 
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expression quantitative trait locus conferring increased expression (two- to four- fold) of the 

receptor in islets, as measured by RNA Seq in 204 Scandinavian donors. Furthermore, studies 

suggest that increased MT signalling is a risk factor for T2DM. However, analysis of rare 

loss-of-function MTNR1B variants suggested that reduced MT signalling increases T2D risk 

(Bonnefond et al., 2012; Prokopenko et al., 2009). Lane et al., (2016) have reported that the 

MTNR1B rs10830963 G (risk) allele influences MT secretion dynamics with consequences 

on the sleep/wake cycle, and sleep disturbances are implicated in the dysregulation of blood 

glucose levels and increased T2D risk (Tsuneki et al., 2016). 

 

1.6 Diabetes Management 

Diabetes, if left untreated or undertreated, can cause many microvascular complications in the 

body, leading to poor quality of life and reduced lifespan. Possible complications that are 

related to DM are cardiomyopathy, neuropathy, nephropathy and retinopathy. Glucose 

regulation during the early stages can decrease the possible progression towards multisystem 

complications of microvascular and macrovascular endpoints (Forbes and Cooper, 2013). 

There have been many advancements made in the past decade for the treatment of T1D and 

T2D. 

1.6.1 Type 1 Diabetes Management 

T1D is a chronic disease that eventually leads to complete loss of insulin due to the 

destruction of β-cells. Also, the lack of appropriate islet cell repair mechanisms ultimately 

affects glycemic control. As a result, insulin replacement therapy is currently the first-line 

therapeutic option for treating T1D (Pathak et al., 2019). The current insulin centric 

therapeutic approach renders a T1D patient susceptible to severe hypoglycaemia episodes, 

lifelong dependency on exogenous insulin, insulin resistance, mild obesity, and psychiatric 

conditions (Jacobson et al., 2013; Priya and Kalra, 2018; Yeh et al., 2012). Despite of 

successful implementation of multiple insulin delivery devices, maintaining normoglycemia 

without frequent hypoglycemic episodes remains a considerable challenge for health care 

providers. As a result, the clinical practice has gradually moved towards using continuous 

insulin infusion systems for insulin delivery which enables greater control over HbA1c and 

lower incidences of hypoglycemia. 

Along with insulin therapy, many other interventions are being currently used in clinical trials 

such as artificial pancreas, immune modulation, sodium-glucose co-transporter-2 (SGLT2) 
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inhibitor, β-cell encapsulation, microencapsulation, stem cell therapies, incretin therapies, 

dipeptidyl peptidase- IV inhibitors (DPP-IV) and islet transplantation (DeGeeter et al., 2016; 

Pathak et al., 2019; Wang et al., 2018). Although the recent emergence of fast-acting and 

long-acting insulin analogues has improved the quality of life for T1D patients, many 

challenges remain. Transplantation of primary islets offers exciting prospects for treating 

T1D patients. However, islets limited availability is one of the obstacles for widespread use 

of islets transplantation. To overcome the shortage of donors, xenotransplantation of islets 

has been explored, but ethical considerations and concerns about transgenic islets genetic 

stability remain. Therefore, in the current situation, insulin replacement therapy and 

transplantation of islets from humans remain a practical and financially feasible option to 

treat T1D. The development of effective human islet transplantation strategies is also 

hampered due to extensive death of islet cells during the immediate period post-

transplantation. This inevitably increases the requirement for the number of islets needed to 

achieve glycemic control and insulin independence. Besides, disruption of typical islet 

architecture and morphology and poor vascular engraftment during the post-transplantation 

period also significantly contribute to the deterioration of islet graft function (Harlan et al., 

2009; Pathak et al., 2019). New approaches are needed for successful therapeutic outcomes 

and complete insulin independence. In this direction, conventional T1D therapeutic methods 

including insulin replacement, SGLT2 inhibitors, immune therapies, DPP-IV inhibitors and 

peptide agonists, need to be considered in combination with emerging approaches for 

optimum clinical therapeutic outcomes.  

