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A B S T R A C T

Resistin, an adipokine, is involved in obesity and Type 2 Diabetes (T2D). The current study evaluates the as-
sociation between RETN polymorphisms (−638 G/A, −420C/G & −358 G/A) and the risk towards T2D.
Controls and T2D patients were enrolled from Gujarat, India. Polymorphisms of RETN were genotyped by
Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. For the genotype-phenotype correlation
analysis Fasting Blood Glucose (FBG), Body Mass Index (BMI) and plasma lipid profile were used. Plasma levels
of resistin were assayed by ELISA. Our study suggests an association of RETN−420C/G polymorphism with T2D
risk. The CC genotype of RETN −420C/G polymorphism was found to be associated with FBG, BMI, and total
cholesterol. Plasma resistin levels were found to be significantly increased in diabetic patients as compared to
controls. Our findings suggest −420C/G polymorphism of RETN as an important factor which could pose a
powerful risk towards T2D susceptibility.

1. Introduction

Type 2 diabetes (T2D) is characterized by impaired insulin secretion
and peripheral insulin resistance in liver, muscle, and adipose tissue
[1]. Obesity is one of the most important factors found to be associated
with T2D. Adipose tissue, besides being an energy depository, also se-
cretes bioactive molecules called adipokines. They play important roles
in the regulation of appetite and satiety, lipid metabolism, insulin
sensitivity and glucose metabolism. They also influence other biological
processes like cell adhesion, angiogenesis, hypertension, adipogenesis
and bone morphogenesis [2, 3].

Both pro-inflammatory and anti-inflammatory adipokines are in a
state of equilibrium and involved in glucose homeostasis in the healthy
condition. Resistin (RETN), a pro-inflammatory adipokine, located on
chromosome 19p13.2 is secreted by macrophages infiltrated adipose
tissue [3]. Resistin levels are reported to be significantly increased in
both genetic and diet-induced models of obesity [4]. Increased resistin
levels are reported to inhibit the insulin signaling pathway. This is es-
sentially brought about by the activation of Suppressor of Cytokine
Signaling-3 (SOCS-3) leading to Insulin Receptor Substrate 1/2 (IRS1/
2) degradation and induction of insulin resistance [5].

The putative role of resistin in the pathogenesis of human obesity
and diabetes led to genetic investigations in different populations
[6–9]. Several RETN polymorphism studies, however, showed contra-
dictory results. Promoter Single Nucleotide Polymorphisms (SNPs) of
RETN have been shown to increase T2D susceptibility by elevating
circulating resistin levels [6, 9]. Moreover, high circulating levels of
resistin have been associated with increased risk of obesity, insulin
resistance, and T2D [10–13]. Beside T2D, promoter polymorphisms of
RETN are associated with nonalcoholic fatty liver disease [14], chronic
kidney disease [15], coronary artery disease (CAD) [16], polycystic
ovary syndrome [17] and hypertrophic cardiomyopathy [18].

Hence, in the present study, we have investigated RETN genetic
variants (−638 G/A rs34861192, −420C/G rs1862513 and −358 G/A
rs3219175) and correlated them with various metabolic parameters
such as Fasting Blood Glucose (FBG), Body Mass Index (BMI) and lipid
profile.
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2. Materials and methods

2.1. Study subjects

The study was carried out in accordance with the principles of
Helsinki Declaration and approved by Institutional Ethical Committee
for Human Research (IECHR), Faculty of Science, The Maharaja
Sayajirao University of Baroda, Vadodara, Gujarat, India (FS/IECHR/
2016-9). The importance of the study was explained to all participants
and written consent was obtained from each individual. We recruited
age, sex and ethnically matched 382 controls (189 males and 193 fe-
males) and 469 T2D patients (253 males and 216 females) as shown in
Table 1. The patients showing FBG>125mg/dL and suffering from no
other diseases were recruited from diabetes awareness camps. Ethni-
cally and geographically matched controls were randomly selected
from Gujarat community through community screening program over
the same period. Controls exhibited FBG<110mg/dL with no prior
history of T2D.

2.2. Anthropometric measurements, DNA extraction, and lipid profiling

BMI was calculated by measuring height and weight of all the
subjects. Venous blood samples (3 ml) for biochemical assessments
were obtained from the subjects after 12 h of overnight fasting in
K3EDTA coated tubes (J. K. Diagnostics, Rajkot, India). Plasma was
separated and stored at −20 °C for assessing lipid profile. FBG, TC
(Total Cholesterol), TG and HDL (High-Density Lipoprotein) were as-
sayed by commercially available kits (Reckon Diagnostics P. Ltd.,
Vadodara, India). LDL (Low-Density Lipoprotein) was calculated using
Friedewald's (1972) formula. The plasma levels of resistin were mea-
sured by an enzyme-linked immunosorbent assay (ELISA) kit for human
resistin (RayBio, Norcross, GA, USA) with the sensitivity of 2 ng/ml. All
the plasma estimations were carried out in duplicates to ensure % CV
below 10%. Genomic DNA was extracted from the whole blood using a
QIAamp DNA Blood Mini Kit (Qiagen, Germany). DNA purity was

measured by calculating the ratio of absorbance at 260/280 nm by Cary
60 UV–Vis spectrophotometer (Agilent, California, USA). The integrity
of DNA was checked by 0.8% agarose gel electrophoresis. The DNA was
stored at −20 °C until further analysis.

2.3. Genotyping of RETN SNPs

Genotyping of RETN polymorphisms was carried out by PCR-RFLP.
The primers used for genotyping of these polymorphisms are mentioned
in Table S1. 20 μl of the reaction mixture included 3 μl (50 ng) of
genomic DNA, 11 μl of nuclease-free water, 2.0 μl of 10× PCR buffer,
2.0 μl of 2.5 mM dNTPs (Sigma Chemical Co,St.Louis, Missouri, USA),
1.0 μl each of 10 μM forward and reverse primers (MWG Biotech, India)
and 0.2 μl of 5 U/μlTaq Polymerase (Bangalore Genei, India).
Amplification was performed using Applied Biosystems 96 well
Thermal cycler (California, USA) as per the protocol of initial dena-
turation at 95 °C for 5min followed by 39 cycles each at 95 °C for 30 s,
59–67 °C for 30 s (primer specific; Table S1), and 72 °C for 30s, followed
by final extension at 72 °C for 10min. 5 μl of the amplified products
were analyzed by electrophoresis on a 2.0% agarose gel stained with
ethidium bromide along with a 50 bp DNA ladder (MBI Fermentas,
St.Leon-Rot, Germany) and photographed. Details of the restriction
enzymes (Thermo Fisher Scientific, Wilmington, DE, USA) and digested
products are mentioned in Table S1. 15 μl of the amplified products
were digested with 1 U of the corresponding restriction enzyme in a
total reaction volume of 20 μl as per the manufacturer's instruction. A
50 bp DNA ladder (MBI Fermentas, St.Leon-Rot, Germany) was used as
a marker. All the gels were visualized under UV transilluminator using
Gel Doc EZ System (Bio-Rad Laboratories, California, USA).> 10% of
the samples were randomly selected for genotype confirmation and the
results showed 100% concordance (analysis of the chosen samples by
two researchers independently) and further confirmed by DNA se-
quencing.

2.4. Statistical analyses

The clinical parameters were checked for the normality test before
their comparison. The clinical characteristics (age, sex, FBG, BMI, and
lipid profile) were compared using the t-test or Mann Whitney test.
Evaluation of the Hardy-Weinberg equilibrium (HWE) was performed
for all the polymorphisms in patients and controls by comparing the
observed and expected frequencies of the genotypes using chi-squared
analysis. The distribution of the genotypes and allele frequencies of
RETN polymorphisms for patients and control subjects were compared
using the chi-square test with 2×2 and 2× 2 contingency tables re-
spectively. P values< 0.025were considered as statistically significant
for the genotype and allele distribution, and genotype-phenotype as-
sociation analysis as per Bonferroni's correction for multiple testing.
Odds ratio (OR) with respective confidence interval (95% CI) for dis-
ease susceptibility was also calculated. Haplotypes and linkage dis-
equilibrium (LD) coefficients (D' =D/Dmax) and r2 values for the pair
of the most common alleles at each site were obtained using http://
shesisplus.bio-x.cn/SHEsis.html [19]. For the genotype-phenotype as-
sociation analysis, primarily all the parameters were checked for the
normality test and accordingly further analyses were carried out. For
the normally distributed data, unpaired t-test or One-way ANOVA was
performed while for the skewed data, Mann Whitney or Kruskal Wallis
test was performed for two or more than two groups respectively.
Correlation analysis was performed by Spearman's correlation test. All
the analyses were carried out in GraphPad Prism 5 software. P va-
lues< .05 were considered significant for all statistical analyses. Gen-
otype-phenotype association analysis was carried out in all the subjects
after adjusting for the disease susceptibility.

Table 1
The clinical characteristics of the studied populations from Gujarat.

Controls (Mean ± SD) Patients (Mean ± SD) p value

(n=382) (n=469)

Age (years) 48.63 ± 10.42 55.92 ± 10.42 –
Sex
Male 189 (49.47%) 253 (53.94%)
Female 193 (50.53%) 216 (46.06%) -

Fasting blood
glucose
(mg/dL)

109.6 ± 17.38 167.8 ± 72.9 <0.0001

BMI (Kg/m2) 25.40 ± 4.893 27.24 ± 5.810 <0.0001
TC (mg/dL) 166.6 ± 41.9 162.1 ± 35.55 ns
TG (mg/dL) 121.8 ± 61.24 153.3 ± 96.43 <0.0197
HDL (mg/dL)
Male 35.15 ± 9.432 34.00 ± 8.465 0.0037
Female 42.68 ± 9.359 38.46 ± 9.587 <0.0001

LDL (mg/dL) 99.69 ± 36.83 95.10 ± 36.83 0.9322
LDL/HDL
Male 3.231 ± 1.382 3.223 ± 1.376 <0.0001
Female 2.947 ± 1.399 2.939 ± 1.398 0.0007

TC/HDL
Male 5.050 ± 1.880 5.045 ± 1.878 0.0250
Female 4.637 ± 1.807 4.631 ± 1.804 <0.0001

Onset age
(years)

NA 50.65 ± 10.10 –

Duration of
disease
(years)

NA 8.06 ± 7.3 –

Family history NA 64 (14%) –

Data are presented as Mean ± SD. Statistical significance was considered at
p < .05. Bold signifies p-value for association.
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3. Results

3.1. Baseline characteristics

Clinical parameters differed significantly between controls and pa-
tients (Table 1). Patients had significantly higher FBG levels
(p < .0001) compared to controls. Moreover, obesity-associated para-
meters like BMI and TG were significantly elevated (p < .0001,
p < .05, p < .0001 respectively) while, HDL was significantly de-
creased in patients (males: p= .0037, females: p < .0001) as com-
pared to controls. LDL/HDL ratio, a marker for Cardiovascular Disease
(CVD) was significantly high in both male and female patients com-
pared to controls (p= .0007) to control (p < .0001 [male] and
p < .0001 [female]). On the other hand, TC/HDL ratio was sig-
nificantly high in both male and female T2D patients as compared to
controls (p= .0260 [male] and p < .0001 [female]).

3.2. Association of RETN polymorphisms

The genotype and allele frequencies of the explored RETN promoter
polymorphisms (−638 G/A, −420C/G and −358 G/A) are summar-
ized in Table 2. The distribution of genotype frequencies for all the
polymorphisms investigated was consistent with Hardy-Weinberg ex-
pectations in both patient and control groups (p > .025). −420C/G
was found to be significantly associated with T2D individuals (genotype
and allele frequencies, p < .0001). RETN −638 G/A was found to be
monomorphic in controls as well as T2D patients and was hence dis-
continued for further analysis. RETN −358G/A was not found to be
associated with T2D and was thus discontinued after the initial as-
sessment.

3.3. Haplotype analysis of RETN polymorphisms

A haplotype evaluation of the two polymorphisms of RETN
(−420C/G and −358 G/A) was performed and the estimated fre-
quencies of the haplotypes did not differ significantly between patients
and controls (global p= .049) (Table 3).

3.4. Linkage disequilibrium analysis of RETN polymorphisms

The LD analysis revealed that the two polymorphisms of RETN gene
were in moderate linkage (Fig. S2), with respect to−420C/G: −358 G/
A (D'= 0.24, r2= 0.02).

3.5. Association of RETN polymorphisms with FBG, BMI and plasma lipids

RETN polymorphisms showed −420 CC genotype to be associated
with increased FBG (p= .0035), BMI (p= .0004) and TC levels
(p= .0190) as shown in Table 4. However, it was not associated with
TG, LDL and HDL levels (p > .05). Further, −358 G/A did not show
any association with FBG, BMI and plasma lipids (p > .05).

3.6. Plasma resistin levels and its correlation with FBG, BMI and plasma
lipids

Plasma resistin levels were monitored in 40 controls and patients
each and a significant increase (p= .0129) was observed in T2D pa-
tients (Fig. 1). Also, the levels of resistin were significantly high in
obese patients compared to lean controls (p= .0155). Spearman's cor-
relation analysis revealed no correlation between resistin levels and
BMI, FBG and plasma lipids (r=0, p > .05) (Table 5).

3.7. Association of RETN polymorphisms with plasma resistin levels

Our results showed no association of RETN polymorphisms with
plasma resistin levels. (p > .05) (Fig. 2.).

4. Discussion

In 2000, India (31.7million) had the highest number of people with
diabetes in the world. There is a prediction that by 2030 diabetes
mellitus may affect up to 79.4 million beings in India. More specifically
in the studied cohort, the prevalence of T2D is second highest in India
[20]. The Indian diet comprises largely of carbohydrate (around
60–70%) and fat (14–16%) which predisposes the individual towards
obesity and T2D [21].

Table 2
Genotype and allele frequencies distribution of RETN polymorphisms in T2D patients.

SNP Genotype or allele Controls (Frequency) Patients (Frequency) p for HWE p for Association Odds ratio (95% CI)

(rs34861192)
RETN -638 G/A

GG
GA
AA

G
A

(n=100) (n= 100) (C)
NA

(P)
NA

NA NA NA
100 (100.00)
0 (0.00)
0 (0.00)

200 (1.00)
0 (0.00)

100 (100.00)
0 (0.00)
0 (0.00)

200 (1.00)
0 (0.00)

(rs1862513)
RETN -420C/G

CC
CG
GG

C
G

(n= 382) (n= 469)
(C)
0.0682

(P)
0.074

R
0.0001a

0.0001a

0.0001b

-
0.3975
0.2600

0.5175

-
0.2800 to 0.5641
0.1756 to 0.3850

0.4275 to 0.6266

63 (16.89)
188 (48.42)
131 (34.69)

314 (0.41)
450 (0.59)

172 (34.13)
204 (48.58)
93 (17.29)

573 (0.58)
425 (0.42)

(rs3219175)
RETN -358 G/A

GG
GA
AA

G
A

(n=235) (n=230)
(C)
0.5779

(P)
0.6133

R
0.3448a

-

0.3456b

-
1.377
-

1.343

-
0.7073 to 2.681
-

0.7067 to 2.599

220 (93.72)
15 (6.18)
0 (0.10)

455 (0.97)
15 (0.03)

209 (91.08)
21 (8.71)
0 (0.21)

439 (0.95)
21(0.05)

‘n’ represents the number of Patients/Controls. ‘R' represents reference group. HWE refers to Hardy-Weinberg Equilibrium. CI refers to Confidence Interval. Odds
ratio is based on allele frequency distribution. (P) refers to Patients and (C) refers to Controls.

a Patients vs. Controls (genotype) using chi-squared test with 2× 2 contingency table.
b Patients vs. Controls (allele) using chi-squared test with 2×2 contingency table. Statistical significance was considered at p < .025 as per Bonferroni's cor-

rection.
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Investigation of genetic variants for T2D in Indian population is
essential due to its high-risk for T2D and related metabolic traits.
However, studies are scarce in this direction, often restricted to re-
plication of Genome-Wide Association Studies. (GWAS). Though pre-
vious GWAS did not identify RETN -420 as a T2D susceptible locus, it

has been shown that the gene holds much importance in conferring T2D
risk in a number of population studies. This may be attributed to factors
such as epigenetic effects and ethnic differences.

The genetic variants of RETN and resistin levels in T2D patients
show RETN −420CC genotype and higher plasma resistin levels to be
associated with T2D [22]. RETN -638G/A polymorphism was found to
be nonexistent in our population, as only GG genotype was present in
all the samples. Neither we found any association of RETN -358 G/A
with T2D nor with any other parameters. Similar results are reported
with reference to Malaysian population [23]. A previous study in Ja-
panese subjects reported increased resistin levels to be associated with
RETN −420 C/G polymorphism [9, 24, 25]. Such an association is also
reported in Korean subjects [26] and Iranian women [27] but not in
Caucasian subjects [28, 29].

Association of RETN genetic variants and correlation of resistin le-
vels with BMI, FBG, and plasma lipid profile was also assessed. We have
found CC of RETN-420C/G SNP to be significantly associated with
metabolic risk factors marked by higher FBG, BMI, and TC in T2D

Table 3
Distribution of haplotype frequencies of RETN polymorphisms in T2D patients and controls.

Haplotype (RETN −420C/G, −358 G/A) Patients (Freq. %) (n=382) Controls (Freq. %) (n=502) p for association p(global) Odds ratio [95%CI]

CA 12.64 (0.022) 6.73 (0.021) – 0.049 –
CG 267.36 (0.485) 132.27 (0.408) 0.030 1.359 [1.029–1.796]
GA 6.36 (0.011) 6.27 (0.019) – –
GG 282.64 (0.482) 178.73(0.552) 0.030 0.736 [0.557–0.972]

CI represents Confidence Interval. (Frequency < 0.03 in both control & case has been dropped and was ignored in the analysis).

Table 4
Genotype-phenotype association analyses of RETN polymorphisms with FBG, BMI and plasma lipid profile.

Genotype FBG (mg/dL) BMI (kg/m2) TG (mg/dL) TC (mg/dL) LDL (mg/dL) HDL (mg/dL) Male HDL (mg/dL) Female

RETN -420C/G (rs1862513)
CC 140.8(58.1) 27.2(6.3) 169.8(35.6) 174.9(97.3) 105.7(28.7) 34.9(9.1) 39.7(10.4)
CG 97.7(8.6) 25.0(5.2) 168.6(38.7) 164.2(22.1) 108.2(32.9) 36.2(9.8) 40.1(10.0)
GG 100.1(8.1) 25.3(4.9) 171.4(44.5) 152.2(77.4) 111.1(34.0) 34.1(9.7) 38.1(10.0)
P value 0.0035 0.0004 0.9430 0.0190 0.4219 0.0882 0.2165

RETN -358 G/A (rs3219175)
GG 119.9(46.2) 25.4(5.2) 155.5(89.1) 156.6(35.6) 105.6(30.9) 36.6(9.2) 36.5(11.3)
GA 131.2(65.7) 25.9(6.1) 151.2(87.9) 155.1(37.8) 106.9(34.9) 34.1(8.2) 39.9(11.1)
AA – – – – – – –
P value 0.9678 0.4321 0.5678 0.6567 0.8977 0.3619 0.6888

Data are presented as Mean ± SE. Statistical significance was considered at p < .025. Bold signifies p-value for association.

Fig. 1. Plasma resistin levels in a) controls vs. patients, b) control (lean vs.
obese) and patients (lean vs. obese). Our results showed a significant increase in
plasma resistin levels in T2D patients (p= .0129) compared to controls; obese
T2D patients showed a significant increase compared to lean controls
(p= .0155).

Table 5
Correlation analysis of plasma resistin with BMI, FBG, and plasma lipids.

Parameters r p

BMI (Kg/m2) 0.0107 0.9314
FBG (mg/dL) 0.0200 0.8986
Triglycerides (mg/dL) −0.1306 0.3656
Total Cholesterol (mg/dL) 0.0000 0.9998
HDL (mg/dL)
Male 0.2527 0.2335
Female 0.0914 0.6372

LDL (mg/dL) 0.0624 0.6908

r=correlation coefficient; p > .05, non-significant.

Fig. 2. Association of RETN polymorphisms with plasma resistin levels. No
association was observed between RETN polymorphisms and plasma resistin
levels (p > .025).
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patients. The CC genotype is associated with other factors as observed
in various population (Table 6).

The increased resistin levels due to RETN −420C/G polymorphism
can be related to specific binding of transcription factors Sp1 and Sp3 to
this promoter element leading to enhanced promoter activity as in-
ferred by Osawa et al. [9]. Apparently, −420C/G seems to be an im-
portant decisive polymorphic site for RETN gene transcription. Fur-
thermore, DNA methylation (DNAm), an epigenetic modification, plays
an important role in the regulation of gene expression. −420C/G RETN
is CpG SNP that affects CpG sequence and thereby regulating resistin
levels [33]. Thus DNAm along with binding of transcription factor ex-
plains increased resistin levels. Accordingly, increased resistin levels
were observed in obesity-induced T2D individuals in conformity with
other reports [11, 34, 35].

A number of studies have established an association between re-
sistin levels and lipid profile [36–39]. It is evident that elevated resistin
levels contribute towards progression/development of T2D. Our un-
published results also reveal increased plasma Free Fatty Acid (FFA)
and Tumor necrosis factor-alpha (TNF-α) levels in T2D patients. In-
terestingly, resistin is shown to elevate TNF-α levels [40, 41]. Reports
have suggested a mechanism for FFA mediated TG and Very Low-
Density Lipoprotein (VLDL) production in relation to diabetic dyslipi-
demia. It is shown that TNF-α increases hepatocellular TG levels. Fur-
ther, it is also shown that the influence of FFA on hepatic TG production
leads to an increased hepatic release of VLDL, which encloses apoli-
poprotein B (apoB) [42, 43]. ApoB is a crucial protein component of
VLDL and any irregularities related to the metabolism of ApoB are ac-
countable for the development of dyslipidemia and the associated in-
creased risk of CVD [44]. In fact, a direct involvement of resistin in the
synthesis of apoB has been shown to influence hepatic lipid and lipo-
protein levels [45]. In addition, resistin is also known to decrease the
expression and secretion of other adipokines such as adiponectin and
leptin which affect hepatic lipoprotein regulation [46]. Our un-
published data on TNF-α and adiponectin conform to these results [47,
48]. To our knowledge, this is the only study that ascribes an associa-
tion between RETN -420C/G SNP and plasma resistin and lipid levels in

Indian population. Thus our results contribute towards the under-
standing of resistin's role in dyslipidemia, obesity, and T2D.

Hence, the current data suggest that lifestyle, diet, and ethnic dif-
ferences play a major role in the pathogenesis of T2D. An overall me-
chanism involving RETN genetic polymorphisms and its levels in obe-
sity and dyslipidemia associated with T2D is shown schematically
(Fig. 3).

5. Conclusion

Our findings suggest RETN -420C/G polymorphism to be strongly
associated with elevated resistin levels and increased BMI, FBG and TC,
a generalized metabolic profile leading towards T2D susceptibility.

Funding

This work was supported by grant to RB (BT/PR12584/MED/31/
289/2014) Department of Biotechnology, New Delhi, India.

Competing interests

The authors declare that no competing interests exist.

Author contributions

RB conceived the idea and designed the experiments. NR, RP, and
SP performed the experiments. NR did the data acquisition and per-
formed the data analysis. RB and AVR contributed to the critical revi-
sion and approval of the article.

Acknowledgments

We thank Dr. Jaya Pathak, M.D., S.S.G Hospital, Baroda and all
subjects for their participation in this study. NR thanks University
Grants Commission-National Fellowship for higher education for ST
students, for awarding JRF.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2018.06.005.

References

[1] V.T. Samuel, G.I. Shulman, Mechanisms for insulin resistance: common threads and
missing links, Cell 148 (5) (2012 Mar 2) 852–871.

[2] T. Di Raimo, G. Azzara, M. Corsi, D. Cipollone, V.R. Vasco, R. Businaro, Adipokines
and their involvement as a target of new drugs, Aust. J. Pharm. 3 (2015) 166
(Jun 14).

[3] S. Pramanik, N. Rathwa, R. Patel, A.V. Ramachandran, R. Begum, Treatment
Avenues for Type 2 Diabetes and Current Perspectives on Adipokines. Current
Diabetes Reviews, (2017 Jan).

[4] M.S. Jamaluddin, S.M. Weakley, Q. Yao, C. Chen, Resistin: functional roles and
therapeutic considerations for cardiovascular disease, Br. J. Pharmacol. 165 (3)
(2012 Feb 1) 622–632.

[5] C.M. Steppan, J. Wang, E.L. Whiteman, M.J. Birnbaum, M.A. Lazar, Activation of
SOCS-3 by resistin, Mol. Cell. Biol. 25 (4) (2005 Feb 15) 1569–1575.

[6] J.C. Engert, M.C. Vohl, S.M. Williams, P. Lepage, J.C. Loredo-Osti, J. Faith, C. Doré,
Y. Renaud, N.P. Burtt, A. Villeneuve, J.N. Hirschhorn, 5′ flanking variants of resistin
are associated with obesity, Diabetes 51 (5) (2002 May 1) 1629–1634.

[7] X. Ma, J.H. Warram, V. Trischitta, A. Doria, Genetic variants at the resistin locus
and risk of type 2 diabetes in Caucasians, J. Clin. Endocrinol. Metab. 87 (9) (2002
Sep 1) 4407–4410.

[8] A. Pizzuti, A. Argiolas, R. Di Paola, R. Baratta, A. Rauseo, M. Bozzali, R. Vigneri,
B. Dallapiccola, V. Trischitta, L. Frittitta, An ATG repeat in the 3′-untranslated re-
gion of the human resistin gene is associated with a decreased risk of insulin re-
sistance, J. Clin. Endocrinol. Metab. 87 (9) (2002 Sep 1) 4403–4406.

[9] H. Osawa, K. Yamada, H. Onuma, A. Murakami, M. Ochi, H. Kawata, T. Nishimiya,
T. Niiya, I. Shimizu, W. Nishida, M. Hashiramoto, The G/G genotype of a resistin
single-nucleotide polymorphism at− 420 increases type 2 diabetes mellitus sus-
ceptibility by inducing promoter activity through specific binding of Sp1/3, Am. J.
Hum. Genet. 75 (4) (2004 Oct 31) 678–686.

Table 6
Association of RETN -420 CC genotype with various disorders.

Genotype Associated with Population References

CC Insulin resistance, hypertriglyceridemia
and hyperglycemia

Finnish [30]

CC Increased FPG and HbA1c levels, T2D Iranian [31]
CC CAD, T2D Iranian [32]

Fig. 3. Role of resistin in T2D: Proposed mechanism of resistin-induced dysli-
pidemia in T2D.

N. Rathwa et al. Genomics 111 (2019) 980–985

984

https://doi.org/10.1016/j.ygeno.2018.06.005
https://doi.org/10.1016/j.ygeno.2018.06.005
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0005
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0005
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0010
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0010
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0010
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0015
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0015
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0015
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0020
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0020
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0020
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0025
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0025
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0030
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0030
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0030
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0035
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0035
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0035
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0040
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0040
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0040
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0040
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0045
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0045
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0045
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0045
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0045


[10] A. Tuttolomondo, S. La Placa, D. Di Raimondo, C. Bellia, A. Caruso, B.L. Sasso,
G. Guercio, G. Diana, M. Ciaccio, G. Licata, A. Pinto, Adiponectin, resistin and IL-6
plasma levels in subjects with diabetic foot and possible correlations with clinical
variables and cardiovascular co-morbidity, Cardiovasc. Diabetol. 9 (1) (2010 Sep
13) 50.

[11] F. Santilli, R. Liani, P. Di Fulvio, G. Formoso, P. Simeone, R. Tripaldi, T. Ueland,
P. Aukrust, G. Davi, Increased circulating resistin is associated with insulin re-
sistance, oxidative stress and platelet activation in type 2 diabetes mellitus,
Thromb. Haemost. 116 (6) (2016) 1089–1099.

[12] B.H. Chen, Y. Song, E.L. Ding, C.K. Roberts, J.E. Manson, N. Rifai, J.E. Buring,
J.M. Gaziano, S. Liu, Circulating levels of resistin and risk of type 2 diabetes in men
and women: results from two prospective cohorts, Diabetes Care 32 (2) (2009 Feb
1) 329–334.

[13] M.Y. Gharibeh, G.M. Al Tawallbeh, M.M. Abboud, A. Radaideh, A.A. Alhader,
Khabour OF, Correlation of plasma resistin with obesity and insulin resistance in
type 2 diabetic patients, Diabete Metab. 36 (6) (2010 Dec 31) 443–449.

[14] C.X. Zhang, L.K. Guo, Y.M. Qin, G.Y. Li, Interaction of polymorphisms of resistin
gene promoter-420C/G, glutathione peroxidase-1 gene Pro198Leu and cigarette
smoking in nonalcoholic fatty liver disease, Chin. Med. J. 128 (18) (2015 Sep 20)
2467.

[15] J. Axelsson, A. Bergsten, A.R. Qureshi, O. Heimbürger, P. Barany, F. Lönnqvist,
B. Lindholm, L. Nordfors, A. Alvestrand, P. Stenvinkel, Elevated resistin levels in
chronic kidney disease are associated with decreased glomerular filtration rate and
inflammation, but not with insulin resistance, Kidney Int. 69 (3) (2006 Feb 1)
596–604.

[16] N.P. Tang, L.S. Wang, L. Yang, B. Zhou, H.J. Gu, Q.M. Sun, R.H. Cong, H.J. Zhu,
B. Wang, A polymorphism in the resistin gene promoter and the risk of coronary
artery disease in a Chinese population, Clin. Endocrinol. 68 (1) (2008 Jan 1) 82–87.

[17] M. Urbanek, Y. Du, K. Silander, F.S. Collins, C.M. Steppan, J.F. Strauss, A. Dunaif,
R.S. Spielman, R.S. Legro, Variation in resistin gene promoter not associated with
polycystic ovary syndrome, Diabetes 52 (1) (2003 Jan 1) 214–217.

[18] S. Hussain, M. Asghar, Q. Javed, Resistin gene promoter region polymorphism and
the risk of hypertrophic cardiomyopathy in patients, Transl. Res. 155 (3) (2010 Mar
31) 142–147.

[19] Y.O. Yong, L. He, SHEsis, a powerful software platform for analyses of linkage
disequilibrium, haplotype construction, and genetic association at polymorphism
loci, Cell Res. 15 (2) (2005 Feb 1) 97.

[20] S.R. Joshi, B. Saboo, M. Vadivale, S.I. Dani, A. Mithal, U. Kaul, M. Badgandi,
S.S. Iyengar, V. Viswanathan, N. Sivakadaksham, P.S. Chattopadhyaya, Prevalence
of diagnosed and undiagnosed diabetes and hypertension in India—results from the
screening India's twin epidemic (SITE) study, Diabetes Technol. Ther. 14 (1) (2012
Jan 1) 8–15.

[21] S.R. Joshi, R.M. Anjana, M. Deepa, R. Pradeepa, A. Bhansali, V.K. Dhandania,
P.P. Joshi, R. Unnikrishnan, E. Nirmal, R. Subashini, S.V. Madhu, Prevalence of
dyslipidemia in urban and rural India: the ICMR–INDIAB study, PLoS ONE 9 (5)
(2014 May 9) e96808.

