Chapter 2
A Review of Theoretical Methodology

In this chapter, we discuss in brief the theoretical methodology that had been developed
to study the electronic, optical, transport and structural properties of solids. Since the
objectives of this thesis have been to study the electronic, optical, transport and
structural properties of bimetallic atomic chains, we focus more on the methods that

had been used to investigate the properties of atomic chains.

2.1 Background

An ab-initio calculation or equivalently called "from first principles" is generally
referred to a "bottom-up" material modelling" using mathematical model. These
theoretical modelling techniques relies mostly on simple input parameters like atomic
number Z and does not require any empirical or experimental parameters to predict and

describe the system consisting of atoms, molecules and solids.

The corner stone of modern material modelling techniques is Quantum Mechanics.
Simple rules and formulation of Quantum mechanics is in fact a spectacular
"engineering tool" for understanding and predicting many properties of materials. The
use of Quantum Mechanics in the study of materials goes through the solution of
Schrodinger equation. A numerical solution of the wave equation of a system reveals
most of its properties. However, the real system consisting of number of particles,
nucleus and number of electrons, is a many-body problem. The exact solution of a many
bodies problem remains difficult task as they are solvable in time scaling exponentially
with system size. Many approximations are introduced to solve the many body equation

numerically without losing much of the accuracy and predictive power.

Most of the complexity of the problem arise from the treatment of electron-electron
interactions. The physical and chemical properties of a system depend principally on
the interaction of the electrons with each other and with the atomic cores. These
interactions cannot easily be separated out or treated without approximation. Another

complexity arises from the many body nature of the problem concerning solids. There
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is no analytical solution to interacting many body problem. Since early nineteen
seventies different numerical methods have been employed to solve the Schrédinger
equation for atoms and molecules. These methods are referred to as 'wave-function
based methods'. In spite of the rapid growth of computer power and the available
computational resources, it is still not feasible to calculate directly systems involving
more than 10 electrons.”” To treat the complexity of many body problem and the
electron-electron interaction several techniques were developed. Among different
computational and theoretical techniques, one of the prestigious methods widely used
for predicting ground state properties of materials with large number of electrons is
density functional theory (DFT). DFT converts the complex electron-electron
interaction into a simpler effective one-electron potential. This effective one-electron
potential is functional of the electron density only. That is the reduction in the 3N
degrees of freedom to 3 by incorporating overall electron density instead of number

density for constructing the wave-function.

Utilizing DFT, one can solve time-independent Schrodinger like Kohn-Sham equation
for studying the properties of bulk, nano materials as well as complex systems of bio
molecules with nano materials. This theory is the developed version of Thomas and
Fermi model proposed in early twentieth century, and further treated by Hartree, Fock,

Dirac and Slater.

The foundation of DFT was formulated by the two famous theories, one proposed by
Hohenberg and Kohn” and later by Kohn and Sham’ which provides an inexpensive
tool for calculating the ground state properties of many electron systems. In the

following sections, we briefly discuss the mathematical basis of theoretical techniques.

2.2 The Many Particle Solids

Any solution of the time-independent Schrédinger equation starts with constructing the

Hamiltonian of a system of Ne interacting electrons and Ny nuclei:

H=T, + T, + Vyp + Vee + Ve (2.1)
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Here, Te and T, are the kinetic energy of electrons and ions, while Vi, Vee, and Ve are
potential energy of two nuclei, two electrons and nuclei-electron system respectively.
The indices i and / runs for electron and nuclei, me and M stands for the mass of electron
and nuclei, Z;and Z;' defines the charges on different nuclei, 7; — 7, R,— R,/ andT; —
R, represents distances between electron-electron, nuclei-nuclei and electron-nuclei

respectively. The constants h and e are the reduced Plank constant and the electron

charge, respectively.

We seek the solution of the eigenvalue equation:

Hy = Ey 2.3)

Here, H is the Hamiltonian of the system, i is the wave function and E is the energy

eigenvalue of the system known as total energy of the system.