1.6.2 Type 2 Diabetes Management 

To manage T2D, a combination of lifestyle changes and pharmacological treatment is 

necessary. At present, different treatments, both oral and injectable are available for the 

management of T2D. Metformin remains the first choice of treatment for most patients. 

Another alternative or second-line treatment is individualized depending on the 

characteristics of each patient. Dietary intake and physical exercise are the two main 

determinants of energy balance. A good amount of sleep (~7 hrs) is considered fundamental 

in treating T2D patients (Garber et al., 2016). Sleep deprivation aggravates insulin resistance, 

hypertension, hyperglycemia, and dyslipidemia (McNeil et al., 2013). Further, oral drugs are 

used for the management of T2D, such as sulfonylureas (metformin), alpha-glucosidase 

inhibitors (acarbose, miglitol and voglibose), thiazolidinediones (rosiglitazone and 

pioglitazone), DPP-IV inhibitors (sitagliptin, saxagliptin, linagliptin, alogliptin, vildagliptin), 
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and SGLT2 inhibitor (dapagliflozin, canagliflozin, empagliflozin). Injectable drugs include 

glucagon-like peptide 1 receptor agonists (GLP-1 RA) (exenatide, lixisenatide, liraglutide, 

albiglutide, dulaglutide) and insulin. These treatment modalities work on different organs to 

regulate blood glucose levels. Biguanides and thiazolidinediones reduce glucose production 

in the liver and increase insulin sensitivity in the skeletal muscle and adipose tissue. SGLT2 

inhibitors reduce glucose reabsorption in the kidney. Sulfonylureas and Meglitinides increase 

insulin secretion in the pancreas. GLP-1 RA and DPP-IV inhibitors increase insulin secretion 

and decrease glucagon secretion, along with amylin and alpha-glucosidase inhibitors, they 

also slow gastric emptying while increasing satiety (Marín-Peñalver et al., 2016; Pramanik et 

al., 2018). Despite the several treatment options available for the management of T2D, most 

of the patients do not achieve normoglycemia and suffer from major or minor side effects 

such as hypoglycemia, weight loss, stomach upset, tiredness, liver diseases, kidney 

complications etc. As the existing therapies only help alleviate hyperglycemia and other 

symptomatic characteristics, recent research is directed to develop novel drugs with minimal 

side effects. Though a total cure is still elusive, gaining insights into the possible modes of β-

cell preservation and regeneration-based therapies are crucial for the management of both 

T1D and T2D. 

1.7 β-Cell Regeneration 

The ultimate goal of β-cell regeneration research is to expand endogenous β-cell mass 

without compromising function to prevent or treat diabetes. β-cell regeneration is achieved 

broadly in three different ways i.e., β-cell proliferation, β-cell neogenesis and β-cell 

transdifferentiation.  

1.7.1 β-Cell Proliferation 

Self-renewal of existing β-cells is an attractive approach for generating new β-cells. β-cells 

usually proliferate in the developing (embryonic and neonatal) mouse and human pancreas 

and can be stimulated to replicate by several metabolic stressors, including pregnancy and 

obesity (Baeyens et al., 2016; Cox et al., 2016). During the early postnatal period, 

proliferation is the primary mechanism of β-cell expansion to generate sufficient β-cell mass 

(Meier et al., 2008). However, β-cell proliferation rapidly declines early in life, and in adults, 

the rate of β-cell division is meagre. To date, the identification of molecules that can activate 

replication in adult β-cells has proven challenging, partly due to species-dependent molecular 

differences between mouse and human β-cells. Factors that can stimulate replication of 
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mouse β-cells do not necessarily induce expansion of human β-cells (Aamodt et al., 2016; 

Karakose et al., 2018). Another impediment is that adult β-cells are refractory to mitogens 

that stimulate proliferation in juvenile β-cells from younger donors (Dai et al., 2017). Unlike 

juvenile β-cells, adult β-cells have increased expression of cell cycle inhibitors such as 

p16INK4a and a reduction in cell cycle activators including FoxM1, cyclins, and cyclin-

dependent kinases that render them resistant to proliferation (Fiaschi-Taesch et al., 2013; 

Golson et al., 2015; Tschen et al., 2017). 