[22] N. Rathwa, N. Patel, A.V. Ramchandran, R. Begum, Association of Resistin genetic
variants with type II diabetes, Poster Presented at International Conference on
Reproductive Biology and Comparative Endocrinology (ICRBCE) and The 35th
Annual Meeting of the Society for Reproductive Biology and Comparative
Endocrinology (SRBCE-XXXV), 2017 Feb, pp. 9–11 (Hyderabad, India).

[23] Y.D. Apalasamy, S. Rampal, A. Salim, F.M. Moy, T.T. Su, H.A. Majid, A. Bulgiba,
Z. Mohamed, Polymorphisms of the resistin gene and their association with obesity
and resistin levels in Malaysian malays, Biochem. Genet. 53 (4–6) (2015 Jun 1)
120–131.

[24] H. Osawa, H. Onuma, M. Ochi, A. Murakami, J. Yamauchi, T. Takasuka, F. Tanabe,
I. Shimizu, K. Kato, W. Nishida, K. Yamada, Resistin SNP-420 determines its
monocyte mRNA and serum levels inducing type 2 diabetes, Biochem. Biophys. Res.
Commun. 335 (2) (2005 Sep 23) 596–602.

[25] H. Osawa, Y. Tabara, R. Kawamoto, J. Ohashi, M. Ochi, H. Onuma, W. Nishida,
K. Yamada, J. Nakura, K. Kohara, T. Miki, Plasma resistin, associated with single
nucleotide polymorphism− 420, is correlated with insulin resistance, lower HDL
cholesterol, and high-sensitivity C-reactive protein in the Japanese general popu-
lation, Diabetes Care 30 (6) (2007 Jun 1) 1501–1506.

[26] Y.M. Cho, B.S. Youn, S.S. Chung, K.W. Kim, H.K. Lee, K.Y. Yu, H.J. Park, H.D. Shin,
K.S. Park, Common genetic polymorphisms in the promoter of resistin gene are
major determinants of plasma resistin concentrations in humans, Diabetologia 47
(3) (2004 Mar 1) 559–565.

[27] M.A. Takhshid, Z. Zare, Resistin–420 C/G polymorphism and serum resistin level in
Iranian patients with gestational diabetes mellitus, J. Diabetes Metab. Disord. 14 (1)
(2015 Apr 28) 37.

[28] M.F. Hivert, A.K. Manning, J.B. McAteer, J. Dupuis, C.S. Fox, L.A. Cupples,
J.B. Meigs, J.C. Florez, Association of variants in RETN with plasma resistin levels
and diabetes-related traits in the Framingham offspring study, Diabetes 58 (3)
(2009 Mar 1) 750–756.

[29] C. Menzaghi, A. Coco, L. Salvemini, R. Thompson, S. De Cosmo, A. Doria,
V. Trischitta, Heritability of serum resistin and its genetic correlation with insulin
resistance-related features in nondiabetic Caucasians, J. Clin. Endocrinol. Metab. 91
(7) (2006 Jul) 2792–2795.

[30] O. Ukkola, A. Kunnari, Y.A. Kesäniemi, Genetic variants at the resistin locus are
associated with the plasma resistin concentration and cardiovascular risk factors,
Regul. Pept. 149 (1) (2008 Aug 7) 56–59.

[31] E. Solaleh, H.N. Arash, N. Azam, R. Mazaher, L. Bagher, Promoter resistin gene
polymorphism in patients with type 2 diabetes and its influence on concerned
metabolic phenotypes, J. Diabetes Metab. Disord. 8 (2009) 17.

[32] S. Emamgholipour, A. Hossein-Nezhad, M. Kh, S.A. Mohajerani, M. Shirzad, Genetic
variants at the resistin gene promoter might have a role in atherogenesis in patients
with coronary artery disease, J. Diabetes Metab. Disord. 9 (2010) 13.

[33] H. Onuma, Y. Tabara, R. Kawamura, J. Ohashi, W. Nishida, Y. Takata, M. Ochi,
T. Nishimiya, Y. Ohyagi, R. Kawamoto, K. Kohara, Dual effects of a RETN single
nucleotide polymorphism (SNP) at–420 on plasma resistin: genotype and DNA
methylation, J. Clin. Endocrinol. Metab. 102 (3) (2016 Dec 8) 884–892.

[34] C.M. Steppan, M.A. Lazar, Resistin and obesity-associated insulin resistance, Trends
Endocrinol. Metab. 13 (1) (2002 Jan 1) 18–23.

[35] N.H. Gokhale, A.B. Acharya, V.S. Patil, D.J. Trivedi, S. Setty, S.L. Thakur, Resistin
levels in gingival crevicular fluid of patients with chronic periodontitis and type 2
diabetes mellitus, J. Periodontol. 85 (4) (2014 Apr) 610–617.

[36] M. Owecki, E. Nikisch, A. Miczke, D. Pupek-Musialik, J. Sowiński, Serum resistin is
related to plasma HDL cholesterol and inversely correlated with LDL cholesterol in
diabetic and obese humans, Neuro Endocrinol. Lett. 31 (5) (2009 Dec) 673–678.

[37] M. Jové, A. Planavila, À. Cabrero, F. Novell, E. Ros, D. Zambón, J.C. Laguna,
M.V. Carrera, Reductions in plasma cholesterol levels after fenofibrate treatment
are negatively correlated with resistin expression in human adipose tissue,
Metabolism 52 (3) (2003 Mar 31) 351–355.

[38] H. Asano, H. Izawa, K. Nagata, M. Nakatochi, M. Kobayashi, A. Hirashiki,
S. Shintani, T. Nishizawa, D. Tanimura, K. Naruse, T. Matsubara, Plasma resistin
concentration determined by common variants in the resistin gene and associated
with metabolic traits in an aged Japanese population, Diabetologia 53 (2) (2010
Feb 1) 234.

[39] C.C. Chen, T.C. Li, C.I. Li, C.S. Liu, H.J. Wang, C.C. Lin, Serum resistin level among
healthy subjects: relationship to anthropometric and metabolic parameters,
Metabolism 54 (4) (2005 Apr 30) 471–475.

[40] N. Silswal, A.K. Singh, B. Aruna, S. Mukhopadhyay, S. Ghosh, N.Z. Ehtesham,
Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in
macrophages by NF-κB-dependent pathway, Biochem. Biophys. Res. Commun. 334
(4) (2005 Sep 9) 1092–1101.

[41] C.L. Aquilante, L.A. Kosmiski, S.D. Knutsen, I. Zineh, Relationship between plasma
resistin concentrations, inflammatory chemokines, and components of the meta-
bolic syndrome in adults, Metabolism 57 (4) (2008 Apr 30) 494–501.

[42] U. Julius, Influence of plasma free fatty acids on lipoprotein synthesis and diabetic
dyslipidemia, Exp. Clin. Endocrinol. Diabetes 111 (05) (2003 Aug) 246–250.

[43] H.E. Bays, P.P. Toth, P.M. Kris-Etherton, N. Abate, L.J. Aronne, W.V. Brown,
J.M. Gonzalez-Campoy, S.R. Jones, R. Kumar, R. La Forge, V.T. Samuel, Obesity,
adiposity, and dyslipidemia: a consensus statement from the National Lipid
Association, J. Clin. Lipidol. 7 (4) (2013 Aug 31) 304–383.

[44] C.J. Packard, T. Demant, J.P. Stewart, D. Bedford, M.J. Caslake, G. Schwertfeger,
A. Bedynek, J. Shepherd, D. Seidel, Apolipoprotein B metabolism and the dis-
tribution of VLDL and LDL subfractions, J. Lipid Res. 41 (2) (2000 Feb 1) 305–317.

[45] J. Costandi, M. Melone, A. Zhao, S. Rashid, Human Resistin stimulates hepatic
overproduction of AtherogenicApoB-containing lipoprotein particles by enhancing
ApoB stability and impairing intracellular insulin SignalingNovelty and sig-
nificance, Circ. Res. 108 (6) (2011 Mar 18) 727–742.

[46] K.H. Kim, L. Zhao, Y. Moon, C. Kang, H.S. Sul, Dominant inhibitory adipocyte-
specific secretory factor (ADSF)/resistin enhances adipogenesis and improves in-
sulin sensitivity, Proc. Natl. Acad. Sci. U. S. A. 101 (17) (2004 Apr 27) 6780–6785.

[47] Genetic variants of tumor necrosis factor-α and its levels: A correlation with
Dyslipidemia and type 2 diabetes susceptibility. Clin. Nutr. (In Press).

[48] S. Pramanik, R. Patel, N. Rathwa, N. Patel, S. Rana, A.V. Ramachandran, R. Begum,
Adiponectin: a watchdog in inflammation induced metabolic disorder, Poster
Presented at Immunocon-2017, 44th Annual Conference of the Indian Immunology
Society (IIS), Ahmedabad, India, 2017 Dec 14–17.

N. Rathwa et al. Genomics 111 (2019) 980–985

985

http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0050
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0050
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0050
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0050
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0050
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0055
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0055
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0055
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0055
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0060
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0060
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0060
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0060
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0065
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0065
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0065
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0070
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0070
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0070
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0070
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0075
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0075
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0075
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0075
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0075
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0080
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0080
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0080
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0085
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0085
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0085
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0090
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0090
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0090
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0095
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0095
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0095
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0100
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0100
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0100
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0100
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0100
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0105
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0105
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0105
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0105
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0110
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0110
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0110
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0110
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0110
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0115
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0115
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0115
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0115
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0120
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0120
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0120
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0120
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0125
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0125
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0125
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0125
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0125
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0130
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0130
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0130
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0130
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0135
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0135
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0135
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0140
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0140
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0140
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0140
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0145
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0145
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0145
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0145
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0150
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0150
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0150
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0155
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0155
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0155
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0160
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0160
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0160
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0165
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0165
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0165
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0165
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0170
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0170
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0175
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0175
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0175
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0180
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0180
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0180
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0185
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0185
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0185
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0185
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0190
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0190
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0190
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0190
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0190
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0195
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0195
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0195
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0200
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0200
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0200
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0200
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0205
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0205
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0205
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0210
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0210
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0215
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0215
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0215
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0215
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0220
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0220
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0220
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0225
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0225
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0225
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0225
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0230
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0230
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0230
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0235
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0235
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0235
http://refhub.elsevier.com/S0888-7543(18)30073-9/rf0235


Contents lists available at ScienceDirect

Cytokine

journal homepage: www.elsevier.com/locate/cytokine

Circulatory Omentin-1 levels but not genetic variants influence the
pathophysiology of Type 2 diabetes
Nirali Rathwaa, Roma Patela, Sayantani Pramanik Palita, Shahnawaz D. Jadejaa,
Mahendra Narwariab, A.V. Ramachandranc, Rasheedunnisa Beguma,⁎

a Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
bAsian Bariatrics Hospital, Ahmedabad 380015, Gujarat, India
c Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India

A R T I C L E I N F O

Keywords:
Obesity
Single nucleotide polymorphism
Linkage disequilibrium
Haplotype
Genotype-phenotype correlation

A B S T R A C T

Objective: Omentin-1, an anti-inflammatory protein, is secreted by the visceral adipose tissue. Altered levels of
Omentin-1 are associated with obesity and Type 2 Diabetes (T2D). Although Omentin-1 is implicated in the
insulin signaling pathway, the relationship between the genetic variants of Omentin-1 and T2D is not yet ex-
plored. The current study evaluates the association of Omentin-1 polymorphisms (rs2274907 A/T and rs1333062
G/T), its transcript and protein levels, and genotype-phenotype correlation with metabolic parameters and T2D
susceptibility.
Methods: Plasma and Peripheral Blood Mononuclear Cells (PBMCs) were separated from venous blood taken
from 250 controls and 250 T2D patients recruited from Gujarat, India. Genomic DNA was isolated from PBMCs
and genotyping of Omentin-1 variants was performed by Polymerase Chain Reaction-Restriction Fragment
Length Polymorphism (PCR-RFLP). RNA was isolated from Visceral Adipose Tissue (VAT) samples of 12 controls
and 10 patients, and transcript levels of Omentin-1 were assessed by qPCR. Plasma Omentin-1 levels were es-
timated by ELISA. Fasting Blood Glucose, Body Mass Index (BMI) and plasma lipid profile were considered for
the genotype-phenotype correlation analysis.
Results: Our study revealed no association of Omentin-1 genetic variants with T2D risk (p>0.05). However, the
AT genotype of Omentin-1 rs2274907 A/T polymorphism was associated with increased BMI (p=0.0247).
Plasma Omentin-1 levels were significantly decreased (p<0.0001) however, increased VAT Omentin-1 tran-
script levels (p=0.0127) were observed in T2D patients.
Conclusion: Our findings suggest that decreased circulatory Omentin-1 levels could pose a risk towards T2D
susceptibility.

1. Introduction

Insulin resistance at the level of the liver, muscle, and adipose tissue
along with impaired insulin secretion are the hallmarks of Type 2
Diabetes (T2D) [1]. In the past few decades, obesity has been identified
as one of the prime factors that lead to T2D. Adipose tissue (AT) serves
not only as an energy depository but also as an organ that secretes
bioactive molecules called adipokines (pro- and anti-inflammatory).
The pro-inflammatory and anti-inflammatory adipokines are in a state
of equilibrium and they play an important role in regulating lipid me-
tabolism, insulin sensitivity, glucose metabolism, appetite and satiety

[2]. Omentin-1, the anti-inflammatory adipokine gene, is located on
chromosome 1q22-q23 and is secreted by visceral adipose tissue (VAT)
[3]. Circulating Omentin-1 levels were reported to be reduced in obese
subjects and have been negatively correlated with markers of obesity,
such as Body Mass Index (BMI), waist circumference, and circulating
leptin [4]. Omentin-1 has been implicated in insulin signaling pathway
by Akt activation and consequently increased insulin sensitivity [5].
Reports suggest that reduced Omentin-1 gene expression and circulating
plasma Omentin-1 concentrations are associated with impaired glucose
tolerance in T2D patients [6,7]. Moreover, fasting serum Omentin-1
levels have been negatively correlated with fasting insulin and
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Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) [7].
There are a few studies on the genetic variants of Omentin-1 where

Val109Asp rs2274907 has been exclusively studied Non-alcoholic Fatty
Liver Disease (NAFLD) [8], Coronary Artery Disease (CAD) [9,10],
psoriasis [11], high calorie-diet intake [12], breast cancer [13] and
rheumatoid arthritis [14]. There is only one report on Omentin-1 3′ UTR
rs1333062 in Indian population showing an association with diabetes
[15]. Hence, we aimed to investigate Omentin-1 genetic variants (Exon
4 Val109Asp rs2274907 and 3′ UTR rs1333062), Omentin-1 transcript
levels in VAT along with its plasma levels, and genotype-phenotype
correlation with various metabolic parameters.

2. Materials and methods

2.1. Study subjects

The study was carried out in agreement with the principles of
Helsinki Declaration and approved by Institutional Ethical Committee
for Human Research (IECHR), Faculty of Science, The Maharaja
Sayajirao University of Baroda, Vadodara, Gujarat, India (FS/IECHR/
2016-9). The importance of the study was explained to all the partici-
pants and written consent was taken from each individual. We recruited
age, sex and ethnically matched 250 controls (142 males and 108 fe-
males) and 250 T2D patients (123 males and 127 females) for the study
(Table S1). Samples of visceral (omental) adipose tissue were taken
from the individuals undergoing bariatric surgery and fasting clinical
parameters of all the study subjects are as described previously [16].
The patients showing Fasting Blood Glucose (FBG)>125mg/dL and
suffering from no other diseases were recruited from diabetes aware-
ness camps. Ethnically and geographically matched controls were ran-
domly chosen from the Gujarati community by community screening
program over the same period. Controls showed FBG<110mg/dL
with no prior history of T2D.

2.2. Anthropometric measurements, DNA isolation, and lipid profiling

BMI was estimated by measuring the height and weight of all the
subjects. Venous blood samples (3ml) for biochemical assessments
were acquired from the subjects after 12 h of overnight fasting in
K3EDTA coated tubes (J. K. Diagnostics, Rajkot, India). Plasma was
separated and stored at −20 °C for estimating lipid profile parameters.
FBG, Total Cholesterol (TC), Triglycerides (TG) and High-Density
Lipoprotein (HDL) were assayed by commercially available kits
(Reckon Diagnostics P. Ltd, Vadodara, India). Low Density Lipoprotein
(LDL) was calculated using Friedewald’s (1972) formula. Genomic DNA
was extracted from the whole blood using QIAamp DNA Blood Mini Kit
(Qiagen, Germany). DNA purity was assessed by calculating the ratio of
absorbance at 260/280 nm by Cary 60 UV–Vis spectrophotometer
(Agilent, California, USA). The integrity of genomic DNA was assessed
by 0.8% agarose gel electrophoresis. The DNA was stored at −20 °C
until further analysis.

2.3. Genotyping of Omentin-1 polymorphisms

Omentin-1 polymorphisms (rs2274907 and rs1333062) were geno-
typed by performed by Polymerase Chain Reaction-Restriction
Fragment Length Polymorphism (PCR-RFLP). The primers used for
genotyping of these polymorphisms are as shown in Table S2. 20 μl of
the reaction mixture included 3 μl (50 ng) of genomic DNA, 11 μl of
nuclease-free water, 2.0 μl of 10X PCR buffer, 2.0 μl of 2.5mM dNTPs
(Sigma Chemical Co, St.Louis, Missouri, USA), 1.0 μl each of 10 μM
forward and reverse primers (MWG Biotech, India) and 0.3 μl of 3U/μl
Taq Polymerase (Bangalore Genei, India). Amplification was performed
using Applied Biosystems 96 well Thermal cycler (California, USA) as
per the protocol of initial denaturation at 95 °C for 5min followed by 39
cycles each at 95 °C for 30 s, 59–67 °C for 30 s and 72 °C for 30 s,

followed by final extension at 72 °C for 10min. 5 μl of the amplified
products were analyzed by electrophoresis on a 2.0% agarose gel
stained with ethidium bromide along with a 50 bp DNA ladder (MBI
Fermentas, St.Leon-Rot, Germany) and photographed. Details of the
restriction enzymes (Thermo Fisher Scientific, Wilmington, DE, USA)
and digested products are mentioned in Table S2. 15 μl of the amplified
products were digested with 1U of the corresponding restriction en-
zyme in a total reaction volume of 20 μl as per the manufacturer’s in-
struction. A 50 bp DNA ladder (MBI Fermentas, St.Leon-Rot, Germany)
was used as a marker. All the gels were visualized under UV transillu-
minator using Gel Doc EZ System (Bio Rad Laboratories, California,
USA) (Fig. S1).

2.4. Determination of Omentin-1 transcript levels

RNA isolation and cDNA synthesis: Total RNA was isolated from
VAT by Trizol method. RNA integrity and purity were verified by 1.5%
agarose gel electrophoresis/ethidium bromide staining and O.D. 260/
280 absorbance ratio 1.9 respectively. Further, RNA was treated with
DNase I (Puregene, Genetix Biotech) before cDNA synthesis to avoid
DNA contamination. One microgram of total RNA was used to prepare
cDNA using the Transcriptor High Fidelity cDNA Synthesis Kit (Roche
Diagnostic GmbH, Mannheim, Germany) according to the manu-
facturer’s instructions in the Eppendorf Mastercycler gradient (USA
Scientific, Inc., Florida, USA).The expression of Omentin-1 and GAPDH
transcripts was monitored by LightCycler®480 Real-time PCR (Roche
Diagnostics GmbH, Manneheim, Germany) using gene-specific primers
(Eurofins, Bangalore, India) as shown in Table S2. Expression of GAPDH
gene was used as a reference. Real-time PCR was performed as de-
scribed previously [16].

2.5. Determination of plasma Omentin-1 levels

The plasma levels of Omentin-1 were estimated by the enzyme-
linked immunosorbent assay (ELISA) kit for human Omentin-1 (RayBio,
Norcross, GA, USA) with the sensitivity of 2 ng/ml. All the plasma es-
timations were carried out in duplicates to ensure % Coefficient of
Variation (CV) below 10%.

2.6. Statistical analyses

The clinical characteristics of the study subjects were compared
using the t-test. Hardy-Weinberg equilibrium (HWE) was performed for
Omentin-1 polymorphisms in patients and controls by comparing the
observed and expected frequencies of the genotypes using the chi-
square analysis. The distribution of genotype and allele frequencies of
Omentin-1 polymorphisms for patients and control subjects were com-
pared using the chi-square test with 2x2 contingency tables. p-values
<0.025 for genotype and allele distribution were considered as statis-
tically significant as per Bonferroni’s corrections. Odds ratio (OR) with
respective Confidence Interval (95% CI) for disease susceptibility was
calculated. Haplotype and linkage disequilibrium (LD) analysis were
carried out using http://shesisplus.bio-x.cn/SHEsis.html [17]. For
analyses of the transcript and protein levels, unpaired t-test and one-
way ANOVA were applied. Post hoc Tukey test was applied for multiple
group analysis. All the genotype-phenotype correlation analyses were
carried out in T2D patients. All the analyses were carried out in
GraphPad Prism 5 software. The statistical power of detection of the
association with the disease at the 0.025 level of significance was de-
termined by using the G* Power software

2.7. Bioinformatics analysis

In silico prediction tools PANTHER [18], POLYPHEN [19], I-MU-
TANT [20], were employed to predict the sequence based impact on the
protein due to single amino acid variation and the details are provided
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in supporting data.

3. Results

3.1. Clinical parameters

The clinical parameters of 250 controls and 250 patients used for
genetic association study are as shown in Table S1.

3.2. Association of Omentin-1 polymorphisms

The genotype and allele frequencies of the explored Omentin-1
polymorphisms (rs2274907 A/T and rs1333062 G/T) are summarized
in Table 1. The distribution of genotype frequencies for all the poly-
morphisms were in agreement with Hardy-Weinberg expectations in
both patient and control groups (p>0.025). Our results suggest no
difference in genotype as well as allele frequencies of Omentin-1 SNPs
among diabetic patients and controls. None of the polymorphisms of
Omentin-1 were found to be associated with T2D (p>0.05), and were
hence discontinued after an initial assessment of 250 samples. This
study has 85% statistical power for the effect size 0.1 to detect asso-
ciation of Omentin-1 polymorphisms at p<0.025 in T2D patients and
controls

3.3. Haplotype and linkage disequilibrium (LD) analysis

The estimated frequencies of the haplotypes obtained for rs2274907
A/T and rs1333062 G/T did not differ significantly between patients
and controls (global p= 0.853) (Table 2). None of the haplotypes were
found to be associated with T2D. The LD analysis revealed that the two
polymorphisms of Omentin-1 were in moderate association (D’=0.56,
r2= 0.05) (Fig S2).

3.4. Association of Omentin-1 polymorphisms with FBG, BMI and plasma
lipids:

Omentin-1 rs2274907 AT genotype was found to be associated with
increased BMI (p=0.0247) (Table 3). However, it was not associated
with FBG and plasma lipids (p> 0.05). Further, rs1333062 G/T did not
show any association with FBG, BMI and plasma lipids (p> 0.05).

3.5. Bioinformatics analysis

The positive genotype-phenotype association for Omentin-1
rs2274907 AT genotype with increased BMI suggests their crucial role
in Omentin-1 activity. Therefore, we further investigated the impact of
polymorphism on Omentin-1 protein using bioinformatics tools.
Omentin-1 rs2274907 A/T polymorphism results in aspartate to valine
substitution at position 109 of Omentin-1 protein [21]. PANTHER and
POLYPHEN tools showed that Omentin-1 rs2274907 is probably benign
suggesting that the substitution does not affect the phenotype nor has
damaging effects on the function of Omentin-1 protein. I-MUTANT
predictions revealed decreased stability of Omentin-1 rs2274907 variant
as compared to its native structure (Table 4).

3.6. Relative gene expression of Omentin-1 and its association with
Omentin-1 SNPs, and a correlation with metabolic profile

Significantly increased Omentin-1 transcript levels were observed in
T2D patients as compared to controls after normalization with GAPDH
expression as suggested by the significant (p<0.0127) mean ΔCt va-
lues (Fig. 1A). Moreover, a 2-ΔΔCp analysis showed approximately 4.2
fold change in the expression of Omentin-1 transcript levels in patients
as compared to controls as shown in Fig. 1B. Further, there was no
significant difference observed between Omentin-1 transcript levels and
its SNPs (p>0.05) as shown in Fig. 1C. Spearman’s correlation analysis

Table 1
Genotype and allele frequencies distribution of Omentin-1 polymorphisms in T2D patients and controls.

SNP Genotype Controls (Frequency) Patients (Frequency) p for HWE p for Association Odds ratio (95% CI)

(n = 250) (n = 235)

(rs2274907)
Omentin-1
Exon 4 Val109Asp A/T

TT
TA
AA

T
A

206
44
0

430 (0.93)
34 (0.07)

189
46
0

416 (0.90)
44 (0.10)

(C)
0.2285
(P)
0.1087

R
0.1992a

-

0.2212c

-
1.378
-

1.338

-
0.8436 to 2.250
-

0.8381 to 2.135
(n = 250) (n = 235)

(rs1333062)
Omentin-1
3’UTR
G/T

TT
TG
GG

T
G

45
109
96

199 (0.40)
301 (0.60)

35
105
95

175 (0.37)
291 (0.63)

(C)
0.1541
(P)
0.4993

R
0.4167a

0.3681a

0.4119b

-
1.239
1.272

1.114

-
0.7387 to 2.077
0.7526 to 2.151

0.8602 to 1.444

n:Number of Patients/ Controls, R:Reference group, HWE: Hardy-Weinberg Equilibrium, CI: Confidence Interval, Odds ratio is based on allele frequency distribution.
(P) refers to Patients and (C) refers to Controls.
a Patients vs. Controls (genotype) using chi-square test with 2×2 contingency table.
b Patients vs. Controls (allele) using chi-square test with 2× 2 contingency table. Statistical significance was measured at p<0.025 as per Bonferroni’s correction.

Table 2
Distribution of haplotype frequencies of Omentin-1 polymorphisms in T2D patients and controls.

Haplotype (Omentin-1 rs2274907 A/T and rs1333062 G/T) Patients(Freq. %) (n= 230) Controls(Freq. %) (n=250) p for association p (global) Odds ratio [95%CI]

TT 142(0.307) 135(0.322) 0.064 0.853 1.296 [0.983∼ 1.707]
TG 276(0.597) 249(0.595) 8.60× 105 1.641 [1.283∼ 2.099]
AT 28(0.06) 29(0.069) 0.684 1.116 [0.654∼ 1.905]

CI represents Confidence Interval. (Frequency<0.03 in both control & case has been dropped and was ignored in the analysis).
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revealed no correlation between Omentin-1 transcript levels and BMI,
FBG or plasma lipids (r2=0, p> 0.05) (Table 5).

3.7. Plasma Omentin-1 levels and its association with Omentin-1 SNPs, and
a correlation with metabolic profile

Plasma Omentin-1 levels showed a significant decrease

Table 3
Genotype-phenotype association analysis of Omentin-1 polymorphisms with metabolic profile.

Genotype FBG(mg/dL) BMI(kg/m2) TG(mg/dL) TC(mg/dL) LDL(mg/dL) HDL(mg/dL) Male HDL (mg/dL) Female

Omentin-1 rs2274907 A/T
TT (n= 189) 118.7(45.53) 25.6(5.42) 157.0(85.52) 161.3(36.86) 100.1(29.86) 36.4(9.92) 41.3(9.63)
AT (n=46) 127.8(45.15) 27.0(5.55) 168.6(86.17) 166.3(32.72) 106.1(28.89) 33.8(7.62) 41.3(8.60)
AA (n= 0) – – – – – – –
p value 0.1369 0.0247 0.1763 0.2010 0.0825 0.1248 0.8184
Omentin-1 rs1333062 G/T
TT (n= 35) 119.7(54.22) 25.4(6.03) 144.6(74.93) 162.0(37.56) 101.8(25.16) 36.0(9.18) 41.8(11.10)
TG (n= 105) 120.1(43.27) 25.9(5.31) 155.8(88.89) 163.0(34.15) 103.6(32.24) 36.5(10.41) 41.9(9.49)
GG (n= 95) 120.3(41.22) 25.8(5.22) 163.9(88.55) 159.3(37.12) 98.7(29.83) 35.8(8.14) 40.8(8.59)
p value 0.9150 0.4323 0.1852 0.3773 03,678 0.8933 0.5850

Data are presented as Mean± SE. Statistical significance was considered at p<0.05.

Table 4
In-silico analysis of Omentin-1 rs2274907 A/T polymorphism.

Amino acid change PANTHER POLYPHEN I-MUTANT

Asp109Val probably benign benign Decrease

Fig. 1. (A) Relative gene expression of VAT Omentin-1 in controls and patients: Significant increase in Omentin-1 transcript levels was observed in patients
(Mean ΔCt± SEM: 5.06±2.79 vs 0.20±0.90; p= 0.0127). (B) Relative fold change of Omentin-1 expression in controls and patients. T2D patients showed
4.2 fold increase in Omentin-1 mRNA expression as determined by the 2-ΔΔCp method (Controls n= 12; T2D patients n=10). (C) Association of Omentin-1
polymorphisms with Omentin-1 transcript levels. Omentin-1 polymorphisms with Omentin-1 transcript levels showed no association with Omentin-1 transcript
levels (p>0.05).
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(p<0.0001) in T2D patients (Fig. 2A). Further, the levels of Omentin-1
were significantly low (p=0.017) in obese patients compared to obese
controls (Fig. 2B). Further, no association was found between Omentin-
1 plasma levels and its SNPs (p>0.05) as shown in Fig. 2C. Spearman’s
correlation analysis revealed no correlation between Omentin-1 protein
levels and BMI, FBG and plasma lipids (r2=0, p> 0.05) (Table 6).

4. Discussion

There are numerous studies on the association of adipokine genetic
variants in T2D but with few being explored in the Indian population.
The present study was designed to determine genetic risk factors from
one of the strongly linked chromosomal regions 1q21-23 in Gujarat
population for T2D.

Our results revealed that the genetic variants of Omentin-1
(rs2274907 A/T and rs1333062 G/T) are not associated with T2D.
Similar observations were reported in the Caucasian population [21,22]
though not in Polish and North Indian population [23,14]. Further, our
association analysis revealed rs2274907 AT genotype to be significantly
associated with increased BMI in T2D patients. In context to this, it is
also reported to be associated with the increased risk towards NAFLD
[8]. Omentin-1 rs2274907 polymorphic (A/T) site is present in exon-4
and is reported to result in a change of amino acid from Asp (GAC) to
Val (GTC) at position 109 [21]. Our in silico analysis revealed the site as
benign, having no major structural effect on the protein activity.

The transcript as well as protein levels of Omentin-1 reveal quite an
intriguing picture of increased mRNA levels and decreased protein le-
vels in T2D patients. Though studies carried out by other research

Table 5
Correlation analysis of Omentin-1 transcripts with metabolic profile.

Parameters r2 p

BMI (Kg/m2) 0.2571 0.6583
FBG (mg/dL) −0.4000 0.7500
TG (mg/dL) 0.4000 0.7500
TC (mg/dL) 0.3491 0.7568
HDL (mg/dL): Male 0.5678 0.6789
Female 0.9876 0.5678
LDL (mg/dL) 0.4000 0.7500

p>0.05, non-significant. n= 10.