Solving equation 2.3 yields the energy eigenvalue known as total energy of the system.
Ground state properties of materials at equilibrium condition can be calculated from
total energy of the system. The only parameter required for solution of equation 2.3 are
atomic mass, charge of electron, atomic number and mass of nuclei. It does not require

any adjustable parameter and hence it is known to be first principles calculation.

2.3 Wave Function Based Methods to Solve a Many Particle
Problem

An exact solution of eqn.(2.3) is not possible. There had been several approximations

to solve a many particle eigenvalue equation. Some of these are as follows:
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2.3.1 Born-Oppenheimer Approximation

The mass of electrons and ions are hugely different ( me¢/M;= 1073 - 10°). This large
difference of mass makes it possible to decouple the electron and ionic parts of the
Hamiltonian.Such decoupling does a major simplification of the many-body
Hamiltonian and is known as Born-Oppenheimer approximation.”> Here, electrons are
regarded as responding instantaneously to changes in the nuclear positions, which in
turn are kept fixed. Following the Born-Oppenheimer approximation, the many body

wave function can be expressed as:

Y = x;(R) ¥y, R) (2.4)

Here y;(R) represents ionic, while Wg(7, R) stands for electronic wave function.

Separated ionic and electronic part of wave function leads to following equations:

[-%Zza‘;} + Vo (R) + E (R)]Xz(R) Exi(R) 2.5)
[_%Ziaizz ne(r R) + ee(r)] llu (7‘ R) = E l}l (T R) (2,6)

As ions are considered stationary, the kinetic energy term for ions vanishes and ion-ion
potential becomes constant in equation 2.5, whereas electron-ion interaction depends

on position of electrons only.

2.3.2 Hartree Approximation

Taking further the Born-Oppenheimer approximation to reduce the complexity of
many-body interaction Hartree treated electrons independently and their interaction
was treated via the average charge. This is equivalent to representing the total wave
function as a product of individual one-electron wave equation.’® Therefore, electronic

wave function is written as:
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where, ¥ (7;, 0;) determines the wave function of i electron, 7; is the postion coordinate
of ith electron with spin 0;. Thus, as per Hartree approximation one uses the
Hamiltonian of equation 2.6 and wave function from equation 2.7 for constructing the

complete Schrddinger equation for electronic part which is written as:

L Z ze? Zf el SO g = g w, (28
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The first term in left hand side of the equation is the kinetic energy, second term
represents the ion-electron interaction (Vig) which depends only on the position of
electron and the last term represents the Hartree potential, V. The solution of Hartree
equation is given by variational principle which provides exact ground state energy
through-minimization of expectation value of energy E.

(Py|H|¥ )

E= v

(2.9)

The independent electron approximation given by Hartree did not consider the
asymmetry of wave function of electrons and this was modified in Hartree-Fock
approximation. Also, the independency of electron neglects correlation between

electrons.

2.3.3 Hartree-Fock Approximation

Considering the asymmetric nature of a wave function and the effect of correlation the
Hartree-Fock approximation takes as a trial function that is a set of N-particle Slater

determinant.

¥, (1, 01) V(r3,02) ... ¥i1(y,0n)
Wr (7,01, o Ty o) = | 20202 P2(2,00) o W2y 0n) (2.10)

Yy(y,on) Py(n,on) ... Py(y,on)
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The determinant of the wave function can be written as:
1
VYur = EZP(—l)pP ¥1(x1) P2 (x2) .. Py (xn) (2.11)

Where, x = (T, 6), P is the permutation number and p is number of interchanges making
up this permutation. Substituting the determinant form of equation in variational

principle (equation 2.9) gives expectation value of Hamiltonian:

E =nyv*(?) _ va V(D)
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The first term of above equation consist of kinetic energy and interaction of external
potential, the second term represents Hartree potential and the last term appeared due
to the Pauli’s exclusion principle also known as exchange energy. Minimization of

equation 2.12 leads to canonical form of Hartree-Fock equation:

[~ 272 = Vi) + Vi (D] )
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The Slater determinant approximation does not take into account the Coulomb
correlations of electrons, the total electronic energy is different from the exact solution
of non-relativistic Schréodinger equation within Born-Oppenheimer approximation.
Therefore Hartree-Fock Energy is always above the exact energy. This difference is
called the correlation energy. Apart from the coulomb correlation, one major short
coming of Hartree-Fock approximation is the lengthy minimization over sum of N

particle Slater's determinant which makes it computationally very costly.
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2.4 Density Functional Theory

The Density based methods provide a convenient way to solve the electronic problem
within the mean field-like approximation to overcome the limitation of high
computational cost of solving equations containing 3N variables. In Density based
methods the interaction energy and potential depend only on density of electrons.
Density based methods for calculating ground state energy was first proposed by
Thomas and Fermi(TF).””-”® The TF theory states that the total energy of the system can
be written as a functional of electron density. Here the basic variable is electron density
instead of single particle wave function or orbitals. TF theory understandably had
several shortcomings. The oversimplified description of the electron-electron
interaction which was treated classically. Nevertheless, TF theory contains all necessary

ingredients which paved the way to the modern DFT.

2.4.1 Hohenberg and Kohn Theorems

DFT is based on the famous theorems by Hohenberg and Kohn. These theorems
demonstrate that the total energy of a many-electron system in an external potential is
a unique functional of the electron density and that this functional has its minimum at
the ground state density. Further development of these two theorems were done by
Kohn and Sham. Kohn and Sham expressed the electron density as a sum over one-
electron densities and used one-electron wave functions as the variation parameters.
Here the exchange correlation potential had been expressed as the functional derivatives
of the exchange correlation energy. However, the exact form of exchange-correlation
functional is unknown, the Hohenberg-Kohn theorems and Kohn-Sham equation

constitutes the core elements of DFT.

The first Hohenberg-Kohn theorem states that, the external potential V(r) is a unique
functional of electron density n(r). As result, the total ground state energy E of any many

electrons system is also unique functional of n(r), E = E[n].

The second Hohenberg-Kohn theorem states that the functional E[n] for the total

energy has a minimum equal to the ground state energy at the ground state density.
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The unique external potential determined using density is used to determine the
electronic wave function and all other observables. The total energy then can be written
as:
E[n] = T[n] + Eint[n] + [ Vere (@) + By (2.14)
E[n] = F[n] + [ Vexe(Mn(r) + Ey (2.15)

Here, the encapsulated F[n] is the interaction potential of electrons and kinetic energy
of electrons for all systems. The ground state energy determined by unique ground state

density is.
EMD — E[n(l)] = (YO HO|p @) (2.16)

Here, total energy can be written as functional of n(r). F[n] in equation 2.15 can be

written as a functional of density n(r)

Fln] = Ty[n] + 2 [ 202D 37430 4 Byon) 2.17)

4mey  |7F-7|

By knowing F[n], we can vary density until minimization of total energy for the system.
Thus, the knowledge of total energy is sufficient to determine the ground state energy

and density.

2.4.2 Kohn-Sham Equation

Hohenberg and Kohn theorems are basically the reformulation of many body
interacting systems in terms of electron density. Unfortunately, the form of the
functional Exc[n] in equation 2.17 is not known. The form of the functional and
inclusion of exchange and correlation was addressed by Kohn and Sham. They assumed
that for a given interacting ground state density n(r) there exists a potential such that
the ground state density of the non-interacting Hamiltonian H = Tg + Vi 1s equal to
the Hamiltonian of the interacting ground state density n(r) such that we get the energy
density functional:

En(@)] = [VEn@Ed3r + T[n] += ff Mal3ral3r'+EXC[n] (2.18)

amey  |7P-7|

In other words, KS replaced the potential of interacting system by an auxiliary non-

interacting system with assumption of same ground state density and then same ground
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state properties. For this ground breaking work, Walter Kohn was awarded Nobel prize
in chemistry in 1998 7* Now, T,[n] is independent kinetic energy and V,,.(#) is
replaced by V (7), which is the potential between electrons and nuclei. The many body
quantum mechanical effect is accounted by the last term Ey-[n] which is the exchange

and correlation energy.