Furthermore, it is hypothesized that adult β-cells are resistant to rapid turnover to prevent 

hyperinsulinemia. Thus, one valid concern is that inducing unrestrained β-cell growth in 

people could lead to the formation of insulinomas and potential lethality due to 

hypoglycemia. The recent insight into β-cell heterogeneity further complicates the search for 

factors that can activate replication of adult β-cells. While it is clear that different 

subpopulations of β-cells exist within an islet, it is not known whether all β-cells can 

proliferate. Flattop (Fltp), an effector of Wnt/planar cell polarity signalling, was shown to 

mark a population of mature β-cells with greater functionality but lower the proliferative 

potential, suggesting that there may be a subset of β-cells that have a more remarkable ability 

to proliferate than others (Bader et al., 2016; Dorrell et al., 2016). Identifying markers 

delineating cells with a higher proliferative capacity would potentially allow researchers to 

target this population specifically. However, β-cell proliferation often appears to occur at the 

expense of insulin secretion, and replicating β-cells tend to resemble immature β-cells more 

closely. For example, when replication in adult mouse β-cells was induced by exogenously 

expressing c-Myc, these β-cells displayed reduced expression of genes essential for glucose 

sensing and insulin secretion (GLUT2, PC1/3), as well as transcriptional markers of mature 

β-cells (PDX1, MAFA, NKX2.2) (Puri et al., 2018). Thus, the balance between proliferation 

and functionality must also be considered when identifying new drugs to expand β-cell mass. 

1.7.2 β-Cell Neogenesis 

Pancreatic β-cells are initially formed during embryonic development from an endocrine 

progenitor population that lies within the pancreatic ductal epithelium and is marked by the 

transcription factor Neurogenin3 (NGN3). In mice and humans, NGN3+ endocrine progenitor 

cells differentiate into all four adult endocrine cell types during embryogenesis, but a decline 

in numbers occurs upon birth (Gradwohl et al., 2000; Gu et al., 2002). Because endocrine 

cells originate from the ductal epithelium during development, many researchers have 
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examined whether the embryonic endocrine differentiation program can be reactivated in 

adult pancreatic ducts to serve as a potential source of new β-cells. However, whether this 

occurs endogenously or under certain pathological conditions remains controversial. Several 

studies using pancreatic injury models, such as pancreatic duct ligation or partial 

pancreatectomy, have shown the reappearance of NGN3+ progenitor cells within the adult 

ductal epithelium and the presence of tiny clusters of endocrine cells close to these ducts, 

suggesting the occurrence of neogenesis (Ackermann Misfeldt et al., 2008; Xu et al., 2008; 

Van de Casteele et al., 2013). However, studies using similar approaches provide evidence 

that neogenesis does not occur, suggesting this mechanism to be difficult to activate or 

relatively rare (Cavelti-Weder et al.; 2013; Menge et al., 2008; Ranking et al., 2013). Lineage 

tracing of the ductal tree using an inducible Cre recombinase (CreER) driven by a fragment 

of the human carbonic anhydrase promoter provided evidence that mature ducts can give rise 

to endocrine cells, whereas experiments using Hnf1CreER and Sox9CreER showed evidence 

to the contrary (Inada et al., 2008; Kopp et al., 2011). In humans, obtaining proof of β-cell 

neogenesis has also been challenging. Without the ability to perform genetic lineage tracing 

of human ductal cells, it is difficult to confirm that human β-cell neogenesis appreciably 

occurs in vivo. 

1.7.3 β-Cell Transdifferentiation 

While it remains unclear whether, under which conditions ductal cells can be reactivated to 

differentiate into β-cells, there is mounting evidence to suggest that other differentiated tissue 

types can be reprogrammed into β-cells in a process referred to as transdifferentiation. During 

embryonic development, the pancreas forms from a foregut endoderm region marked by 

pancreatic and duodenal homeobox factor 1 (PDX1) expression, which is posterior to the 

antral stomach, adjacent to the budding liver and anterior to the duodenum (Guney et al., 

2009). Due to their common developmental lineage, it can be speculated that cells from these 

closely related endodermal organs could be reprogrammed into pancreatic endocrine cells. 