Fig. 2. Plasma Omentin-1 levels in (A) controls vs. patients (B) control (lean vs. obese) and Patients (lean vs. obese). Our results showed a significant
decrease in plasma Omentin-1 levels in T2D patients (p<0.0001) compared to controls; obese T2D patients showed a significant decrease compared to obese
controls (p=0.017) (Controls n=40; T2D patients n= 40). (C) Association of Omentin-1 polymorphisms with plasma Omentin-1 levels. Omentin-1 poly-
morphisms showed no association (p>0.05) with plasma Omentin-1 levels.

Table 6
Correlation analysis of plasma Omentin-1 with metabolic profile.

Parameters r2 p

BMI (Kg/m2) −0.0127 0.9020
FBG (mg/dL) 0.2427 0.1538
TG (mg/dL) 0.1728 0.2401
TC (mg/dL) 0.0940 0.4865
HDL (mg/dL): Male 0.1420 0.4541
Female 0.3000 0.1642
LDL (mg/dL) 0.1192 0.4520

p>0.05, non-significant. n=40.
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groups are in discord with our transcript results [4,24,25], it is im-
portant to note that these groups have not monitored the protein levels.
Our results on the transcript levels are in agreement with the report of
Schäffler et al. [5] who showed an increase in Omentin-1 transcript le-
vels as a response to elevated levels of pro-inflammatory adipokines. It
could at best be explained as a defence mechanism elicited under
obesity-induced changes in the micro-environment of adipose tissue
[5,26]. As an explanation of elevated anti-inflammatory levels, Li et al.
have suggested it to be a stimulation induced by various pro-in-
flammatory cytokines besides differential binding frequencies of NF-κB,
a major adipokine regulator [27]. In support of these findings, we have
also observed an increased expression of pro-inflammatory adipokines
such as TNF-α [16], IL1β [28] and resistin [29]. Furthermore, epige-
netic modifications like miRNA regulation, DNA methylation, and post-
translational modifications have also been suggested to regulate mRNA
expression of adipokines [27,30,31]. In this context, the observed in-
creased mRNA expression could be due to any of these reasons.

As against the transcript levels, plasma Omentin-1 levels were sig-
nificantly lowered in T2D patients. Studies by other research groups
substantiate our results on protein levels [4,32]. There are several ex-
planations put forward for the reduced circulatory Omentin-1 levels in
diabetic conditions. First of all, the incidence of decreased Omentin-1 in
the circulation could be a consequence of either inhibited translation or
decreased stability of mRNA or protein. Secondly, Yan et al. [7] have
shown circulating Omentin-1 levels and adiponectin levels to have a
direct correlation. Interestingly, we have observed reduced adiponectin
levels in our population [33]. One of the studies has suggested that
adiponectin may have a regulatory influence on Omentin-1 levels [34].
However, future studies are needed in this direction to unravel the

intricate relations if any. Dysregulation of blood glucose levels with the
increased propensity towards T2D and diabetic complications have
been shown to be associated with sleep disturbances [35]. Moreover, it
has also been reported that circadian rhythms can influence metabolic
processes of adipose tissue and also expression and secretion of adi-
pokines [36,37]. Such regulation is likely to be mediated by melatonin
by way of its action on VAT either through its membrane receptors or
via an action on the sympathetic nervous system [38]. The possible
mechanisms of action of melatonin on Omentin-1 may be corre-
sponding to its effect on the levels of adiponectin. From our previous
study, we have observed reduced plasma melatonin levels in T2D pa-
tients [39]. The reduced Omentin-1 levels might contribute towards the
progression/development of T2D. The underlying mechanism for the
differential expression of mRNA and protein levels needs to be in-
vestigated in depth through in-vivo studies.

As discussed above, in obesity-induced diabetic individuals, there
are altered levels of pro-inflammatory (TNF-α) and anti-inflammatory
(adiponectin) adipokines. Omentin-1 is reported to manifest its anti-
inflammatory activity by inhibiting TNF-α through JNK pathway in
healthy individuals [40]. Circulatory Omentin-1 is used as a biomarker
of diabetes, obesity, atherosclerosis, inflammatory disease, metabolic
syndrome, and cancer [6,2] and in this context, the same could be
considered in our Gujarat T2D population. However, its polymorphic
sites are not associated with the disease. Further studies on Omentin-1
expression in larger sample size are required to validate our results.

To our knowledge, this is the only study that ascribes an association
between Omentin-1 polymorphisms, its transcript and protein levels
with biochemical parameters in Gujarat population. Thus, our results
contribute to an understanding of the role of Omentin-1 in obesity-

Fig. 3. Role of Omentin-1 in T2D: aThe genetic variants of Omentin-1 are not associated with T2D susceptibility, however the AT genotype (rs2274907) is associated
with an increased BMI. In obese individuals, Omentin-1 might be regulated by multiple factors at transcriptional as well as translational levels. Our previous studies
demonstrate increased bpro-inflammatory adipokines, decreased canti-inflammatory adipokines and dmelatonin levels. Thus, these factors might contribute to
Omentin-1 VAT transcript levels and plasma protein levels, which might play a role in the development of obesity-induced T2D condition.
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induced T2D.
The current study suggests Omentin-1 might be regulated by mul-

tiple factors at transcriptional as well as translational levels, while ge-
netic polymorphisms are not associated with T2D. We observed an as-
sociation of the AT genotype of rs2274907 with increased BMI levels.
The reduced Omentin-1 protein levels might be influenced by increased
pro-inflammatory adipokines and epigenetic modifications. These fac-
tors are known to be induced by a sedentary lifestyle and an unhealthy
diet. The Omentin-1 levels might also be regulated by anti-in-
flammatory adipokine and melatonin. Thus, all these factors could be
involved in the development of dyslipidemia and obesity-induced T2D
(Fig. 3).

5. Conclusion

Our study suggests that although Omentin-1 genetic variants are not
associated with T2D, its reduced protein levels could play a role in T2D
susceptibility.
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A B S T R A C T

Vaspin, an insulin-sensitizing adipokine, has been associated with type 2 diabetes (T2D). The present study
aimed to investigate the distribution of genotypes and high-risk alleles of vaspin genetic variants (rs77060950 G/
T and rs2236242 A/T), in Gujarat subpopulation (India). Genomic DNA isolated from PBMCs was used to
genotype vaspin polymorphisms by PCR-RFLP and ARMS-PCR from 502 controls and 478 patients. RNA isolated
from visceral adipose tissue (VAT) of 22 controls and 20 patients was used to assess vaspin transcript levels by
qPCR while the vaspin titre of the subjects was assayed using ELISA. Phenotypic characteristics of Fasting Blood
Glucose (FBG), BMI and plasma lipid profile were estimated and analyzed for the genotype-phenotype corre-
lation. We identified a significant association of rs2236242 A/T with T2D as the TT genotype conferred a 3.087-
fold increased risk. The TT genotype showed association with increased FBG, BMI and Triglycerides levels.
Increased GA, GT and TA haplotype frequencies, decreased VAT transcript and vaspin protein levels in T2D
patients was observed, which were further negatively correlated with FBG and BMI. In conclusion, rs2274907 A/
T polymorphism is strongly associated with reduced vaspin transcript and protein levels, and related metabolic
alterations that may play a role in the advancement of T2D.

1. Introduction

Central obesity, an integral part of the metabolic syndrome, has
long been viewed as a risk factor for type 2 diabetes mellitus (T2D).
Adipocytes produce many biomolecules, collectively known as adipo-
kines, playing a key role in metabolism, inflammation, and immunity.
Since the discovery of leptin, many other adipokines have been dis-
covered forming the crux of homeostasis between the anti- and pro-
inflammatory macrophages [1]. Vaspin, a member of serpin A12, was
initially discovered in visceral adipose tissue (VAT) of Otsuka Long-
Evans Tokushima fatty rat [2,3]. It is an anti-inflammatory adipokine
reported to inhibit kallikrein 7 (a protease degrading insulin). It pro-
motes cell proliferation, inhibits apoptosis and ameliorates ER stress in-
vitro [3,4]. There are also a few studies establishing the favourable
effect of exogenous recombinant vaspin on insulin sensitivity and glu-
cose tolerance [2,5].

In humans, reduced vaspin protein levels have been correlated with

increased Body Mass Index (BMI) and reduced insulin sensitivity in
adults [6,7], and obese women having Polycystic Ovary Syndrome
(PCOS) [8,9]. Thus, the emerging line of evidence supports the concept
of vaspin playing a significant role in the progression towards obesity
induced T2D. Vaspin consists of 6 exons and 5 introns and is located on
chromosome 14q32.13. Single nucleotide polymorphisms (SNPs) of
vaspin are well explored of which, intronic polymorphic sites (intron 2
rs77060950 G/T and intron 4 rs2236242 A/T) have been investigated
in relation to various diseases like T2D [10,11], PCOS [12], Metabolic
Syndrome [13,14], Coronary Artery Disease (CAD) [15], Nonalcoholic
Fatty Liver Disease (NAFLD) [16], obesity [17], and End Stage Renal
Disease (ESRD) [18].

The predictions for India indicate that cases of T2D will rise to 74.9
million by 2030 [19] with the Gujarat population being the second
highest [20]. We have reported the genetic predisposition of TNF-α,
resistin and omentin-1 in T2D [21–23]. We, thus, aimed to investigate
the distribution of genotypes and high-risk alleles of vaspin present in
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the intronic region (intron 2 rs77060950 G/T and intron 4 rs2236242
A/T) and correlate them with any alterations in the transcript and
protein levels. Alongside this, we also performed a genotype-phenotype
correlation with various metabolic parameters to understand their as-
sociation.

2. Materials and methods

2.1. Study participants

The presented work abided by the principles of the Helsinki
Declaration and was sanctioned by the Institutional Ethical Committee
for Human Research (IECHR: FS/IECHR/2016-9) as described else-
where [21]. The study protocol followed was as designed by Rathwa
and colleagues [21].

2.2. Anthropometric parameters, lipid profiling and DNA extraction

The height and weight of the study participants were measured to
calculate BMI. Participants were subjected to overnight (12 h) fasting
and their venous blood samples (3 ml) was withdrawn to estimate
Fasting Blood Glucose (FBG), Total Cholesterol (TC), Triglycerides
(TG), Low-Density Lipoprotein (LDL) and High-Density Lipoprotein
(HDL) from plasma and genotyping was carried out from the genomic
DNA extracted from PBMCs as described elsewhere [21].

2.3. Genotyping

Polymerase Chain Reaction-Restriction Fragment Length
Polymorphism (PCR-RFLP) and Amplification Refractory Mutation
System-Polymerase Chain Reaction (ARMS) methods were used for
Vaspin polymorphisms (rs77060950 G/T and rs2236242 A/T). The
primers used are as shown in Table S1. The PCR reaction mixture
composition and protocol were as described previously [21].

2.4. Vaspin transcript and protein levels

The primers used for the assessment of vaspin and GAPDH transcript

levels are shown in Table S1, and protocols as described earlier were
used [21]. The vaspin protein levels were determined by 3,3,5,5′-tet-
ramethlybenzidine (TMB) based sandwich ELISA (RayBio, Norcross,
GA, USA; sensitivity: 2 ng/ml) using anti-vaspin antibody and anti-
vaspin antibody labelled with HRP to capture and detect vaspin protein
respectively. Each step was followed by through washings. The readings
were measured at 450 nm to estimate the vaspin levels against a
standard curve using MultiSkan (Thermo Fischer, USA). ELISA run
duplicates were maintained to ensure accuracy and precision.

2.5. Statistical analyses

Unpaired t-test was employed to assess the statistical significance
present in FBG, lipid parameters, age, gender, BMI, vaspin transcript
and protein levels between T2D patients and control subjects followed
by one-way ANOVA Tukey's test for multi-group comparison. Pearson's
chi square test was used to examine if intron 2 rs77060950 G/T and
intron 4 rs2236242 A/T conformed to HWE and to compare the dis-
tribution of genotype and allele frequencies in patients and controls
after Bonferroni correction. The strength of the associations obtained
was quantitated using Odds ratios (ORs) with 95% confidence intervals
(CIs). The analyses were carried out using GraphPad Prism 6 software.

3. Results

3.1. Clinical characteristics

The clinical characteristics of controls and T2D patients varied
significantly as mentioned earlier [21], and the clinical characteristics
of obese controls and T2D patients are shown in Table S1.

3.2. Genetic analyses of vaspin polymorphisms

The distribution of genotype and allele frequencies of rs77060950
G/T and rs2236242 A/T are shown in Table 1. Vaspin rs77060950 G/T
was not associated with T2D (p>0.05) and was hence stopped after a
preliminary assessment. The distribution of genotype frequencies for
rs2236242 A/T was consistent with Hardy-Weinberg expectations in

Table 1
Distribution of genotype and allele frequencies of vaspin polymorphisms in T2D patients and controls.

SNP Genotype or allele Controls (Frequency) Patients
(Frequency)

p for HWE p for Association Odds ratio (95%
CI)

(n = 250) (n = 250)

Vaspin
intron 1 G/T (rs77060950)

GG 201 (80.40) 180 (72.00) (C) R - -
GT 45 (18.00) 61 (24.40) 0.4267 0.0606a 1.514 0.9764 to 1.582
TT 4 (1.60) 9 (3.60) 0.1187 a 2.513 0.7543 to 3.897
G 447 (0.89) 421 (0.84) (P)
T 53 (0.11) 79 (0.16) 0.1896 0.0824b 1.376 0.9588 to 1.9

n: number of Patients/Controls, R:reference group, CI: Confidence Interval, Odds ratio: the allele frequency distribution, P:Patients, C: Controls, aPatients vs. Controls (genotype) by the
chi-squared test with 2×2 contingency table.
bPatients vs. Controls (allele) by chi-squared test with 2×2 contingency table. Statistical significance was considered at p<0.025 as per Bonferroni’s correction.

SNP Genotype or allele Controls (Frequency) Patients
(Frequency)

p for HWE p for Association Odds ratio (95%
CI)

(n = 500) (n = 478)

Vaspin
intron 4 A/T
(rs2236242)

AA 259(51.80) 187(39.12) (C) R - -
AT 206(41.20) 213(44.56) 0.4895 0.0095a 1.432 1.095 to 1.873
TT 35 (7.00) 78 16.32) 0.0001a 3.087 1.986 to 4.767
A 724 (0.72) 587 (0.61) (P)
T 276 (0.28) 369 (0.39) 0.1903 0.0001b 1.649 1.363 to 1.995

n: number of Patients/Controls, R:reference group, CI: Confidence Interval, Odds ratio: the allele frequency distribution, P:Patients, C: Controls, aPatients vs. Controls
(genotype) by the chi-squared test with 2×2 contingency table.
bPatients vs. Controls (allele) by chi-squared test with 2×2 contingency table. Statistical significance was considered at p<0.025 as per Bonferroni’s correction.
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both the groups (p>0.025) and it was associated with T2D (genotype
and allele frequencies, p<0.0001). The AT genotype was associated
with increased risk for T2D with an odds ratio (OR) of 1.432 while the
mutant homozygous TT genotype increased the risk by 3.087-fold. The
mutant allele ‘T’ of rs2236242 was associated with the risk of T2D
having an OR of 1.649.

3.3. Haplotype and linkage disequilibrium (LD) analysis

The estimated frequencies of the haplotypes for rs77060950 G/T
and rs2236242 A/T did not vary between both the groups (global
p=7.36 × 10−6) (Table 2). Yet, GA (p=0.0053), GT (p=2.46 × 10−6)
and TA (p=0.0441) haplotypes were associated with T2D risk. The LD
analysis showed that the polymorphisms of Vaspin (rs77060950 G/T
and rs2236242 A/T) were in low linkage disequilibrium (D′= 0.10;
r2 = 0.001) (Fig. S2).

3.4. The analysis of association of vaspin polymorphisms with metabolic
profile

rs77060950 G/T did not show any association with FBG, BMI and
plasma lipids (p>0.05) (Table 3). Further, rs2236242 TT genotype
was associated with increased FBG (p=0.0001), BMI (p=0.0001) and
TG (p=0.0065) but was not associated with TC, LDL and HDL levels
(p>0.05).

3.5. Vaspin transcript levels and their association with vaspin
polymorphisms, and a correlation with metabolic profile:

After normalization with GAPDH expression, a 2.26-fold (p=0.028)
decrease in the expression of vaspin transcript levels were observed in
T2D patients by 2‐ΔΔCp analysis (Fig. 1A). However, there was no as-
sociation between vaspin transcript levels and their polymorphisms
(p>0.05) (Fig. 1B). Spearman’s correlation analysis showed no cor-
relation between vaspin transcript levels and metabolic profile (r2=0,
p>0.05) (Table 4).

3.6. Plasma vaspin protein levels and their association with vaspin
polymorphisms and metabolic profile:

Reduced plasma vaspin protein levels were observed (p=0.0001) in
T2D patients (Fig. 2A) and obese patients (p=0.0001) (Fig. 2B). Fur-
ther, no association was observed between vaspin protein levels and
vaspin polymorphisms (p>0.05) (Fig. 2C). Spearman’s correlation
analysis showed a negative correlation between plasma vaspin protein
levels and BMI (p=0.0307) and FBG (p=0.0006), and no correlation
with the lipid profile (p>0.05) (Table 5).

4. Discussion

Adipocytes and beta-cells dysfunction are the hallmarks of T2D
pathogenesis and numerous factors contribute towards it, the most
prominent ones being obesity and genetic predisposition [24]. A few
studies have been assessed on polymorphisms of adipokine with T2D
susceptibility in the Indian population.

Our results revealed no association of Vaspin rs77060950 G/T with
either T2D risk or with any other parameters. Similar results have been
documented in the German population (24). Vaspin intronic poly-
morphism rs2236242 A/T is significantly associated with T2D. This
polymorphism has been studied in different populations concerning
different diseases/disorders (Table 6).

The TT genotype showed a 3.087-fold increased risk for T2D. We
report for the first time that the mutant T allele predisposes an in-
dividual towards the risk of T2D unlike in other populations. Kempf
et al. [10] have reported an association of rs2236242 towards the risk of
T2D; however, the functional consequences of rs2236242 poly-
morphism have not been explored. It is hypothesized that this poly-
morphic site might have an impact on the stability of mRNA or splicing
efficiency of the transcribed product [10].

Correlation analysis reveals vaspin rs2236242 TT genotype to be
significantly associated with metabolic risk factors marked by higher
FBG, BMI, and TG in T2D patients. Parallel results have been observed
in other populations too [14,17]. Assessment of VAT vaspin transcript
and plasma levels reveal a significant reduction in their levels in T2D
patients as also observed in other populations [26–28]. Several reports

Table 2
Haplotype frequencies of Vaspin polymorphisms in T2D patients and controls.

Haplotype
(Vaspinrs77060950 G/T, rs2236242 A/T)

Controls
(Freq. %)
(n = 500)

Patients
(Freq. %)
(n = 478)

p for Association p (global) Odds ratio [95% CI]

GA 511.60 (57) 632.24 (65) 0.0053 7.36 × 10−6 0.714 [0.590–0.864]
GT 312.40 (35) 243.76 (25) 2.46×10−6 1.619 [1.324–1.980]
TA 46.40 (5.2) 72.76 (7.5) 0.0441 0.678 [0.464–0.992]
TT 25.60 (2.8) 23.24 (2.5) – –

CI: confidence interval. (Frequency < 0.03 in both groups has been dropped and was ignored in the analysis).

Table 3
Vaspin polymorphisms and genotype-phenotype correlation analysis with the metabolic profile.

Genotype FBG
(mg/dl)

BMI
(kg/m2)

TG
(mg/dl)

TC
(mg/dl)

LDL
(mg/dl)

HDL
(mg/dl)

(rs77060950) Vaspin intron 1 G/T
GG 128.4 ± 2.2 25.7 ± 0.2 154.9 ± 3.2 166.6 ± 1.4 106.4 ± 1.2 40.9 ± 0.9
GT 116.7 ± 5.2 25.7 ± 0.2 156.7 ± 7.9 169.5 ± 2.9 106.3 ± 1.9 38.9 ± 2.1
TT 122.4 ± 1.9 25.6 ± 1.1 151.4 ± 18.9 153.1 ± 7.9 101.3 ± 5.4 41.3 ± 1.6
p value 0.0867 0.2056 0.8876 0.0739 0.1669 0.1899

(rs2236242) Vaspin intron 4 A/T
AA 120.3 + 22.3 24.9 ± 2.3 132 ± 27.2 167.6 ± 37.15 101.1± 82.90 39.9± 12.5
AT 129.2+11.3 26.4± 1.0 135.8±21.3 165.3± 33.85 97.88± 91.16 40.4± 13.1
TT 134.4+7.2 27.5±0.8 161.0±11.2 166.2± 37.24 96.4± 76.58 38.3± 12.6
p value <0.0001 <0.05 0.0063 0.8984 0.8911 0.3398

Data are presented as Mean ± SD. Statistical significance was considered at p<0.05.
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have put forward the concept that the compensatory ability of vaspin
secretion gradually declines with the severity of diabetes or the onset of
cardiovascular diseases resulting in a slow fall in vaspin levels
[2,24,28].

Obesity is a chronic low-grade inflammation that regulates the le-
vels of pro- and anti-inflammatory adipokines by macrophage polar-
ization [29]. Resistin, a pro-inflammatory adipokine is reported to be
elevated in T2D conditions [30]. The pro-inflammatory effects of re-
sistin are known to initiate cAMP-mediated activation of PKA and NF-
κB-mediated transcription of various inflammatory adipokines i.e TNF-
α and IL-1β [31]. We have observed similar results in our population
indicating an imbalance of adipokines in the form of increased levels of
TNF-α [21], resistin [22] and IL1-β [32] in T2D patients. Such activa-
tion of the NF-κB pathway and increased production of pro-in-
flammatory adipokines also seem to decrease the levels of anti-in-
flammatory adipokines as observed by us (adiponectin and omentin-1)
in T2D patients [23,33]. A similar observation for the anti-in-
flammatory cytokines (apelin, IL-10 etc.) has been made by other

workers as well [34]. Furthermore, we have also reported the possible
involvement of angiotensin convertase enzyme (ACE) I/D polymorph-
isms in the same population [35]. The ACE ‘D’ allele is associated with
increased angiotensin II [36] which may further reduce the adiponectin
levels. Further, the role of circadian rhythm has been implicated earlier
in regulating metabolic processes of adipose tissue, and in the expres-
sion and secretion of adipokines [37,38]. The metabolic regulation is

Figure 1.. A) Relative fold change of vaspin tran-
script levels in controls and patients. T2D patients
showed 2.26-fold (p=0.028) decrease in vaspin
transcript levels as estimated by the 2‐ΔΔCp method
(Controls n=22; T2D patients n=20). B) Association
of vaspin polymorphisms with their transcript levels.
Vaspin polymorphisms showed no association with
their transcript levels (p>0.05).

Table 4.
Correlation analysis of vaspin transcript levels with the metabolic profile.

Parameters r2 p

BMI (kg/m2) 0.4135 0.6990
FBG (mg/dL) ‐0.3989 1.2120
Triglycerides (mg/dL) ‐0.5676 1. 6510
Total Cholesterol (mg/dL) ‐0.0909 0.7904
HDL (mg/dL): 0.7900 0.9091
LDL (mg/dL) 0.6515 0.0789

p>0.05, non-significant. n=20

Figure 2.. Plasma Vaspin protein levels in A) controls vs. patients B) control and patients (lean vs. obese). Our results indicated a significant reduction in plasma
vaspin protein levels in T2D patients (p<0.0001) and obese T2D patients (p<0.0001) (Controls n=40; T2D patients n=40). C) Association of vaspin poly-
morphisms with plasma vaspin protein levels. Vaspin polymorphisms showed no association with vaspin protein levels (p>0.05).

Table 5.
Correlation analysis of plasma vaspin protein levels with metabolic profile.

Parameters r2 p

BMI (kg/m2) ‐0.2514 0.0307
FBG (mg/dL) ‐0.4695 0.0006
Triglycerides (mg/dL) ‐0.0971 0.4765
Total Cholesterol (mg/dL) ‐0.0743 0.5659
HDL (mg/dL): ‐0.5174 0.6872
LDL (mg/dL) ‐0.0561 0.7080

p>0.05, non-significant. n=40

Table 6.
Association of vaspin rs2236242 A/T with various disorders.

Sr.no. Associated with Population References

1. T2D German, Chinese [10,25]
2. CAD Chinese [15]
3. Obesity Egyptian [17]
4. Metabolic syndrome Egyptian [14]
5. Metabolic syndrome Iranian [12]
6. PCOS Iranian [13]
7. ESRD Iranian [18]
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predicted to be mediated by the action of melatonin, a pineal gland
hormone, on VAT receptors or via the sympathetic nervous system
[39,40]. We have previously reported decreased plasma melatonin le-
vels in T2D patients [41]. We have observed the involvement of NPY
promoter polymorphism regulating NPY levels which further reduces
melatonin levels [33]. Apparently, in this context, the reduced levels of
the anti-inflammatory adipokine-vaspin seen in T2D patients could be a
direct or indirect consequence of reduced melatonin levels.

A possible mechanistic summary depicting the possible role of
vaspin polymorphisms, and its altered transcript and protein levels in
obesity and dyslipidemia associated with T2D is shown in Fig. 3.

This is the first study ascribing an association between vaspin
rs2236242 A/T polymorphism and its plasma protein levels with me-
tabolic parameters in the Gujarat population (India). Our findings are
suggestive of ethnic differences being one of the essential contributors
in the progression of T2D.

Thus, our findings open new avenues to understand the role of
vaspin in obesity induced T2D.

5. Conclusion

Our results indicate that vaspin rs2274907 A/T polymorphism is
strongly associated with its reduced transcript and protein levels, and
related metabolic alterations that may play a role in the advancement of
T2D.
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Abstract Aims: Diabetesmellitus (DM) is adisorderofheterogeneousetiologymarkedbypersistent
hyperglycemia.Exogenous insulin is theonly treatment for type1diabetes (T1D). Islet transplantation
isapotential longcure forT1Dbut isdisapproveddueto thepossibilityof immunerejection in the later
stage. The approaches used for treating type 2 diabetes (T2D) include diet restrictions, weight man-
agementandpharmacological interventions. Theseprocedureshavenotbeenable toboost thequality
of life for diabetic patients owing to the complexity of the disorder.
Data synthesis: Hence, research has embarked on permanent ways of managing, or even curing the
disease. One of the possible approaches to restore the pancreas with new glucose-responsive b-cells
is by their regeneration. Regeneration of b-cells include islet neogenesis, dedifferentiation, and trans-
differentiation of the already differentiated cells.
Conclusions: This review briefly describes the islet development, functions of b-cells, mechanism and
factors involved in b-cell death. It further elaborates on the potential of the existing and possible ther-
apeuticmodalities involved in the in-vivo replenishment of b-cells with a focus on exercise, diet, hor-
mones, small molecules, and phytochemicals.
ª 2020 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian So-
ciety of HumanNutrition and theDepartment of ClinicalMedicine and Surgery, Federico II University.
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Introduction

Diabetes mellitus

Diabetes mellitus (DM) is a metabolic disorder character-
ized by persistent hyperglycemia and, the number of in-
dividuals with diabetes has continued to grow over the
years. It is mainly classified into type 1 diabetes (T1D) and
type 2 diabetes (T2D). Other rare forms of diabetes are
directly inherited [1]. T1D constitutes less than 10% of the
total cases of diabetes worldwide and is triggered by
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autoimmune-mediated destruction of pancreatic b-cells
which often develops in childhood. On the contrary, T2D
accounts for over 90% of the patients and is marked by
insulin resistance in peripheral tissues due to impaired
insulin signaling. Both forms of diabetes are associated
with secondary complications that affect multiple organs
[1]. There are several factors associated with T2D viz. ge-
netic predisposition [2e4], ER stress [5], obesity [1], etc. To
date, extensive research has been carried out with the
perspective to understand their molecular mechanisms
and possible therapies. A cure remains a far cry, even
though various diabetes management approaches have
been attempted. The existing therapies only help alleviate
hyperglycemia and other symptomatic characteristics.
Gaining insights into the possible modes of b-cell preser-
vation is crucial at this juncture, hence an understanding
of the signaling mechanisms of b-cell development and
regeneration can open new treatment avenues.

Pancreas (understanding the insulin-mine)

The pancreas stems as an outpocketing of the primitive gut
endoderm [6]. The adult mammalian pancreas is a diver-
sified organ made of exocrine and endocrine cells.
Exocrine cells, represented by enzyme-producing acinar,
make up 95% of the pancreatic mass. The endocrine
component of the pancreas is arranged as islets of Lang-
erhans which are globular clusters of cells scattered
throughout the exocrine tissue and form a minor 1e2% of
the total organ mass [7]. The differentiation of islet cells, a
complex process occurring during the embryonic period, is
under the control of many transcription factors.

Development of islets

During embryogenesis, the pancreas develops as an
endodermal anlage governed by signals from neighboring
cells. Regulation of the pancreatic development is via the
transcription factors PDX-1 (pancreatic and duodenal ho-
meobox-1), PTF1-a (pancreas associated transcription
factor 1-a) and HLXB9 (homeobox HB9) influencing the
ventral and dorsal aspects of the anlage. The proliferation
of the progenitor cells is by fibroblast growth factors
(FGFs). The differentiated b-cells eventually express
increased levels of PDX-1, NK6 homeobox 1 (NKX6.1), NK2
homeobox 2 (NKX2.2) and PAX-6 transcription factors.
‘Postmitotic” cells are hormone-expressing cells that stop
dividing [8,9]. The fetal pancreatic development shows
differentiation into endocrine and exocrine cells by the
12th week. The mature pancreas formation occurs in the
20th week. Perinatal malnutrition leads to the develop-
ment of T2D later in life, due to the inability of b-cells to
adapt to additional demands placed by aging. The mature
pancreas gains full functionality in 6-month-old infants;
however, there are limited studies available due to lack of
availability of the specimens [9].

Unlike the rapidly renewing gastrointestinal cells, the
pancreatic cells do not show the same property. Never-
theless, the b-cells tend to retain potency throughout life.
It continues to multiply at a moderately slow pace during
adult life. During obesity-induced insulin resistance,
increased b-cell mass occurs as a compensatory physio-
logical feedback. However, the reduced peripheral insulin
sensitivity worsens the situation leading to b-cell death.
Interestingly, an increase in b-cell mass can also be
observed during pregnancy to compensate for the
increased demand. It accounts for 3e5% of the total cell
mass. Further, it is unknown whether neogenesis from
precursor cells is contributing to the b-cell mass increase
during pregnancy [8e10].

Islets of Langerhans

It comprises of alpha (a), beta (b), delta (d), epsilon (ε)
and pancreatic polypeptide (PP) cells. These cells express
peptide hormones such as glucagon, insulin, somato-
statin, ghrelin, and pancreatic polypeptide identical to
their function [7]. b-cells make up the bulk of cells (60%),
a central core surrounded by other cells. a-cells comprise
30% of the islet mass while d and PP cells make up the rest
[11]. Histologically, the islets appear as colonies of
endocrine tissue suspended within the acinar matrix,
derived from single progenitor cells. However, lineage
tracing shows that each islet is polyclonal in origin [7,11].
Significant work elucidates the transcription factors
involved in b-cell development. The overall molecular
mechanism revealed by many research groups defines
various transcription factors, signaling pathways, and
molecules.