Minimization of the energy is done by taking the functional derivative of equation 2.18

which gives:

SE[n] _
Sl—u=0 (2.19)
6Tg[n] _ _ _
on(7)
Here, Vy(7) is the Hartree potential in terms of electron density and Vyq(7) = 55;?#?]

solution of equation will give the electron density and further it leads to total energy of

system.

Two unknowns T¢[n] and exchange correlation potential Vi (#) arising from Pauli and
Coulomb interaction are a limitation of equation 2.20. To overcome the problem Hartree

considered density as square of orbitals of the system.

n(7) = L (@12 (2.21)
Where, KS orbitals are determined by ¥;(¥). KS Kinetic energy can be written as a
single particle by following expression.

Tylnl = 3= SN WPV W) = =577 2:22)

Here, T¢[n] is responsible for density oscillation of shell structure and it has large part
of the total kinetic energy of system. Here, E,.[n] is the sum of electron exchange
and correlation energy i.e., E,.[n] = E,[n] + E.[n], where Slater’s determinant
E,[n] is generally given by Slater’s determinant (equation 2.11). By solving equation

2.18 we get
hZ 2 — N N
[—ﬁv + Verp (T )] Yi(7) =€ ¥:(M) (2.23)

Here, Vs (7) is known as effective potential and determined by sum of external

potential, V. (7), Hartee potential, V, (#) and exchange-correlation potential, V(7).
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Equation 2.23 is Kohn-Sham equation, and it is exactly same as the many body
Schrédinger equation. For the exact form of exchange-correlation functional different
approximations such as local density approximation (LDA) and generalized gradient
approximation (GGA) are taken into account. We discuss these approximations briefly

in the subsequent section.

Solution of KS equation yields exact ground state energy, and it describes behaviour of
one electron moving in multiple electron system by effective potential. Since the
solution of KS equation depends only on density of electrons and it has only 3 variables,
the computational cost reduces to a great extent. This makes KS theory a powerful tool

in determination of ground state properties of materials.

2.5 Exchange and Correlation Functional

In principle the Kohn-Sham scheme is exact, however the expression for the exchange
and correlation functional E,.[n] unknown. As the exchange correlation functional
includes many body effects the form of E,.[n] needs to be re-constructed so as to make
the underlying physics clear. The exchange interaction term which is the repulsion

between electrons defined as:
Ex[n] = (¥[n]|Vgg|¥[n]) — Uln] (224)
The correlation term can be determined by the following expression:
Ec[n] = F[n] = Ts[n] — Uln] — Ex[n] (2.25)

Till date, exact formalism of exchange correlation is still not available.

2.5.1 Local Density Approximation

Local Density Approximation (LDA) is one the most popular and one of the earliest
developed approximation to find the form of exchange and correlation functional. The
main idea behind LDA is to consider general inhomogeneous electronic system as
locally homogenous system. Since the form of homogenous electron gas is very well
known, it can be used to evaluate the exchange energy exactly and it is possible to

determine the correlation energy using numerical techniques. In contrast to the
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exchange energy, for the correlation energy of the electron gas, there does not exist
simple analytic expression. Nonetheless, it has been possible to calculate the correlation
energy for this simple model by solving directly the many-particle Schrodinger
equation using stochastic numerical methods (Ceperley and Alder, 1980).” The
correlation energy of the electron gas can be extracted from the data of Ceperley and
Alder by removing the known kinetic, Hartree and exchange contributions from the
calculated total energies. The data calculated by Ceperley and Alder were subsequently

).80

parameterized by Perdew and Zunger (1981 Using above approximations the

exchange-correlation energy and potentials are obtained as
Ex2[n()] = [ dr n(r) ex?*[n(r)] (2.26)

Vee[n(1)] = (Eyeln] +n 22 (227)

on )n=n(r)

where, Ey./n] is the exchange-correlation energy per electron in a homogeneous

electron with density, 7.