Indeed, several studies have demonstrated that insulin-positive cells can be induced in vivo in 

other tissues like liver, kidney and gut by the adenoviral transduction of one or a combination 

of pancreatic transcription factors, including PDX1, neuronal differentiation 1 (NeuroD1), or 

a combination of PDX1, NGN3, and MAFA (known as the PNM factors) (Banga et al., 2012; 

Ferber et al., 2000; Kojima et al., 2003). Within the pancreas itself, terminally differentiated 

exocrine tissue has also been suggested as a de novo endocrine cell source. In 2008, Zhou et 

al., found that adenoviral delivery of the PNM factors into the pancreas of an adult immune-
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compromised mouse could convert acinar cells into insulin-producing β-cells. However, 

pancreatic exocrine tissue’s intrinsic capacity to generate β-cells without adenoviral 

administration is being unravelled (Clayton et al., 2016; Desai et al., 2007). 

Furthermore, recent attention has also been focused on understanding whether other 

endocrine cell types within the islet have the regenerative potential to convert into β-cells. 

Although endocrine cells which were thought to be stable, terminally differentiated 

population, studies have shown that they exhibit considerable plasticity under stress 

conditions or genetic manipulation (Gutierrez et al., 2017; Swisa et al., 2017). In an adult 

mouse model with extreme β-cell loss and hyperglycemia, α-cells coexpressed insulin, and 

some of these bihormonal cells were shown through genetic lineage tracing to become 

monohormonal insulin-positive cells over time (Thorel et al., 2010). Subsequent studies have 

shown that reprogramming can occur throughout the mouse's lifetime in response to 

physiological stimuli such as multiple rounds of pregnancy, and also δ-cells can convert to β-

cells in young mice after β-cell injury (Chera et al., 2014; Ye et al., 2016). Reprogramming of 

α-cells to β-cells has also recently been suggested to occur usually without stimuli or injury. 

A population of immature β-cells identified by the presence of insulin expression, but the 

absence of the maturity marker urocortin3 (Ucn3) was found at the periphery of the islet and 

are thought to be in a transition state between mature cells and β-cells (van der Meulen et al., 

2017). Due to the inability to perform lineage tracing experiments in humans, the question 

still remains whether endocrine cells can transdifferentiate into β-cells in patients with 

pancreatic diseases. 

Thus, the process of endocrine transdifferentiation in humans or mice requires 

dedifferentiation before reprogramming has not yet been answered definitively, as both direct 

reprogramming and transdifferentiation associated with dedifferentiation (with or without re-

expression of NGN3) have been reported (Chakravarthy et al., 2017; Talchai et al., 2012). 

Studies on ectopic expression of the transcription factor PAX4 and inhibition of the α-cell 

gene ARX in mice found that α-cells get converted to β-cells (Collambat et al., 2009; 

Courtnet al., 2013). Recently, it was reported that the deletion of the DNA methyltransferase, 

Dnmt1, and ARX is necessary for converting α-cells to functional β-cells (Chakravarthy et 

al., 2017). The expression of PDX1 and MAFA specifically in α-cells using a genetic 

approach or throughout the pancreas using a viral approach can also induce insulin 

expression in α-cells, and interestingly viral approach could rescue blood glucose levels in 

the non-obese diabetic (NOD) model of autoimmune diabetes (Matsuoka et al., 2017; Xiao et 
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al., 2018). In addition, studies have also reported β-cell regeneration in-vitro through 

transdifferentiation of human pluripotent stem cells (hPSCs) (Rosler et al., 2004) and induced 

pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006) which are pluripotent non-

pancreatic progenitors. This newly formed β-cells when transplanted into diabetic mice and 

rats, were able to secrete insulin (Kroon et al., 2008; Rezania et al., 2014; Velazco-Cruz et 

al., 2019). Despite many recent scientific advances, it remains uncertain whether human 

pancreatic β-cells possess an intrinsic regenerative capacity. However, available data suggest 

that β-cells could exhibit the potential for regeneration under favourable conditions. Different 

approaches for β-cell regeneration and the pancreatic lineages are shown in Fig. 1.7. 