Functions of b-cells

The b-cells mainly produces bioactive insulin, in response
to nutrients, hormones, and nervous stimuli, to maintain
the plasma glucose levels in the physiological range. b-
cells also control the functioning of neighboring cells
through autocrine and paracrine signaling. The intricate
signaling involves downstream activation of various
pathways that modulates glucose metabolism. Glucose is
the key modulator of insulin secretion sensed by glucose
transporter 2 (GLUT2) on b-cells [12]. It activates the
transcription factor carbohydrate response element-
binding protein (ChREBP) that triggers glycolysis and b-
cell proliferation [12].

A combination of factors governs b-cell mass mainte-
nance: (a) replication of existing b-cells, (b) differentiation
of new b-cells from ductal and extra-islet precursor cells
(neogenesis), (c) formation of new b-cells from other
endocrine cells (transdifferentiation) and (d) b-cell
apoptosis [13].

Dynamic b-cell mass modifies both functions and mass
to maintain the glycemic level within a very narrow
physiological range. Neogenesis is accountable and widely
accepted for the initial embryonic formation of the endo-
crine pancreas prenatally. However, its occurrence after
birth is debatable because of differential observations in
lineage-tracing experiments. Various studies from
different models and species over a period conceived the
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notion that progenitors have a role in the renewal and
growth of islets after birth [13].
b-cell dysfunction/death (why mine gets exhausted?)

Mechanism

Reduced b-cell mass and function marks the clinical onset
of diabetes mellitus. Autoimmunity plays a significant role
in b-cell apoptosis in T1D backed by cytokine activated
CD8þ cytotoxic-T cells [14]. On the contrary, b-cell loss in
T2D is by various factors including obesity. Hypertrophy
and hyperplasia of adipose cells and macrophage infiltra-
tion causes the pathophysiology of obesity. Macrophages
and inflamed adipocytes secrete inflammatory cytokines.
It leads to the desensitization of insulin-responsive tissues
resulting in insulin resistance. Glucolipotoxicity and
oxidative stress in b-cells are caused by persistent hyper-
glycemia and dyslipidemia. It jeopardizes the b-cell
integrity and functioning [5].

The accumulation of free fatty acids (FFA) and diac-
ylglycerol (DAG), and the generation of high levels of
reactive oxygen species (ROS) also contribute to both b-cell
and adipocyte dysfunction. Mitochondrial dysfunction is
investigated for their involvement in b-cell dysfunction.
Insulin secretion from b-cells and adipokine secretion
from the adipose tissues are both dependent on mito-
chondrial integrity. The excessive availability of nutrients
hampers mitochondrial biogenesis. Mitochondrial
dysfunction induces b-cell apoptosis and fatty liver dis-
ease. It stalls adipocyte differentiation and alters the bal-
ance of pro versus anti-inflammatory adipokines [4,14,15].
There are many factors and mechanisms associated with
apoptosis of b-cells as described in Table 1.
Proposed therapies focusing on b-cell regeneration
(replenishing the mine)

The current therapies targeted for T1D are insulin pumps,
multiple-injection regimens, and insulin analogs though
they often do not achieve the target glycated hemoglobin
levels. The islet transplantation and stem cell therapy has
long been proposed [26]. The success of transplantation
of islet cells with restoration of blood glucose in diabetic
rats was demonstrated for the first time more than 40
years ago [27,28]. However, loss of islets during trans-
plantation, islet death, anoxia, and engraftment are some
of the causes that reduce b-cell mass and contribute to
early failure of the graft. Additionally, the shortage of
donor islets and cost-effectiveness are significant obsta-
cles to the widespread application of islet transplantation
as a curative procedure. The pharmacological in-
terventions for T2D involves two approaches: i) insulin
secretion from b-cells and ii) insulin mediated glucose
uptake from peripheral tissues [1]. Patients develop
tolerance against these drugs within a few years of
treatment, which poses a challenge for the development
of new medicines. Since control of glucose levels can
thwart the devastating complications of diabetes,
research now focuses on b-cell replacement therapy,
which can be accomplished by regeneration of the defi-
cient b-cells in the pancreas. Therefore, the focus is on the
cost-effective therapeutic strategies to preserve or
expand the b-cell mass and function for DM.

However, it is a challenging task because b-cells are not
capable of undergoing regeneration in adult humans and
are considered a more quiescent cell type as compared to
hepatocytes [29]. Moreover, the challenge for the T1D cure
is resetting the immune system and blocking the auto-
immunity, while for T2D it is to maintain glycemic control
and discover drugs targeting multiple diabetes-related
complications. Another problem is that we are still not
fully aware of the regulatory intricacies of human b-cell
proliferation and it is complicated to understand this due
to the different experimental models used for these
studies [30]. Hence, more research is getting orientated
towards identifying the molecules involved and their
modes of action towards b-cell regulation.

Current modalities having the power of regeneration
(searching the elixir)

The essential treatment for T1D is insulin administration
along with optimal nutrition. The first line of therapy in-
volves calorie restriction and physical activity for the
borderline to early-stage T2D. When the desired glycemic
control is unachievable, the patient is prescribed medi-
cines. Conventional medications for T2D like metformin,
sulfonylureas and insulin to lower glucose work by
different mechanisms. However, due to undetermined
reasons, most of them lose their efficacy with time,
resulting in progressive b-cell deterioration.

The modalities encompassed in the present review
have properties to enhance either b-cell mass, function, or
regeneration. b-cell mass is the total weight of b-cells
within the pancreas. It is regulated by the equilibrium
between formation (replication of existing cells and neo-
genesis/transdifferentiation) and death (apoptosis/necro-
sis) of b-cells as well as individual cell volume (atrophy/
hypertrophy) [31,32]. The b-cell function is the quantita-
tive correlation between insulin sensitivity and insulin
action to adapt and sense the metabolic environment in
healthy individuals [25]. The b-cells are usually formed by
two pathways: replication of already differentiated b-cells
or neogenesis from putative islet stem cells. b-cells are
formed even from the existing differentiated cell conver-
sion (acinar cells, a-cells, etc.) [31,32].

In this section, we will elaborate on the regenerative
properties of the existing/proposed modalities. The etiol-
ogy and course of T1D and T2D are remarkably diversified.
Some of these modalities have not been explored in terms
of autoimmune responsiveness and insulin sensitivity.

Exercise and diet: do they regenerate b-cells?

Exercise has a final or an intermediate objective of
improving or attaining physical fitness. However, it



Table 1 Factors involved in b-cells apoptosis and their underlying mechanism.

Sr. No. DM Factor Mechanism References

1. T1D Autoimmunity Macrophages and dendritic cells are the first cell types to infiltrate the pancreatic islets. It presents MHC and b-cell peptides to naive CD4þ
T cells that circulate in the blood and lymphoid organs. Concurrently, activated TH1 CD4þ T cells produce IL-2 that activates b-cell antigen-
specific CD8þ T cells. It differentiates into cytotoxic T cells and gets incorporated into the pancreatic islets inducing the destruction of b-
cells. Furthermore, CD8þ T cells and activated macrophages release granzymes, perforin, cytokines, and ROS. Thus, the above all act
synergistically to destroy b-cells and leads to autoimmune diabetes.

[16,17]

Insulin
Resistance (IR)

The role of insulin resistance in T2D is well known, but recent reports suggest the role of insulin resistance in T1D at the level of skeletal
muscle and liver.
I) Skeletal muscle IR is due to decreased glucose transport into myocytes from impaired insulin-sensitivity. Serine phosphorylation of IRS-1
in obese T1D individuals is due to the ectopic fat. The increased levels of intramyocellular lipids (IMCLs) and plasma FFAs activate serine
kinases i.e., IkB kinase-b. It preferentially phosphorylates serine on IRS-1 causing decreased glucose transport.
II) The liver regulates glucose homeostasis by mediating between gluconeogenesis and glycogenolysis (fasting state), and glycogen storage
(fed state). Insulin suppresses gluconeogenesis via inhibition of phosphoenol pyruvate carboxykinase (PEPCK), promotes glycogen
synthesis through stimulation of glycogen synthase kinase 3 (GSK-3) and inhibition of glucose 6-phosphatase (G6Pase). In T1D, all these
three actions are impaired by higher doses of insulin.

[18,19]

2. T2D Insulin
Resistance

In T2D patients, various factors such as inflammation, obesity, ER stress, or mitochondrial dysfunction triggers IR. The impaired insulin
signaling pathway leads to severe complications.

[20]

Glucotoxicity Chronic exposure to aberrant hyperglycemia has harmful effects on cell survival, insulin secretion, and sensitivity. It is mediated through a
mechanism called glucotoxicity and leads to persistent b-cell worsening. Caspase-mediated apoptosis is a key factor:
I) Increasing demand for insulin placed on b-cells stresses their ER to produce more proinsulin. ER stress results in an accumulation of
unfolded proteins and activates the unfolded protein response. It may cause b-cell apoptosis (mediated by stress kinases and transcription
factors).
II) Chronic hyperglycemia leads to a long-term increase in cytosolic Ca2þ and mitochondrial dysfunction that ends up as pro-apoptotic
signal. It decreases the number of mitochondria and alters their morphology, manifests associated impaired glucose-stimulated insulin
secretion, by way of impaired oxidative phosphorylation, decreased mitochondrial Ca2þ, and decline in ATP generation. These lead to the
activation of apoptotic pathways.
III) Hyperglycemia increases the metabolic flux into the mitochondria and impels excessive generation of ROS forming oxidative stress.
Mitochondrial oxidative phosphorylation, glucose auto-oxidation, non-enzymatic glycation, PKC activation, and various metabolic
pathways produce excessive ROS. It also damages the b-cells by inducing defective insulin biosynthesis and secretion, and ultimately
apoptosis. Disruption of mitochondrial membrane integrity and mitochondrial DNA mutation promotes apoptosis.

[21,22]

Lipotoxicity Prolonged exposure of amplified FFA levels elicits toxic FA metabolites in the islet cells (“lipotoxicity”). b-cell death is mediated by the
following: I) FA-induced protein kinase B inhibition leads to the downregulation of the anti-apoptotic factor Bcl-2. Also, excessive de novo
ceramide is involved. II) Ceramide activates NF-kB, which upregulates the expression of inducible nitric oxide synthase (iNOS). It enhances
nitric oxide and peroxynitrite formation and inhibition of the mitochondrial respiratory chain complexes I and III to promote ROS
mediated apoptosis.

[22]

Inflammation Adipokines are hormones/cytokines secreted by adipose tissue with a role in the “adipo-insular” axis. Some (such as TNF-a, leptin, resistin)
act as pro-inflammatory cytokines and contribute to b-cell failure. Others are an anti-inflammatory (vaspin, omentin-1, adiponectin) and
exert protective effects on b-cell function and survival.

[4,14,15,23,24]

Islet Amyloid The 37-amino-acid polypeptide amylin is the chief component of the amyloid deposits that appear in the islets of Langerhans. The fibrillar
form of the amylin peptide mediates toxicity that requires direct interaction of the fibrils with the cell surface. Cell death consists of RNA
and protein synthesis; and is categorized by chromatin condensation, membrane blebbing, and DNA fragmentation, signifying that amylin
causes islet cell apoptosis.

[25]
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showed improved glucose tolerance and enhanced b-cell
regeneration in rodent models. Exercise has a protective
effect on b-cell mass through activation of signaling
pathways and the reduction of pro-inflammatory cyto-
kines in T1D. The physical performance affects the NF-kB
pathway and reduces iNOS activity in various tissues in
humans and murine models. These contribute to the
downregulation of various pro-apoptotic factors like
caspase-3 which favors cell survival [33]. Moderate aerobic
exercise treatment involves b2-AR expression to increase
intracellular cAMP levels and the subsequent suppression
in Tregs (Treg cells; FOXP3þCD4þCD25þ). Treg cells
maintain homeostasis of the cellular immune responses
that can prevent chronic inflammatory and autoimmune
diseases [34]. Interestingly, in T2D patients, exercise has
been shown to reduce pancreatic fat and improve b-cell
function [35,36]. However, further molecular mechanisms
need to be elucidated.

The dietary intervention has long been considered as a
first-line therapy for diabetes management by researchers
and clinicians around the globe. Interestingly, several re-
ports focus on the benefits of customized diets on insulin
signaling pathways and b-cell functionality i.e. calorie re-
striction (CR). CR is a reduction in calorie intake without
cutting down on vital nutrients [37]. However, there are
very few reports on b-cell regeneration by CR. We have
observed increased CR diet-induced insulin sensitivity in
the peripheral tissues [38]. Cheng et al. have shown the
effect of a fast-mimicking diet on NGN-3, a progenitor cell
marker that further induces PDX-1, the major b-cell-
mediated transcription factor. The authors showed that in
human T1D pancreatic islets, fasting conditions decrease
PKA and mTOR activity while promotes SOX2, NGN-3, and
insulin expression [39]. However, immunosuppressants
are required to combat the autoreactive immune response.
A new strategy of time-restricted diet has been proposed
and studied. It showed that pro-inflammatory markers
influence the circadian rhythm and enhance the b-cell
responsiveness in prediabetic men [36]. However, several
reports suggest a dietary intervention in T2D progression
by reversing insulin resistance and restoring b-cell func-
tionality has no effect on b-cell regeneration [40]. Thus,
limitations of dietary approaches for the b-cell regenera-
tion in DM drives the need for alternative strategies.

Hormones and b-cell regeneration

The hormones such as insulin, glucagon, glucagon-like
peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP),
gastrin, cholecystokinin (CCK), prolactin, and growth hor-
mone (GH) have been correlated with b-cell mass. They are
known to modulate b-cell growth and differentiation
[41e47]. Reports suggest that GH, prolactin and placental
lactogen could stimulate b-cell proliferation and insulin
gene expression in-vitro and in T1D [41,48]. The studies
showed the mechanism of GIP, gastrin, and CCK hormones
in enhancing b-cell proliferation in the T2D model but not
in T1D. Amongst the above-listed hormones, the most
important is the “gut hormones - incretins (GLP-1 and
GIP)” implicated in b-cell regeneration [42,45,49]. Buteau
et al. [45] had shown for the first time that GLP-1 may
increase PDX-1 expression and is involved in islet differ-
entiation. Further, the processing of proglucagon to GLP-1
in a-cells enables it to act on b-cells in a paracrine manner.
GLP-1 has demonstrated efficacious properties like b-cell
apoptosis reduction, enhanced b-cell proliferation and
survival in the preclinical studies in T1D model [49]. GIP
plays a role in b-cell survival (in-vivo) and proliferation (in-
vitro) in the T2D model. Additionally, these hormones also
stimulate insulin secretion and delay gastric emptying. The
gastrointestinal hormone-like gastrin enhances the dedif-
ferentiation and reprogramming of ductal cells that work
on the CCKB receptor promoting b-cell neogenesis [43,44].
CCK regulates b-cell apoptosis and mitogenesis [43].
Although CCK is not an incretin hormone, it is a potential
therapeutic candidate as it enhances insulin secretion in
diabetes patients on exogenous administration. It also
regulates b-cell apoptosis and mitogenesis [43]. The
recently identified gut peptide, Obestatin, plays a crucial
role in increasing b-cell mass, pancreatic regeneration, and
decreasing cell apoptosis. It also regulates insulin and
glucagon. Obestatin induces these effects through
increased cAMP, phosphorylation of PI3K/Akt (survival and
proliferative pathways), and extracellular signal-related
kinase (ERK)1/2. The in-vitro and in-vivo evidence suggests
obestatin as an emerging therapeutic potential for diabetes
management [50]. Furuya et al. [51] have found that the
ligand-bound thyroid hormone (TH) receptor helps in the
reprogramming of pancreatic acinar cells into b-cells in the
T1D rodent model. THa activates Akt and induces the
expression of NGN3, PDX-1, and MAFA in the acinar cells.
They promote b-cell regeneration during postnatal devel-
opment via PI3K signaling. Furthermore, parathyroid
hormone-related protein present in pancreatic b-cells re-
ported enhancement of the b-cell proliferation after partial
pancreatectomy [52]. Ghrelin is a ligand of growth hor-
mone secretagogue (GHS) receptor. It is known that acyl-
ated and un-acylated ghrelin helps in reducing blood
glucose levels by inducing insulin secretion and increasing
b-cell proliferation in T1D condition. GHS also has other
metabolic effects by targeting sites downstream of
peroxisome proliferator-activated receptor-g (PPAR-g)
[53]. These properties of GHS makes it a suitable candidate
for the therapeutic intervention of diabetes. This strategy
may replace the need for insulin injections in the future.
Thus, hormones encompassed in this section have
demonstrated their effects on b-cell regeneration although
their molecular mechanisms have not been studied in-
depth or are limited to T1D/T2D conditions. These
various molecules are depicted in Fig. 1.

Small molecules/agents known to cause regeneration

GLP-1 mimetics/receptor agonists
GLP-1 is secreted by the intestinal L-cells induce insulin
secretion. It also acts on b-cells via its receptor GLP-1 re-
ceptor (GLP-1R) and activates adenylate cyclase to form
cAMP. The transient rise in cAMP levels activates PKA and
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Epac2 altering the ion channel activity and closing the b-
cell ATP-sensitive potassium channels. It leads to an
increased intracellular Ca2þ that causes insulin release. The
activation of this alternate insulin secretion pathway
devoid of GSIS made it a promising intervention for T2D as
it could even alleviate the exhausted b-cells. GLP-1 also
enhances PDX-1 that promotes differentiation, prolifera-
tion, and survival of b-cells in T2D [42]. Recent research
has shown that the activation of GLP-1R leads to b-cell
proliferation and neogenesis. Simultaneously, it inhibits b-
cell apoptosis in pancreatic exocrine cells and diabetic
rodents making it a possible intervention for T1D [42]. The
specific mechanisms involved are not well defined but it
involves activation of PKC and MAPK, the synergistic
interaction of transforming growth factor-b (TGF-b), and
SMAD transcription factor activity. In this context, GLP-1R
agonists like liraglutide and exenatide emerge as the
therapeutic potential for DM. It is reported that exendin-4,
a GLP-1 mimetic and equivalent to exenatide, differenti-
ates human fetal islet and pancreatic ductal cells into
insulin-producing cells in T2D [42]. The proliferative action
of GLP-1R agonists in in-vitro mediates the transactivation
of the epidermal growth factor receptor, which leads to an
increase in PI3K and activation of Akt-protein kinase B
(PKB). They also encourage b-cell replication via IRS-2
signaling. It also activates cAMP/PKA, PI3K, and MAPK
signaling pathways, and up-regulates cell-cycle regulator
cyclin D1 expression. GLP-1R dependent inhibition of b-
cell apoptosis is associated with diminished levels of pro-
apoptotic proteins i.e. active caspase 3, thioredoxin
Figure 1 The effect of hormones on pancreatic islets and b-cells: 1. Prolac
Glucagon, and parathyroid related hormone stimulate b-cell regeneration 3.
apoptosis. 4. GLP-1, GIP, CCK, Gastrin, Ghrelin, and Obestatin increase b-cel
interacting protein, PARP cleavage, up-regulation of pro-
survival factors (Bcl-2, Bcl-xL), and inhibition of
apoptosis protein-2 [54]. Exendin-4 also showed a signif-
icant decrease in islet inflammation, improved b-cell mass,
and glucose tolerance in NOD mice [42,49]. Besides studies
of exendin-4 in combination with anti-CD3 therapy
demonstrated a positive effect on b-cell mass in NOD mice
[49]. Numerous GLP1 synthetic secretagogues are manu-
factured to date with only L-glutamine being a naturally
available one. However, it's regenerative or neogenic
properties have not been studied directly. We have seen a
significant increase in the number of insulin-positive cells
upon L-glutamine treatment on the HFD-STZ T2D mice
model primarily by replication [55]. Therefore, the bene-
ficial effects of GLP-1R agonists seen in T1D and T2D pre-
clinical models need further validation and investigation
on its molecular mechanisms.

GIP/GIPR analogs
GIP is a 42-residue long incretin hormone secreted by in-
testinal K-cells, in response to nutrient ingestion like GLP-
1 and enhances glucose-stimulated insulin secretion. GIP
also enhances insulin biosynthesis and promotes b-cell
proliferation and survival [42]. Though the pathway re-
mains elusive, it is suggested that it mediates secretagogue
and proliferative properties via cAMP/PKA, PKA/CREB, and
MAPK. The antiapoptotic effect is by PI3K/Akt activation
with subsequent phosphorylation of FOXO1. Kim et al. [56]
has reported a significant reduction in islet cell apoptosis
in diabetic rats when treated with GIP. It phosphorylates
tin, GH and placental lactogen stimulate b-cell proliferation 2. Insulin,
Thyroid hormone receptor and GH secretagogue receptor reduce b-cell
l mass, neogenesis and insulin secretion.
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FOXO1 via PI3K/Akt, resulting in reduced expression of
pro-apoptotic Bax gene and up-regulation of the anti-
apoptotic Bcl-2 gene [56]. GIP-R analogs (GIP1e30 and
GIP1e42) induce alternative conformational changes in
different tissues, may be due to differences in the mem-
brane environment caused by the different responses [57].
This possibility could influence the progress of clinically
relevant GIP analogs. Thus, GIP/GIPR analogs are consid-
ered as a therapeutic potential in T1D. The evidence of
reducing protein levels of Bax is encouraging, yet advanced
research is needed.

Dipeptidyl peptidase-IV (DPP IV) inhibitor
Numerous DPP-IV inhibitors are studied in the area of
b-cell proliferative and regenerative properties. These
inhibitors inactivate the DPP-IV serine proteases by
binding competitively to its active site and thus in-
creases the half-life of the incretins. The first DPP-IV
inhibitor, sitagliptin, was approved in 2006. It opened
doors for more drugs such as saxagliptin, vildagliptin,
linagliptin, and alogliptin [1]. They are prescribed as an
additional therapy for T2D patients with severe dia-
betic conditions [58]. There are reports which have
demonstrated the effects of DPP-IV inhibitors on b-cell
proliferation in the T2D mouse model and may
improve T1D pathogenesis. However, further clinical
studies are needed to substantiate the reported studies
[59]. Effective therapy of T1D/late-stage T2D requires
Figure 2 The effects of small molecules on pancreatic b-cells: 1. GIP GLP-1
inhibitors, DYRK inhibitors, GIP and SGLT2 inhibitors promote b-cell proli
transdifferentiation of various cells to b-cells.
efficient suppression of the autoimmune processes and
restoration of islet b-cells.

Sodium-glucose co-transporter 2 (SGLT2) inhibitors
SGLT2 inhibitors, a novel class of oral anti-diabetes treat-
ment, selectively target the SGLT2 protein. The
Naþ concentration-dependent proteins are found in the
small intestine (SGLT1) and kidneys (SGLT2). SGLT2 in-
hibitors block the symporters from reabsorption of the
excess glucose thereby reducing hyperglycemia [60]. In the
last decade, many researchers have explored the b-cell
regenerative properties of these inhibitors. Cheng et al.
reported the protective effect of empagliflozin on pancre-
atic b-cell from glucotoxicity-induced oxidative stress.
They demonstrated an increase in cell proliferation marker
Ki-67 expression and enhanced b-cell area/total pancreatic
area in the T1D mice model [61]. Subsequently, Takahashi
et al. reported that luseogliflozin administration improved
glucose intolerance and increased the expression levels of
MAFA, PDX-1, NKX6.1, and GCK. It also decreased b-cell
apoptosis and preserved b-cell mass in db/db mice [62].
Dapagliflozin when administered in the T2D model could
provide a long-lasting effect in preserving pancreatic b-cell
mass [63].

Thiazolidinediones (TZD)
TZDs act as nuclear hormone receptor PPARg ligands.
PPARg, a transcription factor highly expressed in adipose
R agonists and TZDs reduce b-cell apoptosis. 2. GLP-1R agonists, DPP-IV
feration. 3. GLP-1, GIP-like peptide-1 and GABA induce neogenesis or
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tissue, regulates gene expression and oversees nutrient
homeostasis [1]. PPAR-g activation has several insulin-
sensitizing consequences like decrease in circulating
FFAs and triglyceride concentrations, cycle favoring
glucose utilization, and increased production of GLUT-4.
It suppresses the production of pro-inflammatory cyto-
kines and increases the production of adiponectin from
adipose tissue [1]. TZDs protect human islets from the
detrimental effects of hyperglycemia, lipotoxicity, and
inflammation. The reduced b-cell apoptosis and amyloid
formation results in improved glucose-stimulated insulin
secretion and b-cell survival through reduced b-cell
apoptosis and amyloid formation [1,20]. In a recent study
by Hirukawa et al. [64], PPARg agonists showed protec-
tive effects on pancreatic b-cells by the augmentation of
IRS-2 expression in db/db mice [64]. However, due to the
adverse side-effects of pioglitazone including increased
risk of fluid retention, heart failure, and bone fracture,
the use of this agent has become limited in clinical
practice.
Table 2 Phytochemicals and its role in b-cell regeneration.

Plant Animal model T

Strain Mode of Diabetes Induction

O. integrifolia Adult female mice of
BALB/c strain (7e8
weeks old)

Partial pancreatectomy F
O
d
b

U. dioica Adult Wistar Kyoto
male rats (8e10
weeks old)

Single dose STZ (50 mg/kg, i.p.) A
d
1

A. linearis Male Balb/c mice (9
e11 weeks old)

Single dose STZ (200 mg/kg, i.p.) (
g
p
w
o
1

C. longa Young male mice Single dose STZ (60 mg/kg, i.p.) C
w
d

M. charatia Neonate Wistar
pups (2-days-old)

Single dose STZ (100 mg/kg, i.p.) E
f
2

G. sylvestre Young male mice Single dose STZ (100 mg/kg, i.p.) G
f

A. Sativum Male Sprague
eDawley rats

Single dose STZ (50 mg/kg, i.p.) R
(
o

A. indica Young male mice Single dose STZ (100 mg/kg, i.p.) A
Dual-specificity tyrosine phosphorylation-regulated
kinase (DYRK) inhibitor
Many novel compounds such as amniopyrazine com-
pounds [GNF4877], 5-iodo-tubericidin [5-IT] an adeno-
sine analog [65,66], and harmine based inhibitor [65]
have been screened recently. They are proliferative agents
derived from human cadaveric islets with labeling indices
in the 1.5%e3% range [65e67]. They are immunolabelled
in Ki67, EdU, BrdU, and PCNA. Interestingly, all these
molecules are kinase (DYRK1A) inhibitors. Furthermore,
these compounds also inhibit the nuclear factor of acti-
vated T-cell (NFAT) kinases, and glycogen synthase
kinase-3 beta (GSK3b). It leads to NFAT nuclear localiza-
tion, needed for b-cell proliferation. NFAT transactivates
cycle activating genes (encoding cyclins E and A) and
represses cell cycle inhibitor genes (CDKN1C, CDKN2A,
and CDKN2B) [65,66]. The mechanism involves dephos-
phorylation of NFAT by calcineurin, translocation into the
nucleus, activation of cell cycle promoting genes, and
entry into the cell cycle. The kinase, DYRK1A, serves as
reatment Effect on b-cell References

lavonoid rich fraction (FRF) of
. integrifolia for a period of 21
ays at a dose 250 mg/kg of
ody weight.

Newly formed islets
budding off from
ducts. Up regulation
of INS1/2, REG-3a/g,
NGN-3, and PDX-1
involved in b-cell
neogenesis

[76,77]

queous ethanolic extract of U.
ioica leaves (0.625 and
.25 mg/kg/day) for 28 days

Recovery of the
structural integrity
of islets and increase
in b-cell number

[78]

Z)-2-(b-D-
lucopyranosyloxy)-3-
henylpropenoic acid 1, a
ater-soluble extract (a dose
f 10 mg/kg body weight) for
1 days

Protects b-cell by
preventing loss of
expression of anti-
apoptotic protein B-
cell Lymphoma �2

[79]

urcumin 200 mg/kg body
eight every day in a single
ose for 12 weeks

Inhibits
lymphocytes
infiltration in the
islets of Langerhans
and keeps the
number of islets and
b-cells

[80]

thanolic extract ofM. charatia
ruit pulp (400 mg/kg/day) for
8 days

Improvement of
HOMA % b-cell
function, by well-
formed islets.
Increase in b-cell
number and area

[81]

. sylvestre extract (400mg/kg)
or 28 days

Induces anti-
diabetic effect

[82]

aw garlic homogenate
250 mg/kg) orally for a period
f 4 weeks

Increase in insulin
positive islets cells

[83]

. indica 200 mg/kg for 28 days Recovery of islet
architecture

[84]



Figure 3 The effect of phytochemicals on pancreatic b-cells: Several reports are indicating the role of phytochemicals. 1. U.dioica, M.charatia, and
A.sativum increase the islet and b-cell number. 2. A.linearis and O.integrifolia reduce b-cell death and O.integrifolia also upregulates gene expression
of INS-1/2, NGN-3, PDX-1 and REG-3a/g. 3. C.longa, U.dioica, M.charatia, G.sylvestre, and A.indica influence and recover the architecture of pancreatic
islets.
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the terminator in this process by re-phosphorylating
NFAT and ultimately applies the brake on the cell cycle.
Thus, DYRK1A inhibitors appear to be good candidates
[65,66]. These DYRK1A inhibitors candidates have been
studied individually or in combination with other drugs.
The combined effect of DYRK1A and TGF-b inhibition
preserves the function of the differentiated b-cell.
Extensive research of DYRK1A inhibitors was carried out
in T2D. It is encouraging, as the residual b-cell mass is
substantially higher in T2D than T1D. These inhibitors
must overcome the issues of autoimmunity in T1D.

g-AminoButyric acid (GABA)
GABA, a major inhibitory neurotransmitter, has proven a
role in islet-cell hormone homeostasis, preservation of the
b-cell mass, suppressing detrimental immune reactions
and consequent apoptosis [38,68]. The positive effect of
GABA treatment is documented in T1D and T2D murine
models. GABA therapy protects NOD animals from diabetes
and a similar effect is detected in in-vivo models [69,70].
Also, GABA generally regulates cytokine secretion from
human PBMCs and suppresses b-cell-reactive CD8þ CTLs
in T1D models [68,70]. These propose the role of GABA as
an immunosuppressant. GABA may act as an inducer of a-
to-b-like cell conversion in-vivo upon prolonged exposure
in the STZ-induced mouse model [68]. However, the
mechanism requires further elucidation. The encouraging
reports of GABA on T1D lead to studies on T2D models as
well. The activation of GABAA-Rs and GABAB-Rs receptors
(GABA receptors on b-cell) can induce b-cell replication
and activation of a-cell GABAA-Rs can promote their
conversion into b-cells [68]. GABA has been reported to
promote human b-cell replication and islet cell survival in
in-vivo and humanized mice [68]. Combined GABA and
sitagliptin (DPP-IV inhibitor) therapy have demonstrated
b-cell regenerative effects in various diabetic mouse
models [68]. The up-regulation of PDX-1 expression con-
tributes towards b-cell replication. We have observed
reduced FBG levels, improved whole-body insulin
responsiveness indicated by increased insulin levels, in-
sulin sensitivity, glucose tolerance, and promoted b-cell
proliferation in combination therapy of GABA and calorie
restriction [38]. All these data indicate the potential of
GABA to stimulate the growth and function of insulin-
producing b-cells and act as an immunosuppressive
agent for diabetes therapy.