While the electron density in materials may not resemble at all the homogeneous
electron gas, this simple model can be used in order to describe the exchange and
correlation energy in those regions where the density is slowly varying. However, there
are some limitations of LDA. The main limitation is its applicability for strongly
correlated systems and its failure for describing properties of transition metals. In the
field of quantum chemistry, LDA overestimates intermolecular bonds and molecular
binding energy. To overcome this problem several efforts have been put to find better
functional. For a system that contains an odd number of electrons, pure LDA performs

badly, since it makes no difference between polarized and unpolarized densities.

2.5.2 Generalized Gradient Approximation

In complex systems, electron density may vary with the volume element, so LDA can
fail to determine ground state properties. To overcome this problem Generalized

Gradient Approximation (GGA) was developed. The idea of GGA is to use gradient of
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electron density in addition to the electron density for evaluating the exchange and

correlation term which yields:

ESSAn(r)] = [ dr n(r) €€84(n(r), Vn(r),...) (2.28)

Exchange and correlation are now semi-empirical functional, and degree of non-
locality have a dependency of electron density. GGA favours density inhomogeneity
more than LDA by the non-locality of the exchange with most common densities. This

approximation assumes a gradient in the charge density. It can be written as:

Exe [n] = fgxc(n) |n=n(r)n(r)Fxc [n(r),Vn(r)ldr (2.29)

For more simplification in calculation, E,. and F,. must be parameterized by analytic
functions. Perdew, Burke, and Ernzerhof!®® have parameterized E,. and F,. from first
principles calculation. In predicting bond dissociation energy and the transition-state
barrier, GGA is better than LDA however there are exceptional cases. To satisfy several
further exact conditions, Perdew-Wang 1991 (PW91)8! designed functional which is an
analytic fit to this numerical GGA. Plane waves and pseudopotentials which form a

very natural alliance are a hallmark of the method.

2.6 Self-consistent calculations

The basic concepts of DFT and the Kohn-Sham equations anticipates a theoretical
apparatus to calculate the E, and the n(r) of materials in their ground state. However,
the theoretical apparatus is basically a numerical method of changing density of
electrons and effective potential to achieve the self-consistency. Knowing the effective
potential, the KS equation can be solved. Hartree potential and exchange correlation
potential depends on electron density and this density yield correlation energy where
initial guess of density is made. An approximation to initial guess for electron density

is adding up densities of isolated atoms arranged in corresponding material.
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2.7 Numerical Implementation of DFT

This section presents some selected aspects of the numerical implementation of a DFT
codes which are related to our study. The error size associated with a number of
approximations is often a compromise between computational time and accuracy. To
solve the Kohn-Sham equation numerically the wave-functions must be represented as
a liner combination of a finite number of basis functions. The choice of the basis
functions determines the achievable accuracy and computational efficiency. DFT
calculations implemented in different computational codes use mostly one of three
types of basis sets namely, (1) Linear Combinations of atomic orbital (LCAOs), (2)
Linearized augmented plane waves (LAPWs) and (3) Plane Waves (PWs) in
combination with pseudo potentials for describing the electron-ion interaction.
Different computational packages uses different methods.

The DFT code used throughout this work is Vienna ab-initio Simulation Package
(VASP). VASP uses plane wave basis set for solving KS equation. The discussion of
numerical implementation is limited to methods used in VASP code with a brief

background of each concept.