 

Figure 1.7 Differentiation of pancreatic lineages and strategies for β-cell regeneration. Novel β-

cells can be derived through transdifferentiation of human pluripotent stem cells (hPSC) and induced 

pluripotent stem cells (iPSC), reprogramming of mature, non-endocrine (ductal and gastrointestinal) 

cell populations, α- to β-cell conversion and β-cell proliferation (Nasteska et al., 2019; Singh and 

Ninov, 2018).  

1.7.4 Potent β-cell Regenerative Drugs 

Candidate approaches to β-cell regenerative drug discovery have suggested that gamma-

aminobutyric acid (GABA), dual-specificity tyrosine phosphorylation regulated kinase 1A 

(DYRK1A) inhibitors, GLP-1, prolactin/placental lactogen (PRL/PL), 

osteoprotegerin/denosumab, inhibitors of the receptor activator of nuclear kappa-B ligand 

(RANKL), the TGF-β superfamily, serpin B1, cell cycle inhibitors (p18, p21) and a V-growth 

factor (VGF)-derived peptide called TLQP-21 may have mitogenic effects on β-cells. 

(Karakose et al., 2018; Rathwa et al., 2020).  

1.8 Melatonin: Hormone of Darkness with Pleiotropic Effects 
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Changing lifestyle trends such as a tendency to nocturnality and excessively calorie-rich diets 

cause disturbance of the sleep/wake cycle and other circadian rhythms (Bixler, 2009). 

Deviation in circadian patterns favours the occurrence of diabetes (Scheer et al., 2009). 

Inconsistent data have been reported concerning the pineal hormone's effect on insulin 

secretion, blood glucose, and carbohydrate metabolism. Melatonin (N-acetyl-5-

methoxytryptamine) a tryptophan derived small indolic molecule, is mainly secreted by the 

pineal gland and locally in several other tissues (Reiter et al., 1991; Stefilj et al., 2001). 

Melatonin is known as the hormone of darkness, circadian rhythm regulator, and has 

pleiotropic effects. In mammals, the concentration of plasma melatonin during the night is 

found to be 80–100 pg/mL and low during the day (10–20 pg/mL) (Simonneaux and 

Ribelayga, 2003). Its synthesis comprises of two steps, initially the conversion of amino acid 

tryptophan into serotonin (5-hydroxytryptamine, 5-HT), further acetylation by arylalkylamine 

N-acetyltransferase (AA-NAT), the rate-limiting step in melatonin biosynthesis, before 

finally being converted into melatonin by hydroxyindole- O-methyltransferase (HIOMT) 

(Axelrod and Weissbach, 1960). In diabetic patients, a reduction in melatonin levels and 

insulin was observed. On this basis, melatonin may perhaps be involved in the genesis of 

diabetes, and a functional inter-relationship between melatonin and insulin was observed 

(Peschke et al., 2006). Melatonin mediates its action by two receptors MT1 and MT2, as 

discussed before. These receptors are found in the pancreas (α, β, and δ cells) and insulin-

sensitive tissues apart from several other tissues. The intracellular signal transduction 

pathways of the pancreatic β-cell influenced by melatonin via MT1- and MT2-membrane 

receptors include cAMP-, cGMP IP3-signaling pathways shown in Fig. 1.8. Melatonin 

inhibits cAMP and cGMP stimulated insulin secretion mediated via Gi protein-coupled MT1 

and MT2 receptors. Alternatively, melatonin induces IP3 liberation that allows Ca2+ to flow 

into the cell from intracellular stores (Bach et al., 2005), a standard mechanism that triggers 

insulin secretion by pancreatic β-cell. The MT2r receptor-dependent signalling pathway of 

melatonin stimulates phospholipase C via Gq proteins, markedly elevating inositol 

triphosphate (IP3)/Ca2+ from intracellular stores (Peschke et al., 2006). The co-product of 

phospholipase C (PLC) activity, diacylglycerol (DAG), may lead to MAPK p38-modulated 

activation of protein kinase D (PKD), protein kinase C (PKC) and increased insulin vesicle 

fusion. In humans, melatonin administration reduced glucose tolerance by decreasing insulin 

release in the morning, while a decline in insulin sensitivity was observed in the evening 