Statins
Statins are commercially available in managing dyslipide-
mia comorbidities associated with T2D. Marchand et al.
have shown the role of statins on b-cell regeneration
wherein atorvastatin induces neogenesis in T1D model
[71]. Adiponectin is a hormone secreted by adipose tissue
which enhances insulin sensitivity by decreasing the he-
patic and muscle triglyceride content. The decreased levels
contribute to the high level of circulating FFAs [1,15].
Additionally, there are mixed reports on increased serum
adiponectin and decreased C-reactive protein levels when
treated with statins [72]. We have demonstrated the b-cell
regenerative effect of statin i.e. pitavastatin administration
in HDF-STZ induced T2D mice models [54]. The effects of
small molecules on b-cell are summarised (see Fig. 2).
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Phytochemicals known to cause regeneration

From ancient times, India has been a pioneer country for
the knowledge of ayurveda and has propagated various
plants and plant-derived products for medicinal purposes.
Recent studies have shown that plants contain many
bioactive compounds that are responsible for their me-
dicinal properties. Such non-nutritive plant molecules
providing various health benefits or disease-preventing
effects are termed as “Phytochemicals”. Phytochemicals
are found in fruits, vegetables, cereals, grains, and plant-
based beverages such as tea, coffee, wine and beer. Some
of the phytochemicals are lycopene in tomato, isoflavones
in soy, flavonoids in fruits, carotenoids in carrots, etc.
Phytochemicals from cruciferous vegetables (broccoli,
cauliflower, cabbage, kale, brussels sprouts etc.) are used
to treat certain tumors [1,73]. Several new studies are
being conducted on phytochemicals concerning T1D [71]
and T2D [1,73e75] cure and management and are repre-
sented in Table 2 and Fig. 3.

Conclusions

There have been many advances made to understand and
enhance the regenerative potential of b-cells. The major
pancreatic cell types (islet, acinar, and ductal) have a
certain degree of plasticity to expand existing b-cells and
induce transdifferentiation into b-cells. Encouraging
findings from recent studies suggest the possibility of
endogenous replenishment in humans. Yet, it is unclear
how enhanced regeneration could be achieved in humans
to restore normoglycemia. Mechanistic and develop-
mental studies in rodents have laid the foundation for
identifying small molecules and drugs already approved
for their medical use that could enhance both regenera-
tive pathways. It has created a new epoch for the cell-
based therapies that may be improved, safe and versatile
over exogenous insulin. The crucial b-cell transcription
factors, PDX-1, NGN3, and MAFA, have been targeted in
the mentioned modalities for creating effective therapies.
Even so, the challenge remains as to how the in-
terventions could be focused on b-cells alone. There are
other major obstacles to overcome the issue. Of foremost
importance is tackling the autoimmune attack of T1D so
that regenerative strategies can have a long-lasting
beneficial effect. There have only been a few studies
that have attempted to replenish b-cells in NOD mice.
Fortunately, a new approach to protect b-cells from an
autoimmune attack is the encapsulation of transplanted
islets and to increase immune tolerance by increasing the
Treg cell population. A clinical trial also revealed that
immunosuppression in T1D patients has a positive effect
on b-cell regeneration [85e88]. For T2D, it is still unde-
termined whether the pancreatic cells are receptive to
experimental stimulation that promotes growth, expan-
sion, and differentiation. If the cells have become senes-
cent, it is unlikely that they could be regenerated unless
the senescence pathway is targeted. The advanced tech-
nologies of using humanized diabetic rodent models,
artificial intelligence and machine learning could drive
and elucidate the development of new therapies for dia-
betes research.
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A B S T R A C T

Aim/hypothesis: Melatonin is a circadian rhythm regulator and any imbalance in its levels can be related to
various metabolic disorders. Melatonin and the genetic variants of Melatonin Receptor 1B (MTNR1B) are re-
ported to be associated with Type 2 Diabetes (T2D) susceptibility. The aim of the present study was to investigate
i) plasma melatonin levels ii) Single Nucleotide Polymorphisms (SNPs) of MTNR1B and iii) Genotype-phenotype
correlation analysis in T2D patients.
Methods: Plasma and PBMCs were separated from venous blood of 478 diabetes patients and 502 controls.
Genomic DNA was isolated from PBMCs. PCR-RFLP was used for genotyping. Melatonin was estimated from
plasma samples by ELISA.
Results: Our study suggests: i) decreased plasma melatonin levels in T2D patients and, ii) association of MTNR1B
rs10830963 GG genotype with increased Fasting Blood Glucose (FBG).
Conclusion: It can be concluded that reduced titer of melatonin along with altered FBG due to MTNR1B genetic
variant could act as a potent risk factor towards T2D in Gujarat population.

1. Introduction

A disturbed circadian rhythm is strongly related to Type 2 Diabetes
(T2D) and insulin resistance in recent years [1]. Melatonin, a pineal
hormone, is known to regulate circadian rhythm and sleep [2]. Mela-
tonin mediates its action through two receptors; MT1 (MTNR1A) and
MT2 (MTNR1B) present in various tissues including pancreatic islets
[3,4]. The finding that insulin secretion and plasma melatonin levels
are inversely correlated suggests a possible association between mela-
tonin and T2D [5].

It is well-known that T2D is a multifactorial and polygenic meta-
bolic disorder [6]. Substantial variation between different ethnic po-
pulations has been reported with regard to the genetic architecture
underlying T2D [7,8]. MTNR1B (13.16 kb) comprises of two exons, one
intron, and 5′- and 3′-flanking regions [9]. Recent studies have identi-
fied genetic polymorphisms within MTNR1B i.e. rs4753426,
rs10830962, and rs10830963 (−1193 C/T, 5′ UTR G/C and intron C/G
respectively) to be associated with higher fasting glucose levels, im-
paired insulin secretion, increased risk of T2D and gestational diabetes

in different ethnicities [10,11]. Reduced melatonin levels and an in-
creased melatonin signaling are known to be the risk factors for T2D
[12,13].

The aim of this study was to examine whether i) plasma melatonin
and polymorphisms in MTNR1B (rs4753426 C/T, rs10830962 G/C, and
rs10830963 C/G) are associated with T2D in Gujarat population and, ii)
the genotype-phenotype correlation of the above-mentioned Single
Nucleotide Polymorphisms (SNPs) and plasma melatonin with the
metabolic profile are associated with T2D. This is the first genetic as-
sociation study of MTNR1B variants with T2D and metabolic profile in
Gujarat population.

2. Materials and methods

2.1. Study subjects

This study was conducted according to the declaration of Helsinki
and was approved by the Institutional Ethical Committee for Human
Research (IECHR), Faculty of Science, The Maharaja Sayajirao
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University of Baroda, Vadodara, Gujarat, India (FS/IECHR/2013/1).
The importance of the study was explained to all the participants and a
written consent was obtained from all diabetes patients and control
subjects. The study group included 478 T2D patients (213 males and
265 females) and 502 control subjects (251 males and 251 females).
Further, the T2D subjects recruited for the study displayed fasting blood
glucose (FBG) levels> 125mg/dL. BMI (weight kg/height m2) was
calculated by recording height and weight.

2.2. Blood collection, DNA extraction, and lipid profiling

Three ml venous blood was drawn from diabetes patients and eth-
nically matched control subjects between 8:00 AM to 10:00 AM and
collected in K3EDTA coated tubes (Greiner Bio-One, North America
Inc., North Carolina, USA). Plasma was separated and stored at −20 °C
for evaluation of lipid profile and assay of melatonin. FBG, Total
Cholesterol (TC), Triglycerides (TG), and High-Density Lipoprotein
(HDL) were estimated by using appropriate commercial kits (Reckon
Diagnostics P. Ltd, Vadodara, India). Low-Density Lipoprotein (LDL)
was calculated by using Friedewald’s (1972) formula. DNA was ex-
tracted by phenol-chloroform method and the DNA content and purity
were determined spectrophotometrically by 260/280 absorbance ratio.
The integrity of DNA was checked electrophoretically on 0.8% agarose
gel. The DNA was normalized and stored at 4 °C until further analysis.

2.3. Genotyping of MTNR1B SNPs by PCR-RFLP

Polymerase Chain Reaction-Restriction Fragment Length
Polymorphism (PCR-RFLP) was used to genotype the three MTNR1B
polymorphisms. The primers used for genotyping are mentioned in
Table S1. The reaction mixture (20 μL) included 3.0 μL (150 ng) of
genomic DNA, 11.0 μL nuclease-free water, 2.0 μL 10X PCR buffer,
2.0 μL 25mM dNTPs (Puregene, Genetix Biotech), 1.0 μL of 10mM
corresponding forward and reverse primers (Eurofins, Bangalore,
India), and 0.2 μL (5 U/μL) Taq Polymerase (Puregene, Genetix
Biotech). DNA amplification was performed using an Eppendorf
Mastercycler gradient (USA Scientific, Inc., Florida, USA). The protocol
followed was: initial denaturation at 95 °C for 10min. followed by 39
cycles of 95 °C for 30 s. (denaturation), primer-dependent annealing
(Table S1) for 30 s., extension at 72 °C for 30 s and the final extension at
72 °C for 10min. 5 μL of the amplified product was checked by elec-
trophoresis on a 2% agarose gel stained with ethidium bromide. Details
of the restriction enzymes (Fermentas, Thermo Fisher Scientific Inc.,
USA) and digested products are mentioned in Table S1. 15 μl of the
amplified product was digested with 1U of the corresponding restriction
enzyme in a total reaction volume of 20 μl as per the manufacturer’s
instruction. The digestion products with 50 base pair DNA ladder
(Genei Bangalore, India) were resolved on 3.5% agarose gels or 15%
polyacrylamide gels stained with ethidium bromide and visualized
under UV transilluminator. More than 10% of the samples were ran-
domly selected for confirmation and the results were 100% concordant
(analysis of the chosen samples was repeated by two researchers in-
dependently) and, further confirmed by sequencing.

2.4. Estimation of plasma melatonin

Plasma levels of melatonin in age and sex-matched patients and
controls were measured using human melatonin ELISA Kit (Glory
Science Co., Ltd, TX, USA) as per the manufacturer’s protocol. The
melatonin levels were estimated in the study subjects between the ages
of 35–50 years only as the melatonin levels are known to decrease
significantly after the age of 50 years.

2.5. Statistical analyses

Evaluation of the Hardy-Weinberg equilibrium (HWE) was

performed for all the polymorphisms in patients and controls by com-
paring the observed and expected frequencies of the genotypes using
chi-squared analysis. The distribution of the genotypes and allele fre-
quencies of MTNR1B polymorphisms for patients and control subjects
were compared using the chi-squared test with 2×2 contingency ta-
bles respectively using Prism 5 software (GraphPad software Inc; San
Diego CA, USA). P values less than 0.017 for genotype and allele dis-
tribution were considered as statistically significant due to Bonferroni’s
correction for multiple testing. Odds ratio (OR) with respective con-
fidence interval (95% CI) for disease susceptibility was also calculated.
Haplotypes and linkage disequilibrium (LD) coefficients D’=D/Dmax
and r2values for the pair of the most common alleles at each site were
obtained using http://analysis.bio-x.cn/myAnalysis.php [14]. Plasma
melatonin levels in patient and control groups were plotted and ana-
lyzed by unpaired t-test using Prism 5 software. Association studies of
polymorphisms with other parameters were performed using analysis of
variance (ANOVA) and Kruskal-Wallis test while correlation analysis
was performed using multiple linear regression and spearman’s corre-
lation analysis in Prism 5 software after adjusting confounding vari-
ables like age and sex. P values less than 0.05 were considered sig-
nificant for all the association analysis. The statistical power of
detection of the association with the disease at the 0.017 level of sig-
nificance was determined by using the G* Power software.

3. Results

Clinical parameters differed significantly between controls and pa-
tients (Table 1). Patients had a significantly higher FBG (p < 0.0001).
Moreover, obesity factors like BMI, TC, and TG were significantly ele-
vated (p < 0.0001, p= 0.0420, p= 0.001 respectively) while HDL
was significantly decreased (p < 0.0001) in patients as compared to
controls. However, LDL did not differ in the study groups (p= 0.9322).

3.1. Association of MTNR1B polymorphisms with T2D

The genotype and allele frequencies of the investigated MTNR1B
polymorphisms (rs4753426 C/T, rs10830962 G/C, and rs10830963 C/
G) are summarized in Table 2 while the representative gel images for
PCR-RFLP analysis of MTNR1B polymorphisms are shown in Fig. S1.
The distribution of genotype frequencies for all the polymorphisms
investigated was consistent with Hardy-Weinberg expectations in both
patient and control groups (p > 0.05).

Furthermore, genotype and allelic frequencies of MTNR1B poly-
morphisms were found to be statistically indifferent (p > 0.017) with

Table 1
Baseline characteristics of diabetes patients and controls from Gujarat popula-
tion.

Controls Patients P value
(Mean ± SD) (Mean ± SD)

(n= 502) (n= 478)
Age 39.64 ± 16.35 yr 55.99 ± 10.42 yr –
Sex: Male 213 (44.5%) –

251(50)%
Female 251 (50%) 265 (55.5%) –

Fasting blood glucose (mg/
dL)

100.1 ± 7.32 155.3 ± 62.09 <0.0001

BMI (Kg/m2) 24.24 ± 5.2 27.04 ± 5.1 <0.0001
Total Cholesterol (mg/dL) 160.9 ± 42.2 166.2 ± 39.68 0.0420
Triglycerides (mg/dL) 111.7 ± 60.90 164.5 ± 111.1 <0.001
HDL (mg/dL) 42.79 ± 15.94 38.2 ± 12.6 <0.0001
LDL (mg/dL) 95.32 ± 41.79 95.10 ± 37.52 0.9322
Onset age (Years) NA 50.65 ± 10.10 –
Duration of disease (Years) NA .06 ± 7.3 –
Family history NA 64 (14%) –

Data are presented as Mean ± SD. Statistical significance was considered at
p < 0.05.
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Bonferroni’s correction for multiple testing as shown in Table 2. This
study has 95% statistical power for the effect size 0.11, 0.05 and 0.17 to
detect association of MTNR1B promoter polymorphisms at p < 0.017
in T2D patients and controls.

3.2. Haplotype and linkage disequilibrium analyses of MTNR1B
polymorphisms

A haplotype evaluation of the three polymorphisms of MTNR1B
(rs4753426, rs10830962, and rs10830963) was performed and the es-
timated frequencies of the haplotypes did not differ significantly be-
tween patients and controls (global p= 0.681) as shown in Table 3.

The LD analysis revealed that the three polymorphisms investigated
in the MTNR1B were in low to high LD association (Fig. S2). In parti-
cular, rs4753426: rs10830962 (D’=0.44, r2= 0.18) and - rs4753426:
rs10830963 (D’=0.68, r2= 0.24) showed moderate LD association.
rs10830962: rs10830963 showed high LD association (D’=0.87,
r2= 0.47).

3.3. Correlation of MTNR1B polymorphisms with FBG, BMI and plasma
lipids

Correlation of MTNR1B polymorphisms showed that rs10830963
GG genotype was found to be associated with increased FBG (p= 0.02)
(Table 4). However, it was not associated (p > 0.05) with BMI and
plasma lipids (TC, TG, HDL, LDL). Further, rs4753426 and rs10830962
also did not show any association with FBG, BMI and plasma lipids
(p > 0.05).

3.4. Plasma melatonin levels and their correlation with FBG, BMI and
plasma lipids

Plasma melatonin levels monitored in 37 controls and 45 patients
showed a significant decrease (p= 0.001) in T2D patients as compared
to controls (Fig. 1).

Spearman’s Correlation analysis revealed that there is no correlation
between melatonin levels and BMI, FBG and plasma lipids (R2=0,
p > 0.05) (Table 5).

4. Discussion

Disturbances in sleep have been implicated in the dysregulation of
blood glucose levels and have also been reported to increase the risk of
T2D and diabetes complications. Melatonin, a pineal hormone regulates
energy metabolism by maintaining circadian rhythms [15]. Genome-
wide association studies have shown a close association between
MTNR1B polymorphisms and fasting hyperglycemia and T2D [16].

Our study on genetic variants of MTNR1B (rs4753426, rs10830962,
and rs10830963), melatonin levels and their correlation with BMI, FBG,
and plasma lipid profile in T2D patients show that MTNR1B poly-
morphisms are not associated with T2D and obesity-related traits but
rs10830963 GG genotype has a significant association with elevated
FBG. Similarly, an association of this genotype with FBG has been
shown in both South Indian and Han Chinese population [17,18].
However, this SNP does not show any correlation with obesity-linked
parameters in T2D [19]. Moreover, several studies in different popu-
lations have found no association between MTNR1B polymorphisms
and T2D [19,20,21]. Interestingly, a large-scale meta-analysis when

Table 2
Genotype and allele frequency distribution of MTNR1B polymorphisms in T2D patients.

Gene/ SNP Genotype or allele Controls (Frequency) Patients (Frequency) p for Association Odds ratio (95% CI)

(n= 481) (n= 426)
MTNR1B rs4753426 (−1193 C/T) CC 95 (0.20) 102 (0.24) R – –

CT 252 (0.52) 201 (0.47) 0.0819a 0.7429 0.5312 to 1.039
TT 134 (0.28) 123 (0.29) 0.4081b 0.8549 0.5896 to 1.240
C 442 (0.46) 405 (0.48) 0.4983c 0.9381 0.7798 to 1.129
T 520 (0.54) 447 (0.52)

(n= 470) (n= 417)
MTNR1B rs10830962 (5’ UTR G/C) GG 122 (0.26) 114 (0.27) R – –

GC 226 (0.48) 205 (0.49) 0.8546a 0.9707 0.7065 to 1.334
CC 122 (0.26) 98 (0.24) 0.4212b 0.8596 0.5946 to 1.243
G 470 (0.50) 433 (0.52) 0.4198c 0.9261 0.7685 to 1.116
C 470 (0.50) 401(0.48)

(n= 489) (n= 434)
MTNR1B rs10830963 (intron C/G) CC 169 (0.35) 133 (0.31) R – –

CG 259 (0.53) 266 (0.61) 0.0663a 1.305 0.9819 to 1.734
GG 61 (0.12) 35 (0.08) 0.1902b 0.7291 0.4540 to 1.171
C 597 (0.61) 532 (0.61) 0.9133c 0.9896 0.8204 to 1.194
G 381 (0.39) 336 (0.39)

‘n’ represents number of samples, ‘R’ represents reference group, CI refers to confidence interval, a, b Patients vs controls (genotype) with respect to Reference using
chi-square test with 2× 2 contingency table, c Patients vs controls (allele) using chi-square test with 2× 2 contingency table, Values are significant at p < 0.017 due
to Bonferroni’s correction.

Table 3
Haplotype frequencies of MTNR1B polymorphisms in T2D patients and controls.

Haplotype (MTNR1B rs4753426 C/T, rs10830962 G/C, and
rs10830963 C/G)

Patients (Freq. %)
(n=459)

Controls (Freq. %)
(n= 501)

p for Association p (global) Odd Ratio [95%CI]

CGG 242(0.31) 290(0.325) 0.206 0.681 0.878 [0.719∼1.074]
CGC 54(0.069) 47(0.052) 0.242 1.269 [0.849∼1.897]
CCC 110(0.141) 130(0.145) 0.511 0.913 [0.696∼1.197]
TGC 69(0.088) 71(0.079) 0.717 1.065 [0.755∼1.503]
TGG 40(0.051) 39(0.043) 0.608 1.124 [0.716∼1.765]
TCC 251(0.321) 291(0.326) 0.408 0.919 [0.753∼1.122]

‘CI’ represents confidence interval (Frequency < 0.03 in both case and control has been dropped and was ignored in the analysis).
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stratified according to the ethnicity revealed that MTNR1B rs10830963
is associated with T2D in Caucasians but not in Asians [22]. Our ob-
servation of association of G allele with FBG stands substantiated by a
meta-analysis [23] and a GWAS study [16,24]. However, they also
found an association with increased T2D risk which is not seen in our
study. Further, Takeuchi et al. have shown rs10830963 polymorphism
to be associated with elevated FBG in two Asian populations [25];
South Asian Sri Lankans and East Asian Japanese. The effect of the G
allele on FBG was found in children and adolescents indicating an early
impact of this SNP during development [26,27]. Our study also shows a
clear correlation between lowered melatonin levels and T2D risk, a
finding supported by the observations of Peschke et al. [28] and
McMullan et al. [29]. Although the location of the rs10830963 variant

is in an intron, an un-conserved genomic region, its association with
increased MTNR1B expression in islets, FBG and T2D stand well
documented.

Haplotype analysis of the three polymorphic sites of MTNR1B re-
veals that none of the MTNR1B haplotypes have an association with
T2D risk. Further, LD analysis suggests that MTNR1B variants
rs4753426 and rs10830963 have strong LD association demonstrating a
high linkage between these loci. We did not find any correlation be-
tween melatonin levels and FBG, BMI or plasma lipids. Yildiz et al. have
also reported that melatonin does not show any correlation with any of
the anthropometric and biochemical parameters [30].

The MTNR1B risk allele genotype (GG) has been associated with
insulin resistance [31,13] and an increase in MTNR1B expression by
2–4 fold in human pancreatic islets [13]. Gaulton et al. revealed that
the G allele of rs10830963 favorably binds to NEUROD1 in islet cells
further increasing FOXA2-bound enhancer activity and MTNR1B ex-
pression leading to increased risk of T2D [32]. Our observation of as-
sociation ofMTNR1B risk genotype with higher FBG could be attributed
to reduced insulin levels probably through the MTNR1B mediated re-
duced cAMP levels in pancreatic beta cells in keeping with the reported
effects of MTNR1B induced inhibition of insulin secretion [13,33].
Moreover, our previous study has shown an association between NPY
polymorphism, and related elevation in NPY levels, and T2D [34]. In
addition, NPY has been reported to mimic the potential of light to
suppress melatonin secretion [35]. Apparently, the elevated NPY levels
in our T2D patients and decreased melatonin levels and MTNR1B var-
iant could together account for elevated FBG and T2D risk as shown in
Fig. 2.

5. Conclusion

T2D patients showed reduced melatonin levels and association of
MTNR1B rs10830963 GG genotype with increased FBG levels, sug-
gesting an important link between melatonin, MTNR1B, and FBG in
T2D. For the first time, we report a possible involvement of melatonin
and its receptor gene variant conferring a risk towards T2D in Gujarat
population.
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Table 4
Genotype-phenotype correlation analyses of MTNR1B polymorphisms with BMI, FBG and plasma lipid profile.

Genotype/ Allele FBG (mg/dL) BMI (Kg/m2) Triglycerides (mg/dL) Total Cholesterol (mg/dL) HDL (mg/dL) LDL (mg/dL)

MTNR1B rs4753426
CC 134.3(59.98) 25.35(5.46) 131.5(87.05) 164.8(42.63) 40.74(12.77) 97.76(40.26)
CT 129.1(52.01) 25.71(5.51) 138.8(96.98) 162.9(41.07) 41.65(16.73) 93.45(41.17)
TT 133.5(62.24) 25.72(5.04) 142.0(85.58) 161.9(39.62) 38.96(12.10) 94.54(36.65)
P value 0.3272 0.5775 0.1710 0.8221 0.2053 0.5263

MTNR1B rs10830962
GG 133.9(61.83) 25.24(5.46) 138.6(89.46) 138.6(89.46) 39.75(13.10) 93.32(38.72)
GC 130.9(54.49) 25.79(5.43) 140.7(101.40) 140.7(101.40) 41.48(16.57) 94.37(40.69)
CC 131.4(57.66) 25.41(5.22) 134.9(83.62) 134.9(83.62) 39.91(12.81) 97.38(40.83)
P value 0.5599 0.4869 0.9440 0.9440 0.9170 0.8120

MTNR1B rs10830963
CC 130.7(61.79) 25.33(5.05) 134.8(91.39) 162.5(39.90) 40.60(13.15) 94.98(37.13)
CG 133.4(52.74) 25.82(5.40) 140.7(95.14) 163.2(41.56) 40.64(16.14) 94.40(41.06)
GG 160.6(65.94) 24.63(5.99) 136.6(90.98) 170.6(43.85) 40.82(11.98) 102.5(42.65)
P value 0.0029 0.0528 0.7865 0.3515 0.4910 0.3895

Data are presented as Mean ± SD. Statistical significance was considered at p < 0.05.

Fig. 1. Plasma melatonin levels in controls and patients. Comparison of find-
ings showed a significant decrease in the melatonin levels in patients compared
to controls (p < 0.001).

Table 5
Correlation analysis of plasma melatonin with BMI, FBG, and plasma lipids.

Melatonin

R2 p
BMI (Kg/m2) 0.01 0.44
FBG (mg/dL) 0.11 0.34
Triglycerides (mg/dL) 0.00 0.81
Total Cholesterol (mg/dL) 0.03 0.20
HDL (mg/dL) 0.01 0.45
LDL (mg/dL) 0.06 0.10

R2= Coefficient of correlation, r= Spearman’s correlation coefficient
[p < 0.05, significant; p > 0.05, non significant].
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Abstract: Background: Diabetes has turned into a pandemic disorder that is affecting millions of peo-
ple worldwide. Industries are aggressively racing and pursuing research towards the discovery of an-
tidiabetic drug and the current global sale of such drugs are ever on the increase. However, in spite of 
such massive level of expenditure thereof, WHO projects that by 2030, diabetes will rank as the 7th lead-
ing cause of mortality. 
Objective: It is in this context that we have reviewed here the various approaches available and possible 
towards diabetes management. This review also includes the WHO guidelines for controlling the gly-
cemic levels, which must be known and followed by clinicians for a better diabetes management. 
Conclusion: Despite having a wealth of FDA-approved therapeutic options for type 2 diabetes majori-
ties of the patients are not able to achieve the appropriate glycemic control due to various factors. The 
development of new options with actions at multiple foci of diabetic manifestation and better efficacy 
may potentially help in improving the current scenario of T2D management. 

Keywords: Type 2 diabetes, therapeutics, gut and brain derived molecules, adipokines, small molecule drugs, phytochemicals. 

1. INTRODUCTION 

While the past history of mankind has, and is still wit-
nessing the loss of human life due to malnutrition, the mod-
ern world is trying to combat diseases caused by unhealthy 
and excessive eating patterns in developed and developing 
countries. Although progress in science and technology has 
enhanced the quality of life, on the flip side, affluence has 
decreased physical activity especially amongst the economi-
cally privileged section of the society. This has led to the 
increased incidence of lifestyle related disorders such as obe-
sity, impaired lipid profile, hypertension, and diabetes prov-
ing to be of great concern to public health. Although seden-
tary life style and modern dietary patterns have been related 
with type 2 diabetes (T2D), the interaction of genetic factors 
has also been suggested to have a role in diabetes manifesta-
tion [1]. 

Prediction based on current trend indicates that by 2030 
there would be about 552 million obese and diabetic indi-
viduals. Current trends suggest that obesity and T2D have 
assumed pandemic proportions [2]. India alone is home to 
more than 65.1 million diabetics [3]. 

*Address correspondence to this author at the Department of Biochemistry, 
Faculty of Science, The Maharaja Sayajirao University of Baroda, Vado-
dara, Gujarat, India; Tel: +91-265-2795594; E-mail: rasheedunni-
sab@yahoo.co.in  

1.1. Clinical Journey of T2D 

T2D is characterized by hyperglycemia resulting from in-
sulin resistance, eventual pancreatic β-cell failure and de-
creased incretin function [4]. By the time T2D is diagnosed, 
islet function is often reduced by 50% as compared to 
healthy controls [5]. The involvement of impaired α-cell 
function has also been implicated in the pathophysiology of 
T2D. A hampered α-cell functioning leads to a constitutive 
rise in the glucagon levels which keeps the blood glucose 
high even post meal [6].  

Research has shown that 74% predisposition towards 
T2D is due to lifestyle and only 26% due to genetic factors 
(https://cpmc.coriell.org/about-the-cpmc-study/health-
conditions-and-drug-response/type-ii-diabetes/risk-factors-
type2-diabetes). 

Till the present, several factors have been associated with 
T2D like obesity, inflammation, mitochondrial dysfunction, 
hyperinsulinemia, lipotoxicity/hyperlipidemia, genetic back-
ground, endoplasmic reticulum (ER) stress, aging, oxidative 
stress and steatosis [7]. An extremely high correlation be-
tween the T2D and obesity has been established in which 
obesity (adiposity) has been shown to be the major cause of 
insulin resistance and consequent diabetic manifestations [8]. 
T2D is a classical metabolic disease, but it is also associated 
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with a 2-4 fold increased risk of cardiovascular disease [9-
12]. 

A recent report in 2013 established that the rising levels 
of obesity in South Asians are largely due to nutrition, life-
style and demographic transitions, ever more due to faulty 
diets and physical inactivity, in the background of genetic 
predisposition [13]. In the backdrop of rich nutritious diet, 
T2D results from dysfunctional carbohydrate metabolism. 

1.2. The Multi-Tasking Hormone: Insulin 

Insulin is a metabolic hormone produced by pancreatic β-
cells present in the islets of Langerhans. It is released into 
the blood stream in response to a rise in blood glucose level 
post meal and exhibits diversified effect on various tissues. 
Primarily, insulin mediates glucose uptake by muscle, fat, 
and liver cells; and it also stops glucose production in the 
liver by inhibiting gluconeogenesis. Alongside, insulin also 
stimulates the liver and muscle tissue to store excess glucose 
in the form of glycogen. In a healthy person, these functions 
together maintain the blood glucose and insulin levels in a 
harmonic balance [14]. 

Physiologically, insulin is secreted at basal levels be-
tween meals to keep a check on the hepatic glucose output. 
However, post meal it is secreted at higher levels to aid glu-
cose uptake and this occurs in two phases. In the first phase, 
it reduces basal glucagon secretion, and in the second, i.e. 10 
min after glucose exposure, the secretion is sustained until 
normoglycemia is achieved [15]. In T2D, the first phase of 
insulin response is almost eliminated or is severely blunted 
[16]. The loss of β-cell function appears to be accompanied 
by a reduction in β-cell mass [5] which regulates overall in-
sulin secretion. Due to impaired insulin release, the blood 
glucose levels tend to remain high post meal that is eventu-
ally compensated by the second phase of insulin release 
achieving normoglycemia [16].  

Thus, the decreased insulin function leads to chronic hy-
perglycemia (during both fasting and postprandial stages) 
and acute glycemic fluctuations. Table 1 represents the clas-
sification of diabetics and pre-diabetics based on the glyce-
mic index as prescribed by the World Health Organization 
(WHO) [17]. 

1.3. Insulin Resistance 

Insulin resistance is a pathophysiological condition 
wherein insulin-induced glucose uptake is impaired in the 
insulin-responsive tissues i.e. liver, muscle and adipose tis-
sues evoking pre-diabetes/impaired glucose tolerance. Pre-

diabetes is associated with high blood HbA1C levels and is 
the first pathophysiological condition to set in [18], eventu-
ally leading to hyperinsulinemia as the β-cells produce a 
large amount of insulin in an effort to control blood glucose 
levels [7]. Unchecked/ undetected pre-diabetic stage in the 
due course of time develops into T2D as the β-cells get ex-
hausted in the process of compensating for the insulin resis-
tance [19]. 