2.7.1 Boundary Conditions

As per Bloch's theorem, the wave function of an electron placed in a periodic potential
has a periodicity of the crystalline lattice. The Kohn-Sham orbitals, ¥} (r) , can be

ik.r

written as product of plane wave e**"and a periodic function u;} (r) that has periodicity

of the lattice.

Yl (r) = ul(r) etkr (2.30)

where k is a vector in first Brillouin zone and n is band index. Because of the periodicity
of the lattice periodic boundary conditions can be utilized to treat infinite periodic
systems such as bulk crystals. For non-periodic structures these periodic boundary
condition can still be useful by forming supercells. The system of interest is modelled
within a finite cell which is repeated in all directions to form super lattice. In this way,
molecules, nanotubes, atomic chains and surfaces can be modelled by introducing

sufficiently large vacuum region in the supercell such that the system under
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consideration does not interact with the periodic image. uj () can be expanded as a

set of plane waves.

2.7.2 Description of ions

Framing the non-interacting KS-equations has substantial numerical difficulties: (i) In
any condensed matter system, the kinetic energy of electrons near the nucleus is higher
compared to the bonding region between atoms. As a result, the wave functions of the
electrons near the nucleus oscillate rapidly requiring a very fine grid for an accurate
numerical representation. On the other hand, the demand of large kinetic energy cut off
makes the KS-equation stiff. Which means that the shape of the wave function will have
little effect of any change in the chemical environment. Thus, the core region requires
small basis set. (ii) In the bonding region, situation is reversed. Since the kinetic energy
is low the wave functions are smoothly varying. This responds strongly to a change in
environment which in turn requires large and flexible basis set.

Involving above two points for basis set construction is a nontrivial task. To address
this matter several strategies are used. These strategies generally involve selection of
correct basis set and the treatment of electron-ion interaction. The choice of basis set
are broadly classified into three groups, (a) Linear Combination of Atomic Orbitals
(LCAO), (b) Linearised Augmented Plane Waves, and (c) Plane Wave basis set in
combination with pseudo potentials. LCAO have been most preferred choice to
quantum chemists. The wave functions in these methods are represented by a few
atomic like orbitals in the region near atoms, and bonding of atoms are described by the
overlapping tails.

Plane Wave basis set is often used with pseudo potential method to describe electron-
ion interaction. Plane wave basis sets offer following advantages: (i) Ease of
convergence test with respect to the completeness of basis set by extending the cut-off
energy, (i.e. the highest kinetic energy in the PW basis). (ii) It is easy to switch from
real-space representation to momentum-space via Fast Fourier Transform where the
kinetic energy T is diagonal. (iii) Force on the atoms and stresses on the unit cell may
be calculated directly via the Hellmann-Feynman theorem, without applying
corrections for the site-dependence of the basis set. In order to achieve convergence
with a manageable size of basis set sometimes the strong ion-electrons are replaced by

a sufficiently weak pseudo potential.
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Pseudo potential assumes the core electrons to be chemically inert and treats it to be
frozen. This reduces the number of wave functions to a great extent. This leads to a
major reduction in the number of wave functions. Further, in order to achieve an
acceptable convergence of plane-wave basis set, the nodal character of valence orbitals
has to be eliminated. Using a pseudo potential to describe ion-electron interaction
removes this nodal character. However, it raises the question of the accuracy and
transferability of pseudo potential resulting in the necessity to linearize the valence-
core exchange-correlation interactions. These problems can be solved within the
projector-augmented wave (PAW) method.®? PAW method was originally introduced by
Bloch.® PAW method provides benefits of both pseudo potential method as well as full-
potential linearized augmented-plane wave (FLAPW) method, that is efficiency and
accuracy. PAW method takes in to account the nodal feature of the valence orbitals
ensuring the orthogonality between valence and core wave functions. The basic concept
of PAW method is described briefly below,

The all-electron (AE) valence wave functions WA are reconstructed from the pseudo

(PS) wave function using a linear transformation.