(Rubio-Sastre et al., 2014). Furthermore, in mouse liver, melatonin is required for insulin-
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stimulated phosphatidylinositol 3-kinase (PI3K)–AKT activity, in rats, it suppresses hepatic 

glucose production, and in the human hepatocyte cell line HepG2, it activates glycogen 

synthesis, probably via a PKCζ–AKT–glycogen synthase kinase-3β (GSK3β) pathway. In 

mouse skeletal muscle, melatonin activates the insulin receptor substrate 1 (IRS1)–PI3K–

PKCζ pathway to enhance glucose uptake rate. In inguinal rat adipocytes, melatonin inhibits 

the cAMP–PKA pathway and isoproterenol-induced lipolysis and fatty acid transport in some 

cases. In the human brown adipocyte PAZ6 cell line, melatonin acutely inhibits cGMP 

production and decreases glucose transporter type 4 (GLUT4) expression and glucose uptake 

upon long-term treatment (Karamitri and Jockers, 2019). Melatonin is a natural, free radical 

scavenger that modulates Nrf2 (Ahmadi and Ashrafizadeh, 2020) and has anti-inflammatory, 

antioxidant effects (Hacışevki and Baba, 2018). Different animal studies suggest that 

melatonin supplementation may benefit glucose homeostasis and body weight regulation 

under certain circumstances. DM is more prevalent in middle-aged and older adults (40-60 

years). The fact that melatonin declines with age should encourage more preclinical trials in 

various experimental diabetes models, leading to clinical trials in humans to evaluate 

melatonin's therapeutic potential in diabetes. 

 

Figure 1.8 Putative signalling pathways activated by MT1 and MT2 melatonin receptors. (A) 

Multiple signalling pathways for MT1 melatonin receptors coupled to Gαi and Gαq/11. (B) Signalling 

pathways coupled to MT2 melatonin receptor activation. No direct evidence for MT2 receptors 

coupling to Gq has been reported, so the pathway leading to PKC activation remains putative. PIP2, 

phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; DAG, diacylglycerol; PKA, protein 

kinase A; CREB, cAMP-responsive element-binding protein; ER, endoplasmic reticulum; VDCC, 

voltage-dependent Ca2+ channel; BKCa, calcium-activated potassium channel; FP, receptor for 

prostaglandin F2α; PGF2α, prostaglandin F2α; IBMX, isobutylmethylxanthine; ATP, adenosine 

triphosphate; MLT, melatonin; GTP, guanosine triphosphate; GMP, guanosine monophosphate 

(Masana and Dubocovich, 2001). 

1.9 Incretins and DPP-IV Inhibitors 

The incretin effect is diminished in T2D (Gallwitz, 2007). Hence, among the currently 

available antidiabetic drugs, the incretin-based therapies, GLP-1 RAs, and DPP-IV inhibitors 
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are widely used antidiabetic drugs that target β-cell function and mass, as well as other 

systems that contribute to T2D (Fig. 1.9). Two gut hormones, gastric inhibitory polypeptide 

(GIP; now referred to as glucose-dependent insulinotropic polypeptide) and GLP-1, are 

endogenous incretins that potentiate GSIS (Yabe and Seino, 2011). GIP is a 42-amino-acid 

hormone secreted from K cells in the upper small intestine, and GLP-1 is a 31-amino-acid 

hormone produced from a proglucagon precursor secreted from L cells in the lower intestine 

and colon. GLP-1 and GIP account for 50% to 70% of postprandial insulin secretion from 

pancreatic β-cells. Once secreted, GLP-1 and GIP are rapidly degraded by the ubiquitous 

enzyme DPP-IV, which inactivates incretins by cleaving their 2 N-terminal residues. Incretin-

bound receptors increase intracellular cAMP levels, thereby activating protein kinase A 

(PKA) (Fehmann et al., 1995) and cAMP-activated guanine nucleotide exchange factors that 

target Ras-like GTPases 2 (Epac2; also referred to as cAMP-GEF-II) (Holz, 2004). PKA and 