Most individuals with insulin resistance remain unaware 
that they are in their pre-diabetic stage for many years until 
they develop T2D, which is a serious lifelong disorder. 

Obesity and the malfunctioning of β-cells have been 
firmly associated with each other but the molecular pathway 
is still undefined [20]. Adiposity or obesity has been directly 
coupled with adipose tissue inflammation and is marked by 
amplified pro-inflammatory cytokines such as TNF-α. How-
ever, it is a mystery whether the low-grade chronic inflam-
mation is adequate to cause islet dysfunction [21-24]. Other 
factors such as glucolipotoxicity, amyloidosis, failure of β-
cell expansion and dedifferentiation and β-cell apoptosis, 
have also been associated with obesity [18, 25-28]. Thus, 
though T2D is a multifactorial, polygenic disorder, obesity 
seems to play a major role in the onset of this disorder [29]. 

1.4. Obesity: A Cause of Insulin Resistance 

Since the discovery of insulin in 1920 and its role in 
T2D, it has been used as a mono-hormonal therapy for treat-
ing diabetic patients [14]. However, the unraveling of addi-
tional hormones having glucoregulatory effect has expanded 
our horizon for search towards innovative therapies for T2D 
management. 

Obesity, caused due to an over accumulation of adipose 
tissue, is not just a cosmetic concern but a medical condition 
as well. Excessive body (adipose) accumulates over a period 
of time to an extent that it starts having a negative effect on 
one’s well-being [30]. In 1962, J. Neel theorized the “thrifty 
gene hypothesis” to partially explain the rise in obesity-
related diseases in the world [31]. The hypothesis tries to 
explain that, various genes that promote the efficient utiliza-
tion and storage of fuel might have been selected by nature 
to favor the survival of the human race during famines. 
Whereas today, in time of food abundance, the “same genes" 
make human predisposed to obesity and T2D [32]. Hormo-
nal or other disturbances/imbalances in the early develop-
mental periods may also lead to a thrifty gene phenotype 
predisposing individuals to diabetes in the adult stage on 
exposure to potential diabetogenic agents/conditions [33]. 
Adipose tissue, apart from serving as a store house of en-

Table 1. Glycemic Index (WHO). 

Sr no. Blood Sugar Classification Fasting (mmol/L) 2-h post-glucose load (mmol/L) 

1 Normal 5.5 4.4- 7.7 

<7.0 7.8-11.0 
2 Pre-diabetic 

Impaired glucose tolerance 

Impaired fasting glucose 6.1-6.9 <7.8 

3 Diabetic ≥7.0 ≥11.1 
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ergy, also secretes bioactive peptides, termed ‘adipokines/ 
adipocytokines’, which act locally and distally by autocrine, 
paracrine and endocrine modes [34]. They interact with cen-
tral and peripheral organs such as brain, liver, and skeletal 
muscles thus playing an important role in many physical 
processes [35]. Till date, over 100 adipokines have been 
identified and studied like leptin, resistin, adiponectin, vis-
fatin, omentin-1, TNF-α, IL-6, etc. Increased production of 
most adipokines in obese individuals influences multiple 
functions such as appetite and energy balance, immunity, 
insulin sensitivity, angiogenesis, blood pressure, lipid me-
tabolism and homeostasis [36]. 

Researchers have also found a gripping statistics for a 
substantial number of T2D patients being lean with BMI <25 
[37-39]. Such cases of T2D have been found to be associated 
with malnutrition [40, 41], smoking [42], alcoholism [43], 
predisposition to genetic modulators [44], and also impaired 
adipose expandability [45]. Genome-wide association studies 
(GWAS) have identified approximately 50 genetic loci to be 
associated with T2D in lean and obese individuals [46-48]. 
The road towards the development of T2D remains many 
and since the cure is still obscure, the approach is restricted 
to T2D management by achieving glycemic targets. 

2. GLYCEMIC TARGETS FOR T2D PATIENTS  

The most important goal to prevent and delay diabetes-
related complications is to maintain the glycemic target. It 
has been noticed that achieving glycosylated hemoglobin 
(HbA1c) level below 6.5% reduces microvascular complica-
tions in T2D [49]. Intensive control of blood-glucose levels 
using sulphonylureas or insulin drastically reduces the risk of 
complications in patients with T2D when compared with 
conventional treatment [49, 50]. 

The WHO [17] recommends four options for diagnosing 
diabetes as shown in Table 2. 

 
Table 2. Glycemic targets for T2D patients. 

Glycemic Targets 

Fasting Plasma glucose <7 mmol/L 

2-hour plasma glucose < 11.1 mmol/L 

HbA1c < 6.5% 

Random plasma glucose <11.1 mmol/L 

 
Though the disease can be taken care of by using various 

anti-diabetic drugs or subcutaneous injections, they do not 
offer the extent of glycemic control provided by functional 
pancreatic β-cells.  

3. LIFESTYLE INTERVENTIONS FOR THE 
TREATMENT OF DIABETES 

Interventions involving dietary and physical activity 
changes are widely used and appear to be the most success-
ful approaches for improving long-term weight maintenance 
and health status [51]. Exercise as a physical activity is sug-

gested to serve as first line therapy for obesity and diabetes 
[52]. Exercise is known to contribute to glucose homeostasis 
and improve diabetic manifestations thus decreasing the in-
cidence of diabetes significantly [53, 54]. It brings about 
significant changes in molecules of insulin signaling path-
way and glycogenesis (GLUT4, protein kinase B (PKB), 
glycogen synthase (GS)) along with lipid profile markers i.e. 
reduction in plasma LDL, total cholesterol, triglyceride lev-
els and TC/HDL ratio [55-57]. It also decreases the levels of 
pro-inflammatory cytokines like IL-6, C-reactive protein 
(CRP), TNF-α and IL-1β [58-60] and modulates adipokines 
such as leptin, resistin, apelin and ghrelin [61, 60]. Interest-
ingly, exercise appears to be a new modus operandi for adi-
pose tissue remodeling and modulation of uncoupling pro-
tein 1 (UCP1) in brown adipose tissue for improving diabetic 
manifestation [62]. A profound change in white adipose tis-
sue (WAT) in response to exercise training is the mechanism 
by which the whole-body metabolic health is improved. Ex-
ercise also increases the number of beige cells in WAT that 
express UCP1, Tbx1, Tmem26, and Cd137 as well as mark-
ers of vascularization (e.g., Vegfa, Pdgf, Angptl2) [63]. 
Moreover, it also promotes mitochondrial biogenesis in 
skeletal muscle helping ameliorate diabetic manifestations 
[64, 65]. Hence, exercise induced protein molecules apart 
from exerting a favorable influence on overall heath can also 
improve glucose and lipid metabolism and so could serve as 
a novel therapeutic target. Besides physical activity, people 
nowadays are also inclined towards calorie restricted diet. 

Calorie restriction (CR) is fast developing as a new die-
tary intervention even though it has its own limitation such 
as its result reproducibility. CR is described as a reduction in 
caloric intake, typically by 20-40% of ad libitum consump-
tion while maintaining sufficient intakes of protein and mi-
cronutrients to avoid malnutrition [66, 67]. Ideally, dietary 
treatment should aim to ensure adequate growth and devel-
opment by reducing excessive fat accumulation and avoiding 
the loss of lean body mass taking care of overall well-being 
and preventing cyclical weight regain [68]. There are various 
dietary approaches for weight loss i.e., low-fat, high-protein, 
low glycemic index and calorie restricted diets. In this con-
text, Dietary Guidelines have recommended certain foods to 
be consumed less - "foods to reduce” (i.e., saturated and 
trans fats, cholesterol, sodium, added sugar, refined grains, 
alcohol) and foods to be consumed more - “foods to in-
crease” (i.e., fruits, vegetables, whole grains, low-fat dairy 
and protein foods, oils). There is no standard definition of a 
“high-protein diet;” however, intake of protein greater than 
25% of the total energy or 1.6 g/kg per day of body weight 
can be considered high [69]. As carbohydrates vary in the 
degree to which they raise blood glucose and insulin levels, a 
term “glycemic index” (GI) has been coined indicative of the 
property of carbohydrate-containing food [70]. A low GI diet 
is a precise blend of low-fat and low-carbohydrate dietary 
regime. Recommendations for this dietary approach are 
based not only on GI but also takes into account the nutri-
tional content of the diet as a whole [71]. 

CR attenuates the degree of oxidative stress [72] and in-
creases expression of genes involved in mitochondrial func-
tion and biogenesis such as PPARGC1A, TFAM, and SIRT1 
[73]. Elevated rate of whole body fat oxidation in response 
to calorie restriction was observed along with decreased lev-
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els of fatty acid synthesis in liver [74], improved fasting glu-
cose levels besides offering protection from other cardio 
metabolic risk factors [75], and also reduced pro-
inflammatory adipokines [76]. The tight direct relationship 
between the phosphorylation (and therefore activation) of 
ERK and p70S6K along with the phosphorylation of IRS1S612 
and IRS1S632/635 implicates ERK and MTOR/ p70S6K as the 
kinases responsible for the phosphorylation of these sites in 
the liver as observed in obesity-induced insulin resistance. 
However, CR diminished activities of these kinases amelio-
rating insulin resistance [77] as shown in Fig. (1).  

Thus CR was and still is the traditional first-hand method 
to control T2D. However, the CR regime would vary from 
person to person and thus needs to be designed in a person-
specific manner. Conversely, strict caloric restriction may 
work negatively by increasing the risk of hypoglycemia [78], 
leading to a decreased bone density, ketosis, etc [79]. 

4. THERAPEUTIC MODALITIES AND TARGETS 

4.1. Current Strategies (Synthetic Small Molecule Drugs/ 
Oral Hypoglycemic Agents) 

The characteristics of most widely used monotherapeutic 
modalities are tabulated in Table 3. The choice of initiating a 
glucose lowering strategy is based on the level of glycemic 
control required. When the level of glycemia is high (e.g., 
A1C >8.5%), therapeutants with a rapid glucose-lowering 
capacity, or potentially earlier initiation of combination ther-
apy, are recommended. Similarly, when glycemic levels are 
closer to target goals (e.g., A1C <7.5%), CR or medications 
with lower hypoglycemic potential may be considered [80]. 
Below is an overview of traditional and newer/emerging 
agents used in T2D. 

4.1.1. Biguanides 

Metformin is the most widely prescribed blood-sugar-
lowering drug in the world and is the first line of medica-
tion for T2D. It belongs to a class of drugs called bigua-
nides. American Diabetes Association (ADA) and Euro-
pean Association for the Study of Diabetes (EASD) have 
jointly recommended metformin as the initial drug to be 
prescribed if nutritional therapy and exercise prove to be 
inadequate [81]. Metformin limits glucose production from 
liver by inhibiting gluconeogenesis and glycogenolysis 
while increasing insulin sensitivity so that glucose is taken 
up by muscle, fat, liver, and other types of cells. Metformin 
monotherapy on an average lowers A1C by approximately 
1.5% and it is generally well-tolerated, with the most fre-
quent undesirable effects being gastrointestinal in nature 
[80]. The major advantage of metformin is that it does not 
cause hypoglycemia while having positive effect on serum 
lipids and lipoproteins as compared to other classes of 
small molecule [82-84]. Metformin non-competitively in-
hibits the redox shuttle enzyme mitochondrial glycero-
phosphate dehydrogenase and mitochondrial complex I, 
resulting in an altered hepatocellular redox state, reduced 
conversion of lactate and glycerol to glucose, and de-
creased hepatic gluconeogenesis. Alternatively, it has been 
shown that in mouse hepatocytes, metformin leads to the 
accumulation of AMP, which inhibits adenylate cyclase, 
reducing the levels of cAMP and protein kinase A (PKA) 
activity, and further inhibiting phosphorylation of crucial 
protein targets of PKA, while blocking glucagon-dependent 
glucose release from hepatocytes [85-88]. Further, AMPK 
which is activated by metformin might play a key role in 
long-term effects of metformin by improving lipid metabo-
lism and mitochondrial function in the liver [89]. 

 

Fig. (1). An illustration showing plethora of effects of exercise, calorie restriction and drugs contributing to reduced hyperglycemia. 
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4.1.2. Sulfonylureas 

Sulfonylurea is an insulin secretagogue i.e. it lowers glu-
cose levels by triggering insulin secretion from β-cells. It 
closes the potassium channels by binding to adenosine 
triphosphate (ATP)-sensitive potassium channels and 
thereby leads to subsequent opening of calcium channels 
resulting in the exocytosis of insulin. Though the first gen-
eration sulfonylureas were efficacy wise similar to met-
formin, they were however known to cause severe episodes 
of hypoglycemia. The second-generation sulfonylurea agents 
(e.g., glipizide, glimepiride) have comparatively lesser side 
effects [90]. Sulfonylureas bind to and close ATP-sensitive 
K+ channels (KATP) on pancreatic beta cell membrane 
which depolarizes the cell by preventing potassium ions 
from exiting. This depolarization opens voltage-gated Ca2+ 
channels leading to Ca2+ influx. This rise in intracellular cal-
cium leads to increased fusion of insulin granulae with the 
cell membrane, and therefore increased secretion of (pro) 
insulin [91]. 
4.1.3. Glinides 

Glinides (i.e., repaglinide, nateglinide) are a similar class 
of insulin secretagogues like sulfonylurea but bind differ-
ently and have a shorter circulating half-life. It depolarizes β-
cell membrane leading to insulin granule exocytosis and also 
acts as peroxisome proliferator-activated receptor-gamma 
(PPARγ) agonist leading to glucose uptake [92, 93]. This 
necessitates frequent administration. Like metformin and 
sulfonylurea, glinides too have a similar efficacy of reducing 
A1C by 0.5 – 0.8% and they also pose a risk of weight gain 
[80]. Moreover, they have not been associated with episodes 
of hypoglycemia [94, 95]. 

 

4.1.4. α-Glucosidase Inhibitors 

The mode of action of α-Glucosidase inhibitors (e.g., 
Acarbose & Miglitol) is very different from the above 
classes discussed. They work by reducing the rate of diges-
tion of polysaccharides in the proximal small intestine and 
thus indirectly lower the postprandial glucose levels. How-
ever, compared with metformin and sulfonylureas, they are 
less effective in lowering glucose reducing A1C by only 
0.5% to 0.8%. These drugs function as high affinity reversi-
ble inhibitors of alpha-glucosidase, particularly pancreatic 
alpha-amylase and membrane-bound intestinal alpha-
glucosidase. Pancreatic alpha-amylase hydrolyzes complex 
carbohydrates to oligosaccharides in the lumen of the small 
intestine while, intestinal glucosidase hydrolyses oligosac-
charides, trisaccharides and disaccharides to glucose and 
other absorbable monosaccharides in the brush border of 
intestinal villi. The inhibition of these enzymes thus reduces 
the rate of formation of "absorbable sugars" and thus delays 
the rise in blood glucose concentration following meals 
(postprandial). This action therefore results in attenuation of 
postprandial plasma glucose (30-35% reduction), as well as 
insulin, gastric inhibitory polypeptide and triglyceride peaks 
[96]. α-Glucosidase inhibitors are commonly associated with 
increased gastric complications [80]. 
4.1.5. Thiazolidinediones (TZDs or Glitazones) 

TZDs mediate their effect via the activation of perox-
isome proliferator–activated receptor (PPARγ) largely pre-
sent in adipose tissue which, modulates the expression of 
several genes involved in glucose and lipid metabolism, in-
clusive of those that code for adipocyte fatty acid binding 
protein, lipoprotein lipase, fatty acid transporter protein, fatty 
acyl-CoA synthase, malic enzyme, glucokinase and the 
GLUT4 [97]. Activation of PPARγ is reported to induce adi-

Table 3. Characteristics of most widely used monotherapeutic modalities. 

Group Class Generic name Side effects 

Biguanides Metformin 
Weight loss,  

GI upset 

Thiazolidinediones 

Sensitizer 
Rosiglitazone 
Pioglitazone 

Weight gain 
Peripheral edema 

Alpha glucosidase inhibitors ---- 
Acarbose  
Miglitol 

GI upset 

Sulfonylureas 

Chlorpropamide  
Glibenclamide  

Glimepiride  
Glipizide  

Tolazamide  
Tolbutamide 

Hypoglycemia 
Weight gain 

Glinides 

Secretagogue 

Nateglinide  
Repaglinide 

Weight gain 

Exenatide GLP-1 analog Byetta Weight loss 

Dipeptidyl peptidase-4 inhibitors DPP-4 inhibitors 
Sitagliptin 
Saxagliptin  
Linagliptin 

---- 
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pogenesis and adipocyte differentiation after the activation 
of C/EBP-α and synergizing with it [98]. TZDs (i.e. pioglita-
zone, rosiglitazone) also increase insulin sensitivity of glu-
cose disposing tissues. Pioglitazone treatment was reported 
to increase (PPAR)-γ coactivator-1α and mitochondrial tran-
scription factor A leading to mitochondrial biogenesis. Fur-
ther, it also increases the expression of genes in the fatty acid 
oxidation pathway such as carnitine palmitoyltransferase-1, 
malonyl-CoA decarboxylase, and medium-chain acyl-CoA 
dehydrogenase [99]. TZDs are mostly used as part of a com-
bination therapy. The most common adverse effects associ-
ated with TZDs include weight gain, fluid retention, in-
creased subcutaneous adiposity, macular edema, heart fail-
ure, and bone fractures [100]. 

4.2. Current Strategies (Synthetic Large Molecule Drugs) 

4.2.1. Insulin 

Amongst the various strategies, insulin is the most effec-
tive in lowering glycemia and reduces elevated A1C to, or 
close to, the therapeutic goal. However, because T2D pa-
tients are insulin resistant, generally a large dose is required. 
Insulin therapy has beneficial effects on the triglyceride and 
HDL-cholesterol levels but is also known to cause weight 
gain [101] and hypoglycemic episodes. Compared with NPH 
(Neutral Procaine Haledon) and regular insulin, insulin ana-
logues with longer pharmacokinetic profiles (e.g. insulin 
glargine), as well as, analogues with very short durations of 
action (e.g. insulin lispro), decreases the risk of hypoglyce-
mic episodes [80]. 
4.2.2. Incretins 

Incretins are a class of enteric hormones which regulate 
blood glucose by stimulating insulin secretion indirectly 
from the β-cells and, the decline of β-cells in T2D has been 
linked to their impaired action [5]. The major ones in this 
class are glucose-dependent insulinotropic polypeptide (GIP) 
and glucagon-like peptide-1 (GLP-1) secreted from endo-
crine K and L cells respectively in the small intestine in re-
sponse to a rise in glucose levels. They then activate G pro-
tein–coupled receptors on pancreatic β-cells thereby stimu-
lating insulin secretion [102]. GLP-1 also inhibits glyco-
genesis by decreasing the secretion of glucagon. Further-
more, GLP-1 is known to have an effect on the central nerv-
ous system like delayed gastric emptying and a feeling of 
satiety. In contrast, GIP has an effect only on glucagon se-
cretion [103]. What makes GLP-1 a favorable agent is its 
property to induce insulin secretion in response to the raised 
blood glucose level post meal. This reduces the chances of 
adverse side effects such as sudden hypoglycemia [104]. 
Studies on T2D individuals have shown increased insulin 
secretion and concomitant decreased glucagon secretion on 
treatment with GLP-1 receptor agonists [5]. 
4.2.3. DPP 4 Inhibitors 

Dipeptidyl-peptidase IV (DPP-4) is a ubiquitous serine 
protease acting on a variety of substrates ranging from hor-
mones to chemokines to neuropeptides [105]. In the enteric 
system it cleaves GLP-1 and GIP secreted from gastric mu-
cosa, trimming down their half-life to few minutes in 
plasma. DPP-4 inhibitors are being used to sustain the rise in 
GLP-1 level post meal in fasting conditions as well, thus 

keeping a check on hyperglycemia [106]. DPP-4 has also 
been identified as a novel adipokine with a significantly high 
expression in visceral fat of obese subjects impairing insulin 
signaling at Akt level in the glucose disposal organs [107]. 
The same group has also shown the augmented release of 
DPP-4 (by 50%) in response to obesity-related TNF-α eleva-
tion and an inhibition of the anti-lipolytic action of Neu-
ropeptide Y (NPY) [108]. 

Strategies such as the development of DPP-4 resistant 
GLP-1 analogues (e.g., exenatide, liraglutide) as well as 
molecules that inhibit the enzymatic activity of DPP-4 (e.g., 
sitagliptin, vildagliptin, saxagliptin) have already been ex-
tensively attempted [109, 110]. 

4.3. New and Emerging Therapies 

Over the counter, oral drugs discussed till now mostly 
stimulate insulin release, suppress hepatic glucose output and 
assist glucose disposal but they only work towards diabetes 
management by controlling hyperglycemia [110]. With ref-
erence to both type 1 and type 2 diabetes, wherein there is β-
cell loss sooner or later, the therapeutic focus has now 
shifted from merely controlling glycemic targets to regenera-
tion or preservation of β-cell mass. A lot of work has been 
carried out in this context in the past few decades and as a 
result, a large number of agonists (e.g. Betatrophin) have 
been identified through high throughput screening that in-
duces β-cell replication in animal models. In this context, 
work from our own group has shown flavonoid mixture from 
Oreocnide integrifolia (Urticaceae), a folklore plant, to have 
significant insulin secretagogue, insulinomimetic and cyto-
protective effects [111]. But unfortunately, very few such 
molecules have been found to induce β-cell replication at a 
substantial rate from a therapeutic point of view in humans 
[112].  

Of late, hormones and other protein molecules have also 
gained a great deal of focus as therapeutic agents by virtue of 
their biological significance encompassing an array of vari-
ous functions as illustrated in Fig. (2) [113].  
4.3.1. Brain: The Seat of Hunger and Satiety 

The long posited theory, that brain was critical in the 
negative feedback regulation of appetite and body weight 
was found to be true as it was found that brain requires an 
incessant supply of glucose for meeting its energy demands 
[114] making it the highest consumer of glucose [115]. Due 
to this strict dependence on glucose, brain exerts regulation 
on blood glucose levels through an array of inter-
coordinating hormones (leptin, ghrelin, NPY, glucagon-like 
peptide-1, insulin, etc.) to achieve a precise physiological 
balance [116-118]. While NPY and ghrelin are secreted in 
response to activation of the nutritional prompt “feeding cen-
ter” by a fall in the blood glucose level, the rest are secreted 
in response to activation of “satiety center” by a rise in the 
glucose level, making the brain a “dual-core” system [115]. 
Also, reduced plasma levels of brain-derived neurotrophic 
factor (BDNF) have been associated with impaired glucose 
metabolism and type II diabetes in human subjects [119]. 
Simultaneously, caloric restriction and exercise have been 
shown to elevate BDNF levels by various mechanisms [120, 
121]. Increased insulin-stimulated tyrosine phosphorylation 
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of insulin receptors in liver and PI3-kinase activity in liver, 
skeletal muscle and brown adipose were demonstrated in 
db/db mice when administered with BDNF for 14 days 
[122]. Any disturbance in the energy homeostatic balance 
leads to conditions like hyperglycemia or T2D. 
4.3.1.1. Melatonin 

Melatonin, referred as the hormone of darkness, is 
mainly secreted by the pineal gland with a night time high 
and day time low [123]. Its primary role has been identified 
in maintaining body homeostasis and biological clock i.e. the 
sleep-wake cycle [124]. It is thus, referred as “Sleep hor-
mone” too. Apart from regulating the “Clock genes” it has 
also been strongly linked to T2D [125]. Many past studies 
from our group have shown hypoglycemic and promotion of 
peripheral glucose uptake effects of melatonin in the verte-
brate series based on melatonin administration and pinealec-
tomy [126-128]. Recently, it was further shown that mela-
tonin supplementation exhibited greater potency than estro-
gen replacement therapy in overcoming diabetogenic meta-
bolic dysregulation in ovariectomized/estrogen deficient rats 
[129]. Studies describing the effect of melatonin on various 
glucose responsive tissues expressing MT2 (Melatonin re-
ceptor Type 2) are available. Accordingly, in human adipo-
cytes, it downregulates GLUT4 expression [130], in murine 
skeletal muscle it enhances insulin receptor substrate-1(IRS-
1) phosphorylation [131] and in mouse liver it induces glu-
cose release [132]. Interestingly, MT1 (Melatonin receptor 
Type 1) and MT2 receptors are also expressed on the pan-
creatic islet cells [133, 134]. In the β-cells, it decreases insu-
lin secretion by inhibiting cAMP and cGMP pathways while, 
it enhances the secretion of insulin by increasing cytoplasmic 

Ca2+ concentration via phospholipase C/IP3 pathway activa-
tion [135, 136]. The modulatory effect of melatonin also 
extends to glucagon secretion from α-cells apart from insulin 
secretion from β-cells [137]. Thus, a reduction in melatonin 
could potentially contribute to the genesis of diabetes as, a 
functional inter-relationship between melatonin and insulin 
is revealed in diabetic patients [138, 139]. Additional evi-
dences from experimental studies are available for melatonin 
promoted insulin receptor tyrosine phosphorylation and pro-
duction of insulin growth factor [140]. Shi et al. [141] fur-
ther demonstrated insulin resistance and glucose intolerance 
in individuals with a disturbed internal circadian system 
which could however, be re-established by melatonin sup-
plementation [142, 143]. Our group had earlier demonstrated 
increased GLUT4 expression in the muscle tissue of diabetic 
rats upon melatonin supplementation. In other studies, the 
anti-diabetogenic effects of melatonin as a de-programmer of 
early neonatal corticosterone induced thrifty phenotype for 
adult diabetogenic manifestations had also been recorded 
[33, 144].  

Therefore, the existence of melatonin receptors on islet 
cells may be targeted to design pharmacotherapy for T2D. 
Melatonin is currently under intensive scrutiny in experi-
mental animal models of diabetes, obesity, and metabolic 
syndrome [145]. 
4.3.2. GUT: The Second Brain 

4.3.2.1. Ghrelin 

Ghrelin (a gut – brain peptide) is synthesized mainly by 
the P/D cells of human gastric mucosa [146]. However, 
ghrelin is also found in many other tissues like the hypo-

 

Fig. (2). The Gut –Brain axis in diabetic regulation. 
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thalamus, brain cortex, pituitary, adrenal, hippocampus and 
pancreas [147, 148]. In obese individuals ghrelin is found to 
be attenuated [149]. 

Ghrelin possesses growth hormone-releasing activity, 
adipogenic activity, and orexigenic activity by acting as a 
ligand to the growth hormone secretagogue receptor 1a 
(GHSR) in CNS [148, 150-152] and, its level is controlled 
by a number of factors like food intake, insulin and glucagon 
levels. Apart from playing a role in regulating energy ho-
meostasis, the presence of ghrelin and its receptors on the 
pancreatic α and β-cells indicates its additional glucoregula-
tory role [153]. In a study by Tong and colleagues, it was 
reported that both supraphysiological and physiological 
doses of ghrelin in healthy individuals suppressed insulin 
secretion leading to an impaired glucose tolerance but inter-
estingly, the insulin sensitivity was unaltered in the latter 
dose [154, 155]. In another independent study by Vester-
gaard et al. [156], intramuscular administration of ghrelin 
enhanced glucose uptake and lowered blood glucose level. 
They had earlier shown this effect of ghrelin to be without 
any effect on the insulin signaling pathway [157]. Thus, the 
above studies are suggestive of the pharmacological poten-
tial of ghrelin by its effect on glucose-stimulated insulin se-
cretion (GSIS) and insulin sensitivity. Ghrelin has also been 
demonstrated to suppress glucose-induced insulin release via 
GTP-binding proteins and delay K+ efflux thereby regulat-
ing insulin release and glycemia [158]. There are also reports 
of ghrelin priming intestinal L cells for the production of 
GLP1 incretin hormone which improves glucose tolerance 
by stimulating insulin production by β-cells and decreasing 
glucagon production by α-cells [159]. Maintaining a critical 
level of serum ghrelin by its neutralization using antagonists 
or anti-ghrelin antibodies might be worthwhile to study. 
Since insulin is known to inhibit ghrelin, usage of insulin 
mimetics to regulate ghrelin level could also be a novel ap-
proach towards T2D management.  
4.3.3. Adipokines  

4.3.3.1. Adiponectin 

ADIPOQ gene located on chromosome 3q27 codes for 
the 30 kDa adiponectin protein [160]. The protein is exclu-
sively expressed in white adipose tissue. Adiponectin is 
found in various polymorphic forms in plasma. It is found in 
3 major oligomeric forms; a low–molecular weight (LMW) 
trimer, a mid–molecular weight (MMW) hexamer, and a 
high–molecular weight (HMW) 12- to 18-mer [161, 162]. 

Normal level of adiponectin in the circulation is 2-20 
µg/mL and forms 0.05% of total serum protein. Apart from 
its insulin sensitizing action, adiponectin is also responsible 
for free fatty-acid combustion via PPAR𝛼 activation and 
increasing AMP: ATP ratio by AMPK activation and thus 
plays a pivotal role in energy metabolism [163] 

The primary mechanism by which adiponectin enhances 
insulin sensitivity appears to be through increased fatty acid 
oxidation and suppression of gluconeogenesis thus decreas-
ing the triglyceride content in liver and skeletal muscle, and 
enhancing insulin sensitivity [163, 164]. The mechanism of 
action of adiponectin on muscle appears to be through acti-
vation of AMP kinase (AMPK) and PPAR𝛼  [165, 166]. In 
the case of liver, adiponectin promotes glucose uptake and 

stalls gluconeogenesis and, activates fatty acid oxidation and 
decreases inflammation via PPAR𝛼  [167]. Interestingly, it 
has been found that adiponectin levels are compromised in 
obese, insulin-resistant rodent models [168] and also in 
obese rhesus monkeys that develop T2D [169]. More inter-
estingly, reduced insulin sensitivity in conjunction with de-
creased plasma adiponectin level was also noted in these 
animal models [169]. Similar observations were reported in 
obese humans as well, particularly those with visceral obe-
sity [170-172]. In humans, caloric restriction and physical 
exercise have been shown to increase circulating adiponectin 
levels significantly and also to attenuate the TNF-𝛼  to adi-
ponectin ratio [173, 174]. 

Restoring the adipokine level or increasing AMPK and 
PPAR𝛼  levels may in this context prove beneficial. Many 
such molecules have already been studied, each having its 
own limitations. Recently, a small-molecule adiponectin 
receptor agonist- Adiporon was reported to improve insulin 
sensitivity without altering insulin secretion [175]. However, 
activating adiponectin alone or increasing AMPK level 
might not be an ultimate answer to β-cell loss. Among the 
several adipokines, adiponectin has of late attracted a good 
deal of attention by virtue of its antidiabetic and antiathero-
genic effects [176]. 
4.3.3.2. Resistin 

Resistin gene was originally identified present on chro-
mosome no. 19 of mouse in 2001. Resistin (12.5 kDa) is an 
unusual hormone in the sense that it has 11 cysteine residues 
out of a total of 114 amino acids [177]. In serum, resistin 
circulates predominantly as trimers and hexamers, with the 
trimer being the most bioactive form [178]. Resistin is ex-
pressed at very low levels in human adipose cells whereas; 
high levels are expressed in spleen, bone marrow, mononu-
clear leukocytes and macrophages [178-180]. Some studies 
have suggested that mature human adipocytes lack resistin 
expression, while preadipocytes do [181, 182]. Infusion of 
resistin in Sprague-Dawley rats resulted in weakened hepatic 
insulin sensitivity and glucose metabolism [183] and, 
chronic elevated circulating resistin levels led to increased 
fasting glucose, weakened glucose tolerance and decreased 
hepatic insulin sensitivity [184]. Resistin was also reported 
to induce SOCS3, resulting in the suppression of insulin-
mediated signaling in adipocytes [185]. 