[WAEY = |95S) + i(0fF) — |0 ) (pF*|wES) (2.31)

The pseudo-wave functions WS (n is the band index) are the variational quantities and

are expanded in plane waves.

2.7.3 Iterative schemes for calculating the Kohn-Sham ground state

The higher requirement of number of plane waves (NPW) in a plane wave basis set
methods to achieve convergence is remedied by two points: (i) The efficiency of The
action of Hamiltonian onto the trail wave function can be evaluated very efficiently. (ii)
Modern iterative algorithms for the calculation of the Kohn-Sham ground state avoids
the explicit calculation, storage and diagonalization of the NPWxNPW Hamiltonian.

These methods fall into two categories:

1) Direct methods based on the minimization of the Kohn-Sham total energy functional

either using the Car-Parrinello approach® based on a pseudo Newtonian equation of
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motion for the electronic degrees of freedom or by a conjugate gradient minimization
of the total energy.?>%

2) Iterative methods for a sequential updating the occupied and some empty eigenstates,
in conjunction with an iterative improvement of the charge-density or the potential
(mixing) in a self-consistency cycle.

Recent development has showed that direct methods perform as good as self-consistent
methods for semiconductors and insulators while self-consistent methods outperform
direct methods in case of metallic systems.®”#® VASP incorporates many different
approaches for the iterative calculation of the lowest Kohn-Sham eigenstates. These
approaches are; (i) the blocked Davidson scheme®, (ii) the sequential conjugate-
gradient (CG) algorithm proposed by Teter et al.®® for the minimization of the total
energy and adapted by Bylander et al.”® for the iterative diagonalization of the
Hamiltonian, and (iii) a variant of the minimization of the norm of the residual vector
to each eigenstate combined with a direct inversion in the iterative subspace (RMM-
DIIS).?!%2

Efficiency of any iterative approach is based mainly on one criterion that is the number
of operations scaling with a higher power of number of plane waves is kept at a

minimum.

2.7.4 Partial Occupancy and finite temperature methods

VASP uses different methods to treat partial occupancy. Using partial occupancy one
can decrease the number of k-points necessary to calculate an accurate band-structure
energy. To calculate accurate band structure energy the integral over the filled parts of

bands is evaluated.

S Jay, Enk®CEnk — Wk (232)

BZ

where 0(x)is the Dirac step function This integral needs to be evaluated using discret

number of k-points due to finite computer resources. *>~°

—[ =Y
e —
Qs W

Keeping the step function we get a sum,
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Yk Wi Enk® (Enie — 1) (2.33)

The convergence of above integral is exceedingly slow with the number of k-points
included. The reason for this slow convergence is the fact that the occupancy jump from
1 to 0 at Fermi-level.

For the case of semi-conductors and insulators the band is completely filled and the
integral can be calculated accurately using a low number of k-points. For metals the
trick is to use a smooth function f({&,,}) instead of a step function ©(&,;, — ). This
results in much faster convergence without compromising on the accuracy of the sum.
There are several methods for treating this problem. VASP uses mainly two approaches:
(i) Linear tetrahedron method. (ii) Finite temperature approaches- smearing methods.

(1) Linear tetrahedron method

The basic idea of linear tetrahedron method is to interpolate the term &, linearly
between two k-points. The revised and efficient method to give effective weights
f({&,x }) for each band and k-point is given by Blochl.”® Blschl's corrected method also
derives a correction formula to remove the quadratic error inherent in the linear
tetrahedron method (linear tetrahedron method with Bl6chl corrections). The drawback
of this method is that it is not variational with respect to the partial occupancies if the
correction terms are included. Therefore, calculated forces might be wrong by a few
percent. For accurate forces calculation finite temperature method is used.

i1) Finite Temperature Methods

In finite temperature method the step function is replaced by a smooth function such as