Epac2 mediate ion-channel activity changes and enhance cytosolic calcium levels and the 

exocytosis of insulin-containing granules. Together, these events contribute to insulin 

secretion stimulation in a glucose-dependent manner (Yabe and Seino, 2011). Both GIP and 

GLP-1 have demonstrated non-insulinotropic actions, such as controlling β-cell proliferation 

and survival (Yabe and Seino, 2011; Dalle et al., 2013). GIP has also exhibited an anti-

apoptotic function in pancreatic β-cells that is mediated by the activation of the cAMP 

response element-binding protein (CREB) and protein kinase B (Akt/PKB) pathways. By 

activating the cAMP/PKA/CREB, PI3K, and ERK1/2 pathways, GLP-1 is considered a 

growth and differentiation factor for mature β-cells and β-cell progenitors. GIP and GLP-1 

induce the transcription of cyclin D1, a molecule critical for cell cycle progression from the 

first gap phase (G1) to the synthesis (S) phase in most cell types. GLP-1 also replenishes 

insulin stores and prevents β-cell exhaustion by upregulating insulin at the mRNA and 

protein levels via PKA-dependent and -independent signalling pathways. GIP activates the 

Raf-Mek1/2-ERK1/2 signalling pathway via cAMP/PKA signalling in GIPR, which induces 

β-cell proliferation (Dalle et al., 2013). 
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Figure 1.9 Mechanism of action of DPP-IV inhibitors and GLP-1RAs and its effect on 

pancreatic β-cell in animal models. GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like 

peptide-1; ER, endoplasmic reticulum (Chon et al., 2014; Tibaldi, 2014). 

DPP-IV inhibitors are orally administered small molecule drugs that compete with DPP-IV 

substrates for the active sites in the enzyme and inhibit >80% of DPP-IV activity. Thus, DPP-

IV inhibitors increase circulating levels of endogenous active GLP-1 and GIP by 

approximately 2 to 3-fold and exert a glucose-dependent dual action on both α- and β-cell 

function that stimulates insulin secretion and suppresses glucagon secretion under 

hyperglycemic conditions (Chon and Gautier, 2016). Currently, multiple DPP-IV inhibitors 

are approved and available for their use in the treatment of T2D, including sitagliptin, 

vildagliptin, saxagliptin, linagliptin, anagliptin, alogliptin, gemigliptin. In addition, several 

other DPP-IV inhibitors are pending approval. The various DPP-IV inhibitors slightly differ 

in their structure, absorption rate, distribution, metabolism, and elimination and their potency 

and duration of action (He et al., 2015). DPP-IV inhibition exerts long-lasting effects on 

pancreatic islet mass and/or insulin content, an influence not observable with sulfonylurea 

(Matveyenko et al., 2009). Further, a report suggests that DPP-IV inhibitors might promote 

transplanted stem cells' differentiation and play an immunoregulatory role in autoimmune 

insulitis (Kim et al., 2009). From the above- mentioned drugs, sitagliptin is a highly selective 

DPP-IV inhibitor that has been approved for T2D therapy. Sitagliptin is effective, well-

tolerated, and safe for treating T2D in monotherapy or in combination therapy with 

metformin or thiazolidinediones. It reduces the glycemic parameters HbA1c and fasting and 

postprandial glucose and improves β-cell function. Sitagliptin is weight neutral and does not 

increase the incidence of hypoglycemic episodes or other adverse events, and is superior in 

reducing HbA1c than other oral anti-hyperglycemic drugs (Gallwitz, 2007). The effect of 

DPP-IV inhibitors on β-cell mass in humans remains unevaluated in clinical studies. In case 

the observed effects on β-cell function and mass in preclinical studies also apply to human 

studies, sitagliptin could also have the potential to be useful in pre-diabetic stages to prevent 

the progression of diabetes. Although a growing body of evidence suggests that incretin-

based therapies can modify the natural course of diabetes, further studies are needed to 

evaluate the long-term effects of incretin-based therapy on β-cell function and mass and 

glucose control. 
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