However, the function of resistin in humans has been in-
conclusive [186-188]. Many studies have shown a positive 
correlation between elevated serum resistin level and insulin 
resistance and obesity in humans. Sheng et al. [189] ob-
served resistin to be expressed in human hepatocytes while 
Tsiotra et al. [190] and Gharibeh et al. [191] observed that 
resistin caused insulin resistance in female subjects with 
T2D and obese T2D patients. However, contradictory results 
from human studies indicate resistin gene expression and its 
circulating levels to be both increased and unchanged in obe-
sity and insulin resistance [192-195]. Resistin was identified 
as a pro-inflammatory adipokine mediating its action via 
TNF-α by activation of NF-κB pathway [196] and recruit-
ment of immune cells [197]. And recent study unraveled that 
resistin binds to adenyl cyclase associated protein 1receptor 
which increases cAMP and PKA activity [198]. In a study by 
Steppan et al. [199], blocking of resistin action with neutral-
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izing antibody was found to improve whole-body insulin 
sensitivity in diet-induced obese (DIO) mice while, antisense 
oligodeoxynucleotide against resistin mRNA completely re-
versed hepatic insulin resistance in animals [200]. It is likely 
that resistin is a biomarker for and/or contributes to insulin 
resistance in specific populations. 
4.3.3.3. Omentin-1 

Omentin-1 is a novel 40 kDa fat depot-specific adi-
pokine (gene bank accession number- AY549722) which 
has been identified from a cDNA library of visceral omen-
tal adipose tissue [201], located on 1q21.3 chromosome 
locus [202]. It is also known variously as intelectin-1, in-
testinal lactoferrin factor, endothelial lectin HL-1 or galac-
tofuranose binding lectin. In humans, omentin is expressed 
as two homologous proteins, omentin-1 and -2, encoded by 
two separate genes located adjacent to one another on 
1q22-q23. Omentin-1 is the major circulating isoform in 
human plasma. Omentin-2 shows 83% amino acid identity 
with omentin-1 [203]. Omentin mediated glucose uptake 
occurs via the phosphorylation of Akt at physiological con-
centrations [204, 205]. 

Omentin gene expression in visceral adipose tissue and 
circulating omentin level were reported to be decreased in 
obese subjects [203] associated with impaired glucose toler-
ance (IGT) and in T2D subjects [206-208]. However, circu-
lating omentin levels were found to be elevated in patients 
with nonalcoholic fatty liver disease [209]. Omentin recep-
tor, target tissues, and signaling mechanism remain obscure 
as yet, but the above studies are indicative of its potential as 
a therapeutant. 
4.3.3.4. Vaspin  

Vaspin, a visceral adipose tissue (VAT) derived serine 
protease inhibitor has an insulin-sensitizing effect and be-
longs to the serpin superfamily (Serpina12). It was found in 
the VAT of Otsuka Long-Evans Tokushima Fatty rat 
(OLETF) typified with central obesity and T2D [210]. 
Vaspin acts as a circulating serpin, which serves as a ligand 
for a cell-surface receptor complex, GRP78/MTJ-1, and ex-
erts anti-inflammatory action in ER induced stress [211]. In 
another study, Nakatsuka et al. [212] showed vaspin to serve 
as a ligand for a cell-surface voltage-gated anion channel 
complex in endothelial cells thereby exerting anti-apoptotic, 
proliferative, and protective effects on the endothelium of rat 
models with T2D. Furthermore, vaspin also protects endo-
thelial cells by its inhibitory action on NF-κB [213]. 

Increased serum vaspin was found to be associated with 
obesity in young Korean men [214] and also with BMI, 
triglycerides, fasting insulin and insulin resistance in puber-
tal obese children [215]. However, administration of recom-
binant vaspin in obese mice showed to improve glucose tol-
erance and insulin sensitivity suggesting the rise in vaspin 
levels to be a compensatory rise in response to obesity and 
insulin resistance. Interestingly, it was also higher in healthy 
females as compared to healthy males demonstrating sexual 
dimorphism [216]. On the other hand, several studies have 
failed to show even a simple correlation between serum 
vaspin levels and BMI [217] and insulin sensitivity [218] or 
with T2D [219]. 

Interestingly, vaspin influences insulin-induced glucose 
uptake in vivo, but not in vitro. Vaspin probably modulates 
insulin action only in the presence of its target proteases, 
which most probably trigger altered insulin sensitivity. 
Therefore, identification of vaspin’s target protease is the 
major challenge for future studies related to vaspin. Unravel-
ing the proteases might lead to the development of novel 
anti-diabetic therapy, which may improve insulin sensitivity 
in patients with T2D. 
4.3.3.5. Leptin  

Leptin is synthesized and secreted by the adipose tissue 
in proportion to the amount of fat deposition [220-222]. 
However, it mediates its action via brain as an anorexigenic 
hormone [223]. It was found that injection of recombinant 
leptin on daily basis into normal mice reduced their appetite 
while increasing their energy expenditure. This resulted in 
the elimination of fat deposits in a short span of time without 
causing hypoglycemia [224, 225]. These results made leptin 
a potent anti-obesity drug. However, it was soon, also, ob-
served that leptin levels were already elevated in obese indi-
viduals [149]. Detailed leptin-based clinical trials by NIH 
show significant hyperleptinemia under obese conditions 
(www.clinicaltrials.gov and http:// www.ncbi.nlm.nih.Gov/ 
pubmed/). This suggests of a possible leptin resistance [226-
228] which can be due to three possible reasons: i) ineffi-
cient/weakened transport of leptin across the blood-brain-
barrier (BBB), ii) diminished neuronal leptin signaling in the 
target neurons, and iii) impaired downstream signaling cas-
cade of target cells [229]. 

Leptin regulates body weight and neuro-endocrine func-
tions apart from appetite through its receptors in CNS [220, 
221]. Leptin’s effect on body weight has been shown to be 
via GABAergic neurons in mice [230]. Though the mecha-
nism through which leptin functions remains still obscure, a 
substantial amount of data strengthens its glucoregulatory 
effect [231, 232]. Thus, leptin may serve as a therapeutic 
solution for lean as well as obese type 2 diabetics by means 
of a “Brute force” effect (exogenous leptin given despite 
leptin resistance). 
4.3.3.6. Nesfatin 

Nesfatin-1was discovered for the first time in 2006 as a 
satiety hormone [233] and further studies [234] provided 
evidence for it to be another hormone involved in the regula-
tion of energy metabolism. Specifically, it is secreted by the 
peripheral adipose tissue, gastric mucosa, pancreatic endo-
crine β-cells, and testis [235]. Intraperitoneal injection of 
nesfatin-1 in rats reportedly suppressed food intake in a 
dose-dependent manner [236]. It is also shown to work inde-
pendent of the leptin pathway [233], thus making nesfatin-1 
a possible mode of treatment in obese individuals with leptin 
gene mutation or leptin resistance [237]. There are a number 
of theories that explain its action; the first being by activa-
tion of the melatonin pathway and, the second being by in-
ducing NPY secretion [235, 237-239]. 

Additionally, it was found that there was a significant de-
crease in food intake and body weight on a continuous infu-
sion of nesfatin-1 into the third ventricle of brain in rats 
[233]. Downregulation of gluconeogenesis and promotion of 
peripheral glucose uptake were the attendant effects noticed 
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by such infusions [240]. However, in multiple clinical stud-
ies, it was noted that plasma nesfatin-1 levels were higher in 
T2D patients and was associated with the homeostasis model 
assessment of insulin resistance (HOMA), BMI and plasma 
insulin. This paradoxical elevation of plasma nesfatin-1 in 
T2D patients is hypothesized to be a compensatory upregula-
tion to recompense for the metabolic stress imposed by obe-
sity or a possible nesfatin-1 resistance [241]. Improper un-
derstanding of nesfatin-1 action precludes detailed elucida-
tion of its role in T2D and glucoregulation. However, nes-
fatin-1induced activation of β-cell Ca+2 channels and the 
resultant increased insulin secretion [242] opens up avenues 
to explore the feasibility of nesfatin-1 in the amelioration of 
T2D. 
4.3.3.7. Visfatin 

Visfatin has recently been identified as a novel adipokine 
and also as a pre β-cell colony-enhancing factor [243]. Much 
greater expression in visceral fat tissue has formed the basis 
for its name [244]. However, some other studies showed 
visfatin to be expressed by the macrophages infiltrating adi-
pose tissue in response to the inflammatory signals emanat-
ing from various other tissues [245, 246]. Visfatin was found 
to be insulin mimetic in action as it increased glucose uptake 
in adipocytes and myocytes. It also exerted other actions like 
suppressing hepatic glucose release and stimulating hepatic 
triglyceride accumulation and, increasing its own synthesis 
in pre-adipocytes in mice models [247]. Visfatin was found 
to exert its effect by activating insulin receptors via a differ-
ent binding site, causing receptor phosphorylation and the 
activation of the downstream signaling molecules [248]. In a 
meta-analysis study, volunteers categorized as over-
weight/obese or type 2 diabetic, Chang and colleagues ob-
served the plasma visfatin concentrations to be increased 
[249]. This provides hope for its exploitation as a possible 
diagnostic marker for diabetes. 
4.3.3.8. Retinol Binding Protein 4 (RBP4) 

RBP4 is a carrier protein of retinol (vitamin A alcohol) in 
circulation. It is bound to transthyretin in circulation and its 
physiological function is to prevent the kidney excretion of 
retinol [250]. 

The first key link between RBP4 and diabetes was the 
observation of an eminently higher plasma level of RBP4 in 
obese and T2D mice and humans [201] and, alleviation of 
insulin resistance in diet-induced obesity by an induced ex-
perimental decrease in RBP4 [251]. Yang’s group also 
showed the expression of gluconeogenic enzyme (phosphoe-
nolpyruvate carboxykinase) in liver and attenuation of insu-
lin signaling in muscle by preventing insulin receptor sub-
strate-1phosphorylation and activation of phosphatidylinosi-
tol-3-kinase in mice by RBP4. 

RBP4 has also been reported to cause adipose tissue in-
flammation by the activation of JNK inflammatory pathway 
leading to the priming of antigen presenting cell (APC) acti-
vation and consequent overshooting of the balance towards 
differentiation of adipose tissue resident APCs into M1 
macrophages exhibiting increased pro-inflammatory gene 
expression [252-255]. Thus, reducing the RBP4 levels can be 
a potential therapeutic strategy by means such as 

Transthyretin Antisense Oligonucleotides [256] or Anti-
TNF-α therapy [257].  
4.3.3.9. Apelin 

Apelin was detected in adipose tissue [258] and later 
shown to be produced and secreted by adipocytes [259]. 
Apelin has been identified as an adipokine which increased 
during adipogenesis [259, 260]. One of the main regulators 
of apelin is insulin and, a close relation between insulin and 
apelin has been shown both in vivo and in vitro [259]. The 
expression of apelin in adipocytes has been shown to be in-
creased in various mouse models of obesity associated with 
hyperinsulinemia. The pattern of apelin expression in adipo-
cytes paralleled the plasma levels of insulin in mice under 
conditions of fasting and re-feeding. Even in in vitro studies 
involving cultured adipocytes (3T3F442A) and isolated hu-
man adipocytes, expression and release of apelin is shown to 
be increased on insulin treatment. Apelin receptors (APJ) 
find wide expression in various tissues such as stomach, 
heart, lung, skeletal muscle, etc. along with being expressed 
in hypothalamus [259, 261, 262]. One of the first actions of 
apelin noted was its role in energy metabolism and, the same 
group also demonstrated its action on intestinal glucose ab-
sorption in a murine model [263]. It was also reported to 
promote glucose uptake by the enterocytes by overexpres-
sion of GLUT2 channels and upregulation of GLP1 secretion 
[264, 265]. In peripheral tissues, apelin exhibits a glucoregu-
latory action by stimulating Akt and AMPK phosphorylation 
[264, 266]. Consequently, it was also shown that apelin 
treatment improved mitochondrial biogenesis [267] and insu-
lin sensitivity in insulin-resistant obese mice [263]. Adding 
to the apelin quest, Xu et al. [268] demonstrated apelin fa-
cilitated GLUT4 translocation in C57BL/6J mice. 

As apelin receptors also exist on β-cells, it is assumed to 
have a paracrine or autocrine regulatory action on insulin 
secretion thereby preventing hyperinsulinemia and contribut-
ing to improved insulin sensitivity [269]. Apelin was also 
shown to inhibit lipolysis in 3T3 L1 cells [270] and in vivo 
studies indicated it to be through activation of AMPK [271]. 
Consistent with these findings, many studies have shown 
increased plasma apelin concentrations in obese and/or dia-
betic subjects with higher insulin levels [261]. 

All the reported data put together suggests that apelin 
could play a major role in glucose homeostasis by increasing 
insulin sensitivity and insulin secretion along with a con-
comitant suppression of lipolysis.  
4.3.3.10. Adipsin 

Adipsin was the first adipokine to be studied [272] and, it 
functions in the complement pathway as factor D [273, 274]. 
Adipsin cleaves factor B only when in complex with C3b, 
catalyzing the formation of the C3 convertase (C3bBb), 
which can act on C3 to liberate C3a. C3a stimulates insulin 
secretion by localizing Ca2+ in β-cells only in the presence of 
elevated glucose levels. In addition, the half-life of C3a is 
very short as it is rapidly inactivated by serum carboxypepti-
dases to its inactive form- C3a-desArg [275]. Its levels are 
known to drastically decline in obese and diabetic animal 
models [276]. Interestingly, restoration of adipsin expression 
increased post prandial insulin levels in T2D patients. It was 
also noted that the circulating levels of adipsin were 
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significantly decreased in T2D patients with β-cell failure 
when compared with T2D patients without the evidence of β-
cell failure. This observation suggested that adipsin 
dysregulation in diabetic patients might be one of the factors 
leading to β-cell insufficiency. Thus, adipsin seems to fill in 
the gap between adipose tissue metabolism and pancreatic β-
cell function. Adipsin levels may prove to be a predicting 
biomarker to help a physician identify individuals at highest 
risk of impending β-cell failure [275]. 

The characteristic glucose-dependent insulin se-
cretagogue property makes C3a an ideal drug having an in-
built negative feedback coordination reducing the chances of 
hypoglycemia. However, strategies to overcome its short 
half-life need to be evaluated and its usage at the cost of 
generating mitochondrial oxidative stress and its long-term 
effects needs to be assessed in detail [276]. 

By and large, every adipokine discussed in this section 
plays a role in the maintenance of glucose homeostasis as 
representated in Fig. (3). 
4.3.4. Phytochemicals 

Antidiabetic plants are known to be ubiquitously present 
worldwide. The extracts from these antidiabetic plants exert 
wide ranging effects such as stimulate B cell regenera-
tion/proliferation, exert hypolipidemic and antioxidative ef-
fects, modulate glucose metabolism, alleviate diabetic com-
plications and also act as insulin mimetics [277]. The active 
ingredient in the plant extracts are, for example, bassic acid 
(B. sartorum) and, natural flavonoids like quercetin and 
kaempferol (E. alatus) and many others. They possess the 
capacity to reduce hyperglycemia by promoting glucose up-
take and glycogen synthesis [278-280]. Dieckol, a compound 
isolated from E. cava, too exhibits antidiabetic properties by 
inhibiting α-glucosidase and α-amylase as with acarbose, a 
pharmaceutical antidiabetic [281]. Though the exact mecha-

nism is still obscure, a study carried out by Kang et al. [282], 
suggested Dieckol to mediate its action via AMPK and Akt 
signaling pathways. In addition, the root extract of B. 
aristata and Comatin, an active ingredient from C. comatus 
were found to reduce insulin resistance and enhance glucose 
homeostasis [283, 284]. Studies in this direction have also 
demonstrated the favourable influence of not only a poly-
herbal extract in rats but even single plant extract and its 
isolated flavonoid rich fraction on various facets of carbohy-
drate metabolism and β-cell neogenesis in a T2D mouse 
model [111, 285-287]. The active compounds obtained from 
medicinal herbs and their properties are shown in Table 4.  

The medicinal plants with antidiabetic properties also 
have bioactive compounds like (−) epicatechin (a flavonoid), 
marsupin (benzofuranone), and pterosupin (a dihydrochal-
cone) which have been shown to decrease blood glucose 
level in diabetics as effectively as metformin [253, 354]. A 
sulfated flavonoid from P. discolor extract was reported to 
inhibit aldose reductase in experimental animals and, clinical 
trials of the same showed anti-hyperglycemic effect [355]. 
There are also other active compounds like amorfrutins iso-
lated from licorice (G. foetida) which mediate their action 
via activation of PPAR  γ, a central player in glucose and 
lipid metabolism [288]. Vanillin and 4-hydroxybenzaldehyde 
(Table 4) are shown to reduce insulin resistance by decreas-
ing adipogenesis and increasing fatty acid oxidation and 
leptin signaling in obese rats [289]. Further, cytopiloyne has 
been reported to bring about insulin release from 𝛽-cells by 
increasing the levels of DAG and PKC𝛼 and promoting Ca2+ 
influx [290]. Additionally, capsaicin, an active constituent of 
chili pepper has been shown to activate AMPK in 3T3-L1 
preadipocytes [322]. EGCG acts in multiple ways as men-
tioned in Table 4. It affords protection against 𝛽-cell death 
mediated via islet amyloid polypeptide (IAP) in vitro [356] 
and also activates AMPK in adipocytes [322]. Resveratrol, 

 

Fig. (3). An illustration of the interplay of various adipokines in maintaining glucose homeostasis. 
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Table 4. Active antidiabetic compounds from plants and their properties. 

Plant Name Active Compound Property Reference 

G. uralensis Amorfrutin 1-4 Regulates Insulin Resistance [288] 

G. elata Vanillin, 4 hydroxy-benzaldehyde Reduces Insulin Resistance [289] 

C. verum, 

C. Zeylanium 

C. aromaticum 

Cinnamaldehyde Reduces Insulin Resistance [290] 

T. foenum-
graceum 

Diosgenin 

Galactomannan 

Trigoneoside Xa, Xb, X1b, XIIa, XIIb, XIIIa, Ia, Ib, Va 

G hydroxylisoleucine 

Reduces Insulin Resistance [291, 292] 

T. divaricate 

E. microphylla 
Conophylline Regulates β-cell function [293-296] 

roxburghii Kinsenoside Regulates β-cell function [297] 

N. stellata Nymphayol Regulates β-cell function [298] 

S. marianum 

Silybin 

Silydianin, 

Silychristin 

Regulates β-cell function [299-307] 

B. pilosa 

3-𝛽-D-glucopyranosyl-1-hydroxy-6(E)-tetradecene-8,10,12-triyne 

2-𝛽-D-glucopyranosyloxy-1-hydroxy-5(E)-tridecene-7,9,11-triyne 

2-𝛽-D-glucopyranosyloxy-1-hydroxytrideca-5,7,9,11-tetrayne 

(cytopiloyne) 

Regulates β-cell function 
[308, 309, 

290] 

Dietary fibers 
from roots of A. 

tequilana 
Inulin/Raftilose Regulates GLP-1 function [310-312] 

japonica Butyl-isobutyl pthalate Glucose absorption in gut [313] 

B. vulgaris Berberine 
Decrease hyperglycemia, Increase insulin 

resistance, Increase pancreatic β-cell regula-
tion, decrease lipid peroxidation 

[314-319] 

M. charantia Momordicin Decrease blood glucose [320] 

P. Clausseni-
anum 

2',6'-dihydroxy-4'-methoxychalcone Decrease blood glucose [321] 

Capsicum plants Capsaicin Regulates insulin resistance and β-cells [322, 323] 

P. ginseng Ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1 Regulates insulin resistance and β-cells [324, 325] 

longa 
Curcumin 

Turmerin 
Regulates insulin resistance and β-cells [326, 327] 

I. paraguariensis 3,5,-o matesaponin2 Increase GLP1 production [328] 

Z. officinale 
Gingerol 

Shogaol 

Regulates insulin receptor signaling 

Increase islet cell proliferation and insulin 
sensitivity 

[329, 330] 

C. sinensis 

Epigallocatechin 

3 gallate 

(EGCG) 

Islet protection, Increase insulin secretion 
and insulin tolerance, Decrease 

gluconeogenesis 

Insulin mimetic action 

[331-333] 
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(Table 4) contd… 

Plant Name Active Compound Property Reference 

I. okamurae Diphlorethohydroxy carmalol α-glycosidase and α-amylase inhibitor [334] 

Genistein 
Increase islet mass and insulin sensitivity, 

Activates PKA, ERK1/2, AMPK 
[322, 335-

338] G. max 

Glyceollin I, II, III GLP-1 and insulin secretion, β-cell function [339] 

A. linearis 
Aspalathin 

Rutin 
Regulates insulin tolerance and β-cell func-

tion, α-glucosidase inhibitor 
[340-344] 

A. vera Aloresin A 
Decrease α-glucosidase and insulin resis-

tance 
[345] 

E. jambolana FIIc Antidiabetic and antioxidant [346] 

Rupestris 

C. aerea  
Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-

2-one 
α-amylase inhibitor and antioxidant [347] 

S. sonchifolius 
(ECU44) 

4,5-di-O-caffeoylquinic acid (CQA) and 3,5-di-O-CQA α-amylase and α-glucosidase inhibitor [348] 

P. integerrima Pistagremic acid α-glucosidase enzyme inhibition [349] 

H. thebaica 
Luteolin 7-O-[6"-O-α-Lrhamnopyranosyl]-β-D-galactopyranoside and 
chrysoeriol 7-O-β-D-galactopyranosyl(1→2)-α-L-arabinofuranoside  

Ameliorate glucose and insulin tolerance, 
Reduces AST and ALT levels of liver 

[350] 

E. jambolana LH II Antidiabetic [351] 

E. addisoniae 
2'''-dimethyldihydropyrano [5''',6'''] and isoflavanone and 2,3-

dihydroauriculatin 
Tyrosine phosphatase 1B (PTP1B) inhibitor [352] 

 
commonly found in plants has potential to activate AMPK 
and other downstream molecules which are shown to de-
crease insulin resistance in diabetic mice [357, 358]. 

Since diabetic manifestations involve free radical associ-
ated damage in beta cells and their apoptosis accompanied 
with insulin resistance and hyperglycemia a combination of 
these well-studied phytochemicals can effectively target the 
pathophysiological conditions and prove to be a better treat-
ment paradigm than either/alone. 

CONCLUSION 

Type 2 diabetes is a metabolic disorder that can be 
prevented/ controlled through lifestyle modification, diet 
control, and weight management. Despite the presence of 
several treatment options to aid the control and management 
of this disorder, majority of patients with T2D do not 
achieve appropriate glycemic control and also suffer from 
major or minor side effects. Since a one stop solution seems 
more lucrative, most pharma and biopharma companies seem 
to be in a competitive race for developing novel drugs with 
minimal side effects. Though a total cure is still elusive, 
newer insight into the pathophysiology of the disease is 
coming to light. While synthetic small molecule drugs pose 
long-term side effects, modulating adipokine levels seem to 
be the promising approach to evade side effects. As 
adipokines have intricate involvement and functions in the 
regulation of appetite, satiety, energy expenditure and 
physical activity, they are the most promising contenders 
which, can serve as tools for weight loss interventions in the 

future. T2D being characterized by hyperglycemia, hyperlip-
idemia, and hyperinsulinemia as mentioned earlier, interven-
tions at any one or more of these triad manifestations along 
with β-cell regeneration may not only help manage T2D but 
also alleviate the disorder to a greater extent. Though re-
searches as of now project adipokines as potent therapeutic 
agents, a lack of in-depth knowledge about the mechanism(s) 
at the molecular level poses a major limitation. Filling up 
this lacuna followed by clinical studies seems the urgent 
need for generating highly specific therapeutic modalities. 

Till then, as cure is still not in the visible realm, 
management of the disease tailored to improve the quality of 
life of individuals with T2D seems the current need. 
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A genetic analysis identifies a 
haplotype at adiponectin locus: 
Association with obesity and type 2 
diabetes
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Adiponectin is a prime determinant of the status of insulin resistance. Association studies between 
adiponectin (ADIPOQ) gene single nucleotide polymorphisms (Snps) and metabolic diseases have 
been reported earlier. However, results are ambiguous due to apparent contradictions. Hence, we 
investigated (1) the association between ADIPOQ Snps: −11377C/G, +10211T/G, +45T/G and +276G/T 
for the risk towards type 2 diabetes (T2D) and, (2) genotype-phenotype association of these SNPs with 
various biochemical parameters in two cohorts. Genomic DNA of diabetic patients and controls from 
Gujarat and, Jammu and Kashmir (J&K) were genotyped using PCR-RFLP, TaqMan assay and MassArray. 
transcript levels of ADIPOQ were assessed in visceral adipose tissue samples, and plasma adiponectin 
levels were estimated by qPCR and ELISA respectively. Results suggest: (i) reduced HMW adiponectin/
total adiponectin ratio in Gujarat patients and its association with +10211T/G and +276G/T, and 
reduced ADIPOQ transcript levels in T2D, (ii) association of the above SNPs with increased FBG, BMI, 
TG, TC in Gujarat patients and (iii) increased GGTG haplotype in obese patients of Gujarat population 
and, (iv) association of −11377C/G with T2D in J&K population. Reduced HMW adiponectin, in the 
backdrop of obesity and ADIPOQ genetic variants might alter metabolic profile posing risk towards T2D.

Metabolic Syndrome (MS) is the new wave of diseases that has hit the human population in the last few decades- 
the Metabolic Syndrome Era. It has become pandemic and with obesity and type 2 diabetes (T2D) clubbed under 
the MS umbrella, millions of people around the globe have come under its grip. Though obesity and T2D are 
ubiquitous, there exists a pattern of prevalence based on ethnicity. A recent report has identified demographic 
transitions, nutrition and lifestyle in the backdrop of genetic predisposition as the chief factors responsible for 
the rising trend of obesity associated amongst South Asians1. Over accumulation of visceral adipose tissue (AT) 
has been identified as one of the major driving factors towards T2D. Adipose tissue is an important regulator of 
metabolic homeostasis by virtue of the adipokines (pro-inflammatory and anti-inflammatory) that it secretes. In 
obese conditions, the fine-tuned balance between the pro- and anti-inflammatory adipokines gets altered leading 
to various metabolic disorders2. These bioactive peptides act locally and distally to calibrate and fine tune various 
metabolic pathways. Adiponectin is one such calibrator which is abundantly expressed in white adipose tissue3. 
It circulates in three polymorphic forms, low molecular weight (LMW), moderate molecular weight (MMW) 
and high molecular weight (HMW). Interestingly, the ratio of plasma HMW adiponectin to total adiponectin is 
more strongly correlated with plasma glucose levels than any of the forms alone4. Adiponectin gene (ADIPOQ/
APM1/GBP28) locus, 3q27, has been strongly associated with a variety of metabolic disorders like- impaired 
glucose tolerance, obesity, dyslipidemia and T2D5–7. Studies undertaken on different ethnic groups have shown 
positive association of certain SNPs of the adiponectin gene with T2D3,8–11. However, T2D being a multi-factorial 
and polygenic metabolic disorder12, significant variations have been reported concerning the genetic architecture 
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underlying T2D amongst different ethnic populations13,14. The SNPs to be studied were selected based on the 
following criteria: (1) validated SNPs for frequency in Genome Wide Association Studies (GWAS), (2) SNPs with 
scientific evidence for their role in augmented protein synthesis. ADIPOQ comprises of 2 introns and 3 exons 
encoding for the 30 kDa adiponectin protein15. Four SNPs were studied, −11377C/G (rs266729) in promoter, 
+10211T/G (rs17846866) in intron 1, +45T/G (rs2241766) in exon 2 and +276G/T (rs1501299) in intron 2, to 
examine their association with T2D. Since Indian population is relatively non-homogenous, we conducted our 
study in native Gujarat, and Jammu and Kashmir (J&K) population independently. We also aimed to study the 
genotype-phenotype association of the above-mentioned SNPs with Fasting Blood Glucose (FBG), Body Mass 
Index (BMI), plasma lipid profile and T2D.

Materials and Methods
Study subjects. Two ethnically different populations of India, one from the western Indian state of Gujarat 
and another from the northern Indian state of J&K were included in the present study. This study was carried out 
in agreement with the Declaration of Helsinki as approved by the Institutional Ethical Committee for Human 
Research (IECHR), Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India 
(FS/IECHR/2016-9) and Institutional Ethics Review Board (IERB), Shri Mata Vaishno Devi University, Katra, 
J&K, India (Smvdu/IERB/13/23). It was ensured that at least five previous generations of the study subjects were 
of the respective ethnicities. Blood collection camps were conducted to guarantee the involvement of all the 
socio-economic strata in the study. The importance of the study was explained to all the participants and written 
consent was obtained from all patients, and age and sex-matched control subjects. The study group of Gujarat 
population included 475 diabetes patients (211 males and 264 females) and 493 control subjects (250 males and 
243 females) while, the study group of J&K included 507 diabetes patients (282 males and 225 females) and 300 
controls (140 males and 160 females) between the age group of 30 to 67 years. The T2D patients recruited for the 
study displayed FBG > 125 mg/dL16. Patients suffering from autoimmune diseases or cancer were excluded from 
the study. Samples of visceral (omental) adipose tissue were taken from individuals of Gujarat population under-
going bariatric surgery and fasting clinical parameters of all the study subjects are as described previously17. A 
detailed family history of the patients was recorded based on a questionnaire to collect information on first- and 
second-degree relatives and their history of T2D. The controls selected showed FBG < 110 mg/dL with no prior 
history of T2D. They were healthy and disease or infection free. The study subjects included both obese and lean 
individuals and their BMI (weight in kg/height in m2) was calculated by recording height and weight.

Blood collection and DnA extraction. FBG levels were measured by prick method using glucometer 
(TRUEresult® - Nipro). Blood was obtained from diabetic and ethnically matched controls as per our previous 
study17. Plasma was used for lipid profiling and assaying plasma HMW adiponectin and total adiponectin levels. 
PBMCs were separated for DNA extraction by phenol-chloroform method. DNA was stored at −20 °C for further 
analysis.