Fermi-Dirac function®’

f(EH) = Wl_%)ﬂ (2.34)

or Gauss like function.”®

/() =31 -err ) =

g

Nevertheless, total energy is still not variational (or minimal) in this case. It is necessary

to replace the total energy by some generalized free energy.
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F =E — Yk wioS (fux) (2.36)

The calculated forces are then the derivative of free energy F. According to Fermi-Dirac
statistics the free energy might be interpreted as the free energy of the electrons at some
finite temperature ¢ = kgT, in case of Gaussian smearing accurate extrapolation for —0

from result at finite ¢ is obtained using the formula:
E(c>0)= Ey==(F+E) (2.37)

In this way a physical quantity from finite temperature calculation is obtained. Finite
temperature methods are used to get faster convergence with respect to number of k-

points.

2.8 Optical Properties using VASP

The experimentally measurable optical properties such as reflectivity, transmission and
absorption are used to determine dielectric function and optical conductivity. The other
way round, theoretical calculation of optical constants from the frequency dependent
dielectric constant is useful to predict and design nano devices in the experimental set
up. At microscopic level, the complex dielectric function is closely connected with the
band structure. Linear optical properties of solids can be understood by quantum
mechanical treatment of solids. In such treatment contributions from various electronic
bands transitions are considered. The transitions that take place from occupied states in
a band to unoccupied states in the same band are called intra band processes. Such
transition naturally requires intersection of the Fermi energy such that the transition
involves both occupied and unoccupied states. These transitions are important for
metals and semimetals. Intra-band transitions are explained using the classical Drude
theory or the quantum mechanical density matrix technique. The transitions that
correspond to the absorption of electromagnetic radiation by an electron in an occupied
state below Fermi level and gets excited to an unoccupied state in a higher band is called

inter-band transitions. The inter band transition is a quantum mechanical process and
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hence can be explained in the framework of quantum mechanics. VASP calculates the
frequency dependent dielectric matrix after determination of the electronic ground
state. The imaginary part of frequency dependent dielectric function is derived in PAW
methodology® by summing over conduction bands. The expression for which is as

follows:

4m?e? 1 ..
o Um Y,k 20,6 (Eck—Epy— W) X
q° q-0

553 (w) =

(uck+e°<q|uvk)<uck+exq|uvk>* (2~38)

where the indices ¢ and v refers to conduction and valence band states respectively, and
Uk 1s the cell periodic part of the orbitals at the k-point . The transitions refereed in
above equation corresponds to occupied to unoccupied states within the first Brillouin
zone, the wave vectors are fixed k. From imaginary part of dielectric function real part

of dielectric function is calculated using Kramers-Kroning relation as:

1 2 o ((12[3(0‘),)0)
gap(@) =1 +=P f

P (2.39)
where P denotes principle value. Since VASP does not incorporate the intra band
transition important for metals and semi metals the intra band contribution term can be
derived using classical dispersion theory. The intra band contribution term to real and

imaginary part of dielectric function is obtained as

Arne’ o -
&(w)=1+ - 02 PR—— (2.40)
(a)o —w ) +7’w
Axne’
&, () = 7 (2.41)
m a)(a) +y )

where v is referred to damping constant in the classical theory. In terms of quantum
mechanical treatment y can be taken as 1/t , t being the mean collision time that

amounts to damping.
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After obtaining frequency dependent real and imaginary part of dielectric function,
Optical property aspects such as reflectivity, absorption coefficient and Electron Energy
Loss Spectra (EELS) can be calculated from frequency dependent complex dielectric
function, &(0)= &;(w) + ig,(w). The complex refractive index, N(®) = n(m)+ ik(m) of

a material is related to g();

1

}s§+£§+ &1 ’
—_— (2.42)

n(w) = >

1/2

k(w) = b (2.43)

2

optical properties such as reflectivity (R), energy loss spectra (EL) and absorption

coefficient (o) can be calculated using following equations.

(n—-1)% + k?
R(w) (n+1)2+k2 244
EL(w) = —2) (2.45)
()t () ‘
a(w) === (2.46)
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