Screening of ADIPOQ Snps. Samples from Gujarat population were genotyped by polymerase chain 
reaction-restriction fragment length polymorphism (PCR-RFLP) for −11377C/G, +10211T/G and +276G/T. 
The PCR reaction mixture had a total volume of 20 µL as per our previous study17 with primer dependent anneal-
ing temperatures (Table S1). The amplified products were checked by electrophoresis on a 2.0% agarose gel 
stained with ethidium bromide. Details of the restriction enzymes (Fermentas, Thermo Fisher Scientific Inc., 
USA) and digested products are mentioned in Table S1. 15 μl of the amplified products were digested with 1U 
of the corresponding restriction enzyme in a total reaction volume of 20 μl as per the manufacturer’s instruc-
tion. The digestion products with 50 base pair DNA ladder (HiMedia, India) were resolved on 3.5% agarose gels 
stained with ethidium bromide and visualized under UV transilluminator i.e. E-Gel Imager Life Technologies 
(Fig. S1A–C) and uncropped images of the gels are as in Fig. S3. More than 10% of the samples were randomly 
selected for confirmation and the results were 100% concordant (analysis of the chosen samples was repeated by 
two researchers independently) and further confirmed by sequencing. ADIPOQ +45T/ G (rs2241766) SNP was 
genotyped by TaqMan real time PCR using the pre-designed assay ID c__26426077_10 for allelic discrimination, 
containing specific probes for each allele marked with VIC and FAM fluorescent dyes (ThermoFisher Scientific, 
USA). Real-time PCR was performed in 10 µl volume using LightCycler®480 Probes Master (Roche Diagnostics 
GmbH, Mannheim, Germany) following the manufacturer’s instructions. A no-template control (NTC) was used 
with the SNP genotyping assay. Samples with each genotype were analyzed together as an internal control. J&K 
samples were genotyped for −11377C/G (rs266729), +45T/G (rs2241766) and +276G/T(rs1501299) in a panel 
using High-throughput genotyping MassArray platform (SEQUENOM)18. The success rate of SNP genotyp-
ing was > 95%. As a quality control measure of SNP genotyping, three duplicate samples and a negative control 
was included in each 96 well plate. The concordance rate for genotyping was 99.5%. Further values for SNP 
+10211T/G (rs17846866) were imputed using CEU data from 1000 genome (Phase 3) as reference dataset and 
analyzed using PLINK ver 1.07 as the samples were exhausted.

plasma parameters. In Gujarat population plasma total cholesterol (TC), triglycerides (TG), and 
high-density lipoprotein cholesterol (HDL-c) levels were measured using commercial kits (Reckon Diagnostics 
P. Ltd, Vadodara, India). Low-density lipoprotein cholesterol (LDL-c) was calculated using Friedewald’s (1972) 
formula19. Human total adiponectin and HMW adiponectin ELISA Kits (Elabioscience Biotechnology Inc., USA) 
with a sensitivity of 0.47 ng/mL and 3.75 ng/mL respectively were used to estimate the levels of total adiponectin 
and HMW adiponectin in patients and controls. The plasma samples used were freeze-thawed only once. All the 
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plasma estimations were carried out in duplicates with % coefficient of variation within 10%. The plasma samples 
from J&K population were assayed for various biochemical parameters at a commercial clinical laboratory.

Determination of adiponectin transcript levels. RNA isolation and cDNA synthesis: Total RNA was 
isolated from visceral adipose tissue (VAT) using Trizol method. RNA integrity and purity were verified by 1.5% 
agarose gel electrophoresis/ethidium bromide staining and O.D. 260/280 absorbance ratio of 1.9 respectively. 
To avoid DNA contamination, RNA was treated with DNase I (Puregene, Genetix Biotech) before cDNA syn-
thesis. Transcriptor High Fidelity cDNA Synthesis Kit (Roche Diagnostic GmbH, Mannheim, Germany) was 
used to prepare cDNA using one microgram of total RNA isolated, according to the manufacturer’s instructions 
in the Eppendorf Mastercycler gradient (USA Scientific, Inc., Florida, USA). The expression of ADIPOQ and 
GAPDH, IPO8 and ACTB (reference) transcripts were measured by Light-Cycler® 480 Real-time PCR (Roche 
Diagnostics GmbH, Manneheim, Germany) using gene- specific primers (Eurofins, Bangalore, India) as shown 
in Table S1. Real-time PCR was performed using Light-CyclerH 480 SYBR Green I Master (Roche Diagnostics 
GmbH, Mannheim, Germany) and carried out in the Light-CyclerH 480 Real-Time PCR (Roche Diagnostics 
GmbH, Mannheim, Germany) as per our previous study17.

Statistical analyses. The normally distributed data for baseline parameters were analyzed by unpaired t-test 
while Mann-Whitney test was used for data not following normal distribution. Evaluation of the Hardy-Weinberg 
equilibrium (HWE) was performed for all the SNPs in patients and controls by comparing the observed and 
expected frequencies of the genotypes using chi-square analysis. The distribution of the genotypes and allele 
frequencies of ADIPOQ SNPs for patients and control subjects were compared using the chi-square test with 
2 × 2 contingency tables respectively using GraphPad Prism 5 software. The genotypes have been analyzed in an 
additive, dominant and recessive model as there was low genotype frequency of the homozygous minor alleles 
(<10% frequency). P values less than 0.0125 for genotype and allele distribution were considered as statistically 
significant as per Bonferroni’s correction for multiple testing. The strength of association of the ADIPOQ SNPs 
with the risk for T2D was assessed by odds ratio (OR) with 95% confidence intervals (CI). Haplotypes and linkage 
disequilibrium (LD) coefficients (D′ = D/Dmax) and r2 values for the pair of the most common alleles at each site 
were obtained using http://analysis.bio-x.cn/myAnalysis.php20. Association studies of SNPs with other parame-
ters were performed using analysis of variance (ANOVA) and Kruskal Wallis test. Adjustments for the possible 
confounding effects of age, sex, and BMI were also done for the samples. Relative gene expression of ADIPOQ, 
and GAPDH, IPO8 and ACTB levels and fold change (2−∆∆Cp values) in T2D patients and control groups were 
plotted and analyzed by unpaired t-test. All the analyses were carried out in GraphPad Prism 5 software. P val-
ues less than 0.05 were considered significant for all the association studies. To predict the functional impact of 
non-coding polymorphisms, ENCODE prediction tool (https://www.encodeproject.org/) was employed21.

Results
Clinical parameters differed significantly between controls and patients in both the populations of Gujarat and 
J&K (Tables S2 and S3). Patients had significantly higher FBG (p < 0.0001). Moreover, obesity related factors like 
BMI, TC, TG and LDL-c were significantly elevated (p < 0.0001, p = 0.0360 and p = 0.001, respectively) while 
HDL-c was significantly decreased (p < 0.0001) in patients as compared to controls in Gujarat population while 
in the J&K population BMI (p = 0.015), FBG (p < 0.0001) and TG (p = 0.001) levels were significantly higher in 
T2D patients.

Association of ADIPOQ SNPs with T2D. The genotype and allele frequencies of the ADIPOQ SNPs are 
summarized in Table 1. The distribution of genotype frequencies for all the polymorphisms investigated was 
consistent with Hardy-Weinberg Expectations (HWE) (p > 0.05) in both the populations. Analysis of the geno-
type frequencies of +10211T/G (rs17846866) and +276G/T (rs1501299) SNPs using an additive model revealed 
them to be significantly associated (p < 0.0001) while the promoter 11377C/G (rs266729) and exonic +45T/G 
(rs2241766) SNPs were not associated with T2D (Table 1). Further, in Gujarat population a significant association 
was detected for the intron 1 +10211T/G (rs17846866) when analyzed in the recessive model (OR = 1.797, 95% 
CI = 1.369–2.359, p < 0.0001) with T2D. Likewise, the intron 2 + 276G/T (rs1501299) SNP was also found to be 
significantly associated in the recessive model (OR = 2.05, 95% CI, 1.57–2.65, p < 0.0001) as shown in Table 1. 
However, in J&K population, only promoter −11377C/G (rs266729) polymorphism was found to be associated 
(p = 0.0101; OR = 1.47, 95% CI = 1.09–1.96) with T2D in the recessive model (Table 1). The frequency of mutant 
alleles for +10211T/G (rs17846866) and +276G/T (rs1501299) was noted to be significantly higher in diabetic 
patients as compared to that of control subjects (OR = 2.33 and OR = 1.726, respectively) in Gujarat population.

Haplotype and linkage disequilibrium analysis of ADIPOQ Snps. A haplotype evaluation of four 
polymorphic sites of ADIPOQ was performed in Gujarat population. The estimated frequencies of the haplo-
types differed significantly between patients and controls (global p = 7.76 × 10−12) as shown in Table S4. The 
disease susceptible haplotypes were CGTG (p = 0.0003), CGTT (p = 6.32 × 10−5), GGTT (p = 0.0207) and GGTG 
(p = 0.0030) (Table S4). Furthermore, the GGTG (p = 3.87 × 10−5) haplotype in particular was found to be signifi-
cantly higher in obese patients as shown in Table 2. The LD analysis revealed that the four SNPs investigated were 
in low to moderate LD association (Fig. S2). Haplotype and LD analyses were not performed in the J&K pop-
ulation as only −11377C/G (rs266729) was found to be associated with T2D and the genotypes of +10211T/G 
(rs17846866) were imputed.

ADIPOQ expression and plasma HMW adiponectin/total adiponectin ratio in patients and con-
trols. A significant reduction in ADIPOQ transcript levels was observed in Gujarat T2D patients as compared 
to controls after normalization with GAPDH expression (p = 0.0187) as suggested by mean ∆Cp values (Fig. 1A). 
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The 2−ΔΔCp analysis showed approximately 0.84 fold decrease in the expression of ADIPOQ transcript levels in 
patients as compared to controls (Fig. 1B). Similar results were obtained for ADIPOQ transcript levels when 
normalized with IPO8 (p = 0.0184) and ACTB (p = 0.0344) (Fig. S4A,C). The 2−ΔΔCp analysis of the same showed 
approximately 0.87 and 0.82 fold reduction in the expression of ADIPOQ transcript levels in patients as shown 
in (Fig. S4B,D). Further, there was no significant difference observed between ADIPOQ transcript levels and 
its SNPs (p > 0.05) as shown in Fig. 1C. Plasma HMW adiponectin and total adiponectin levels, and their ratio 
monitored in 37 controls and 45 patients showed significant decrease (p < 0.001) in Gujarat patients as compared 
to controls (Fig. 1D). Healthy females showed higher HMW adiponectin/total adiponectin ratio than healthy 
males (p < 0.001) (Fig. 1E). A significant drop in the ratio was observed in diabetic males and females when com-
pared with their healthy counterparts (p < 0.05 & p < 0.01 respectively) (Fig. 1E). There was no significant reduc-
tion in the HMW adiponectin/total adiponectin ratio between healthy lean and obese individuals. However, the 

SNP N Genotype Allele

Odds Ratio [95% CI] (p-value)

Allelic Additive Dominant Recessive

Gujarat Population

rs266729 CC CG + GG C G

1.23 [0.95–1.59] (0.118) 0.2644 1.46 [0.72–2.95] (0.1443) 1.28 [0.92–1.77] (0.1432)Controls 286 155 131 427 145

T2D Patients 285 137 148 402 168

rs17846866 TT TG + GG T G

2.33 [1.85–2.93] (<0.0001) <0.0001 1.46 [0.15–2.02] (<0.0001) 1.79 [1.36–2.35] (<0.0001)Controls 493 363 130 847 139

T2D Patients 475 289 186 687 236

rs2241766 TT TG + GG T G

0.86 [0.64–1.18] (0.3722) 0.6704 0.74 [0.22- 2.55] (0.6325) 0.86 [0.61- 1.21] (0.3954)Controls 467 362 105 822 112

T2D Patients 359 287 72 642 76

rs1501299 GG GT + TT G T

1.72 [1.42–2.09] (<0.0001) <0.0001 1.99 [1.28–3.08] (0.0018) 2.05 [1.57–2.65] (<0.0001)Controls 489 255 216 692 250

T2D Patients 464 172 298 579 361

Jammu and Kashmir Population

rs266729 CC CG + GG C G

1.34 [1.05–1.69] (0.0168) 0.0365 1.26 [0.67–2.36] (0.2294) 1.47 [1.09–1.96] (0.0101)Controls 290 151 139 423 157

T2D Patients 503 309 194 787 219

rs17846866# TT TG + GG T G

0.95 [0.70–1.29] (0.3827) — — 0.95 [0.71–1.27] (0.3663)Controls 300 141 159 206 94

T2D Patients 507 232 275 343 164

rs2241766 TT TG + GG T G

0.72 [0.52–1.02] (0.0613) 0.2041 0.646 [0.23–1.83] (0.2039) 0.71 [0.49–1.04] (0.0788)Controls 299 251 48 545 53

T2D Patients 507 400 107 894 120

rs1501299 GG GT + TT G T

1.09 [0.86–1.40] (0.2248) 0.7452 1.12 [0.59–2.13] (0.3670) 1.12 [0.83–1.51] (0.2247)Controls 289 170 119 443 135

T2D Patients 502 309 193 786 218

Table 1. Genotype and allele frequencies distribution of ADIPOQ SNPs in T2D patients in Gujarat and J&K 
population. #Values were Imputed using CEU data from 1000 genome (Phase 3) as reference dataset and 
analyses was carried out in PLINK ver 1.07.

Haplotype rs266729, 
rs17846866, rs2241766, 
rs1501299

Obese Patients 
(Frequency %) 
(n = 330)

Lean Patients 
(Frequency %) 
(n = 150)

p for 
Association p (global)

Odd Ratio 
[95%CI]

C G T G* 24.49 (0.129) 61.62 (0.081) 0.0397

2.26 × 10−8

1.68 [1.020~2.780]

C G T T* 15.12 (0.080) 25.66 (0.034) 0.0053 2.48 [1.285~4.799]

C T G G 12.57 (0.066) 35.80 (0.047) 0.2851 1.43 [0.738~2.791]

C T T G* 53.25 (0.280) 273.96 (0.361) 0.0317 0.67 [0.474~0.968]

C T T T* 17.77 (0.094) 133.56 (0.176) 0.0051 0.47 [0.283~0.809]

G G T G* 15.34 (0.081) 16.02 (0.021) 3.87 × 10−5 4.10 [1.993~8.434]

G T T G* 14.89 (0.078) 106.21 (0.140) 0.0219 0.51 [0.293~0.917]

G T T T* 19.89 (0.105) 39.53 (0.052) 0.0072 2.14 [1.215~3.774]

Table 2. Haplotype frequencies in lean and obese patients in Gujarat population. *Indicates haplotypes 
significantly associated with obesity induced T2D. Frequency <0.03 were ignored in the analysis. The 
haplotypes in J&K population could not be assessed as the data for +10211T/G (rs17846866) was imputed.

https://doi.org/10.1038/s41598-020-59845-z


5Scientific RepoRtS |         (2020) 10:2904  | https://doi.org/10.1038/s41598-020-59845-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

obese patients showed a significant drop compared to lean patients (p < 0.05) (Fig. 1F). Lean and obese diabetic 
individuals showed reduced HMW adiponectin/total adiponectin ratio as compared to their respective controls 
(p < 0.05, p < 0.01). The drop in the plasma adiponectin ratio was further accentuated in obese diabetic patients 
(p < 0.001) (Fig. 1F).

Association of ADIPOQ SNPs and their genotypes with metabolic parameters and HMW 
adiponectin/total adiponectin ratio. As shown in Table 3, in Gujarat population, the GG genotype 
of −11377C/G was associated with increased levels of TG, LDL-c and HDL-c (females). The GG genotype of 
+10211T/G was significantly associated with FBG, BMI, TG, TC, HDL-c and HMW adiponectin/total adiponec-
tin ratio while the TT genotype of +276G/T was significantly associated with increased FBG, BMI, TG, TC 
and LDL-c and, decreased HDL-c (p > 0.05). Further, +45T/G was not associated with any of the parameters 
in Gujarat population. However, no significant association of the metabolic parameters was observed with the 
polymorphisms in J&K population (Table S5).

Bioinformatics analyses. ENCODE data base showed that −11377C/G (rs266729), +10211T/G 
(rs17846866), +45T/G (rs2241766) and +276G/T (rs1501299) do not overlap with any cis-Response Elements 
(cREs) or display any cREs within 2 kb. Further, eQTL database GTex shows TG and GG genotypes of rs17846866 
to have significantly reduced levels of plasma adiponectin similar to our findings. However, the eQTL data for 
the rest of the SNPs are not available. Analysis of rs2241766, a synonymous exonic SNP, revealed that the glycine 
residue at the 15th position remains unchanged (SIFT). Further, the change in codon usage was calculated by 
applying a relative synonymous codon usage (RSCU) approach to understand the relevance of ribosomal pause 
in reduced amount of protein being expressed. The delta Relative Synonymous Codon Usage (RSCU) value for 

Figure 1. ADIPOQ transcript levels and plasma adiponectin levels in Gujarat population. (A) Relative gene 
expression of VAT ADIPOQ in controls and patients: Significant decrease in ADIPOQ transcript levels was 
observed in patients (Mean ∆Cp ± SEM: 1.639 ± 0.3829 v/s 6.681 ± 0.6558; p = 0.0187), (B) Relative fold 
change of ADIPOQ expression in controls and patients. Expression of ADIPOQ transcripts in T2D patients as 
compared to controls was decreased by 0.84 fold as determined by the 2-ΔΔCp method. (Controls n = 14; T2D 
patients n = 10). (C) Association of ADIPOQ polymorphisms with ADIPOQ transcript levels. No association 
between ADIPOQ polymorphisms and ADIPOQ transcript levels (p > 0.05). HMW adiponectin/total 
adiponectin ratio in (D) controls versus patients. Plasma HMW adiponectin/total adiponectin ratio in patients 
were significantly lower than in controls, (E) control and diabetic males and females. HMW adiponectin/total 
adiponectin ratio in control and patient females were significantly higher than in control and patient males and 
(F) lean (L) and obese (O) control and diabetic subjects. Obese patients showed significantly reduced HMW 
adiponectin/total adiponectin ratio (*p < 0.05, **p < 0.01, ***p < 0.001). (Controls n = 37; T2D patients 
n = 45).
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the GGT to GGG codon change was calculated to be −0.31. However, no significant association of the +45T/G 
polymorphism was found with adiponectin levels.

Discussion
Our findings, for the first time, collectively suggest that ADIPOQ CGTG, CGTT, GGTT and GGTG haplo-
types were associated with T2D, further GGTG was significantly associated with obesity induced T2D. Also, 
+10211T/G (rs17846866) and +276G/T (rs1501299) were strongly associated with obesity induced T2D suscep-
tibility in Gujarat population; whereas in J&K population only −11377C/G (rs266729) was found to be associated 
with T2D. The difference in the association of variants can be attributed to the ethnic differences between the 
two populations. The findings in Gujarat population are further linked with reduced levels of HMW adiponectin 
and disease-associated risk factors like FBG, BMI and lipid parameters thereby suggesting their crucial role in 
metabolic disease susceptibility.

Obese phenotype has been associated with a reduction in the anti-inflammatory and a boost in the 
pro-inflammatory adipokines. Our previous reports suggest interleukin 1β (IL1β)22, resistin23 and TNFα24 to play 
an important role in the development of obesity, islet dysfunction and decreased insulin secretion. On the con-
trary, adiponectin2, omentin-125, melatonin26 and vaspin27 are known to enhance insulin sensitivity. The normal 
range of total adiponectin in healthy individuals is reported to be 2–20 µg/mL28. The characteristic short stature 
of South Asians combined with visceral adiposity leads to an increased weight per area distribution defined by 
body mass index predisposing those to metabolic diseases1,29–31. Genome-wide association studies have shown 
a close association between adiponectin, ADIPOQ SNPs, fasting hyperglycemia and various metabolic diseases 
though varying from population to population32–34. Earlier studies have shown promoter −11377C/G (rs266729) 
polymorphism to have a positive association with hypoadiponectinemia and risk of developing T2D35 and is sup-
ported by the findings in J&K population. As opposed to this, we found this SNP not to be associated with T2D or 
BMI in Gujarat population supporting the work by Schaffler et al. who also reported the absence of transcription 
factor binding sites at or around this SNP site36. However, the GG genotype of −11377 C/G (rs266729) did show 
an association with increased serum triglycerides and LDL-c, and reduced HDL-c in females. In spite of not being 
associated with T2D, possibly an indirect effect of other SNPs could be the reason for the observed altered asso-
ciation of the −11377 C/G (rs266729) with the serum lipid levels.

Adiponectin gene expression in an adipose tissue is regulated by a 34 bp enhancer located in the first intron37. 
Therefore, the finding of +10211T/G (rs17846866) located close to the enhancer in the region of the first intron 
affecting lipid metabolism and adiponectin levels in the present study is of significance. Though the ENCODE 
data base doesn’t show an overlap of this polymorphism with any cREs or display any cREs within 2 kb; eQTL 
database GTex shows TG and GG genotypes of +10211T/G (rs17846866) to have significantly reduced levels of 
plasma adiponectin similar to our findings. Additionally, this SNP is also seen to be associated with increased 
BMI, FBG, TG, TC and reduced HDL-c. To date, three independent studies, including ours, have established 
the association of +10211T/G (rs17846866) with three different Indian populations belonging to different 

Genotype/
Allele FBG (mg/dL) BMI (Kg/m2) TG (mg/dL) TC (mg/dL)

HDL-c (mg/dL)

LDL-c (mg/dL)

HMW 
adiponectin: 
total 
adiponectin 
(µg/mL)Male Female

ADIPOQ −11377 C/G (rs266729)

   CC 124.50 (50.02) 25.37 (5.28) 123.00 (79.00) 161.70 (39.47) 36.81 (10.73) 45.17 (14.02) 93.83 (37.5) 0.97 (0.48)

   CG 124.70 (51.02) 25.57 (5.95) 150.00 (102.00) 162.70 (39.52) 37.59 (9.30) 34.63 (9.96) 101.90 (39.36) 1.00 (0.54)

   GG 124.10 (30.64) 26.36 (5.51) 166.00 (84.00) 156.40 (37.13) 39.75 (13.25) 26.56 (1.51) 101.40 (32.03) 0.64 (0.24)

P value 0.6241 0.4906 <0.0001 0.8671 0.7369 <0.0001 0.0087 0.2055

ADIPOQ +10211T/G (rs17846866)

   TT 130.00 (56.13) 25.60 (5.90) 135.80 (92.00) 151.60 (27.89) 42.79 (14.38) 43.18 (14.57) 96.86 (37.5) 1.50 (0.61)

   TG 132.20 (55.11) 25.33 (5.20) 138.90 (78.00) 162.20 (38.97) 41.62 (21.49) 44.16 (13.51) 96.64 (46.54) 0.86 (0.39)

   GG 148.10 (56.86) 27.82 (5.60) 166.40 (85.60) 175.60 (39.02) 37.76 (12.92) 34.22 (8.07) 99.20 (37.57) 0.82 (0.36)

P value <0.0001 <0.0001 <0.0001 <0.0001 0.0141 <0.0001 0.6024 0.0001

ADIPOQ +45T/G (rs2241766)

   TT 155.40 (4.26) 26.82 (5.20) 164.00 (14.8) 163.80 (37.00) 36.62 (11.85) 40.53 (12.36) 95.79 (39.5) 0.98 (1.20)

   TG 171.50 (12.96) 27.16 (5.29) 172.80 (20.3) 164.50 (44.91) 36.51 (11.00) 40.42 (14.46) 96.75 (39.26) 0.83 (0.38)

   GG 122.50 (8.50) 30.05 (3.748) 103.90 (15.28) 185.70 (27.61) 34.57 (6.734) 41.27 (11.80) 94.87 (37.83) 0.82 (0.30)

P value 0.3293 0.2619 0.6088 0.4735 0.9708 0.9936 0.9396 0.9284

ADIPOQ +276G/T (rs1501299)

   GG 151.00 (53.88) 24.98 (4.53) 143.30 (78.00) 153.20 (29.34) 37.87 (12.34) 40.64 (12.52) 70.36 (27.13) 1.36 (0.63)

   GT 166.90 (69.67) 27.69 (5.53) 165.20 (89.00) 154.70 (32.12) 35.78 (10.48) 39.25 (12.56) 92.99 (36.33) 0.93 (0.44)

   TT 303.80 (94.54) 29.75 (4.23) 266.60 (90.00) 189.00 (25.96) 33.28 (11.93) 37.34 (6.34) 90.62 (34.1) 0.75 (0.33)

P value <0.0001 0.0001 <0.0001 0.0001 <0.0001 0.0831 0.005 0.0006

Table 3. Genotype-phenotype association analyses of ADIPOQ SNPs with metabolic parameters in Gujarat 
population. Data represented as Mean (SD).
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demographical and geographical regions, thus further validating the significance of this SNP10,11. However, the 
results from J&K population did not reveal any such association. +45T/G (rs2241766) is a synonymous SNP with 
a codon change from GGT to GGG. Though studies on Chinese Han population found an association between 
+45T/G (rs2241766) and insulin resistance38; our results show no association between +45T/G (rs2241766) and 
T2D as supported by studies on Italian, French and Swedish populations3,8,9. We report a significant association 
of +276G/T (rs1501299) with T2D, and serum lipid profile in Gujarat population while no association was found 
in J&K population. Supporting our data from Gujarat population, similar results were obtained in earlier studies 
in German39, Swedish40, Italian Caucasian41, French Caucasian3 and South Indian populations35. However, the 
results of the study by Hara et al.42 in Japanese subjects were in accordance with the results obtained in J&K pop-
ulation. In Gujarat population, the TT genotype conferred approximately double risk for developing T2D against 
the GG genotype in +276G/T (rs1501299). Furthermore, +276G/T (rs1501299) is also found to be linked with 
increased BMI, FBG, TG, and TC, and reduced HDL-c in males. These findings also suggest the association of 
+276G/T (rs1501299) with Non-Alcoholic Fatty Liver Disease (NAFLD), co-morbidity associated with T2D as 
supported by Wang et al.43. Additionally, we have also found increased levels of TNFα, Free Fatty Acids (FFA) 
and resistin in obese patients17,44. Since TNFα is shown to be an important regulator of adiponectin multimeri-
zation45, our observations of increased TNFα, reduced adiponectin transcript and HMW adiponectin levels in 
obese patients are self-explanatory. We had also reported a rise in IL1β levels in obese diabetic patients46, asserting 
the rise in pro-inflammatory adipokine and drop in anti-inflammatory adipokine in obesity-associated low-grade 
inflammatory condition. Further, adiponectin levels show sexual dimorphism47 and our results further confirm 
this as females in general demonstrated a higher tendency of HMW adiponectin/total adiponectin ratio than 
males. Also, a significant drop in adiponectin ratio of lean diabetic individuals was observed which was further 
pronounced in obese diabetic patients. Moreover, the overall plasma HMW adiponectin/total adiponectin ratio 
tends to be lower in subjects with the homozygous mutant allele for +10211T/G (rs17846866) and +276G/T 
(rs1501299). In concordance with our findings, adiponectin levels were strongly and inversely associated with 
diabetes risk48,49. Alongside, we had also reported the prevalence of a significantly high number of angiotensin 
convertase enzyme (ACE) I/D polymorphism in the same population50. The ACE D allele has in particular been 
shown to be associated with increased angiotensin II51 which may be further adding to the down regulation of 
adiponectin. We suggest that the reduced HMW adiponectin in particular is responsible for insulin resistance 
as, among the adiponectin isoforms, the HMW isoform binds to its receptor with maximum affinity leading to 
a potent activation of 5′ AMP-activated protein kinase (AMPK). Thus, the lowered HMW adiponectin may be 
partly responsible for developing T2D52. The increased level of TG may be due to a decrease in the lipoprotein 
lipase activity and Very Low-Density Lipoprotein receptor (VLDLr) expression levels, which have been proposed 
to be modulated by adiponectin53. While HDL-c levels and their particle size are inversely correlated with the 

Figure 2. Role of ADIPOQ SNPs in T2D: The ADIPOQ CGTT, GTTT and GGTG haplotypes in presence of 
ADIPOQ +10211T/G (rs17846866) and +276G/T (rs1501299) along with decreased transcript, plasma HMW 
adiponectin and total adiponectin, and increased TNFα, FFA, resistin leads to altered metabolic profile thereby 
contributing to insulin resistance and T2D in Gujarat population.
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catabolic rate of apolipoprotein (ApoA-I), a direct role of reduced adiponectin with increased catabolism of the 
major ApoA-I present in HDL-c has been proposed54, explaining how hypoadiponectinemia leads to decreased 
HDL-c levels. The correlation between hypoadiponectinemia and reduced HDL-c levels, as observed by us fur-
ther strengthens the hypothesis. To summarize, +10211T/G (rs17846866) and +276G/T (rs1501299) are signif-
icantly associated with increased FBG, BMI, TG, TC and reduced HMW adiponectin/total adiponectin ratio. 
More importantly, the haplotype analysis reveals that individuals with GGTG haplotype in particular show an 
increased tendency towards obesity induced T2D55 (Fig. 2). Thus, we may conclude that adiponectin gene is 
associated with T2D, nonetheless variation in the susceptibility loci within the gene depends on ethnic variation 
among different populations. However, further investigations to understand the mechanistic aspects of genetic 
variants regulating adiponectin levels are warranted in other cohorts.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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Background & aim: Tumor necrosis factor-a (TNF-a) and its genetic variants are implicated in the
development of type 2 diabetes (T2D) as a result of systemic inflammation, dyslipidemia, and insulin
resistance. The aim of the present study was to investigate i) single nucleotide polymorphisms (SNPs) of
TNF-a and its association with altered TNF-a transcript levels and plasma concentrations ii) free fatty acid
(FFA) concentrations as a marker for dyslipidemia and its association with TNF-a and iii) genotypee
phenotype correlation analysis in T2D patients.
Methods: Plasma and PBMCs were separated from venous blood of 478 diabetic patients and 502 age-
matched non-diabetic individuals. Genomic DNA was isolated from PBMCs and RNA was isolated from
PBMCs and adipose tissue samples. PCR-RFLP was used for genotyping and qPCR to estimate TNF-a levels.
TNF-a and FFA concentrations were estimated from plasma samples by ELISA.
Results: Our study suggests: i) involvement of TNF-a �857 C/T in T2D patients (p < 0.0001), ii) 2.072 and
6.7 fold elevation in TNF-a transcript levels in patients’ PBMCs and adipose tissues respectively, increased
plasma TNF-a (p ¼ 0.0122) particularly in obese patients (p ¼ 0.0405), increased plasma FFA (p ¼ 0.0215)
and, iii) association of TNF-a �238 G/A with body mass index (BMI) (p ¼ 0.0270) and, �857 C/T with
fasting blood glucose (FBG) (p ¼ 0.0122) and triglycerides (TG) (p ¼ 0.0015). Correlation analysis suggests
that TNF-a concentrations are positively correlated with BMI (r ¼ 0.3, p ¼ 0.04) and negatively correlated
with HDL (r ¼ �0.39, p ¼ 0.001) while the FFA concentrations are positively correlated with BMI
(r ¼ 0.35, p ¼ 0.0004).
Conclusion: It can be concluded that the genetic variant of TNF-a along with elevated TNF-a and FFA
concentrations play a role in the development of dyslipidemia which could be a potent risk factor to-
wards T2D in Gujarat population.

© 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
1. Introduction

Type 2 diabetes (T2D) and insulin resistance have been strongly
correlated with increased abdominal obesity, a low-grade inflam-
matory condition [1]. The mechanism involved in the development
of obesity-induced T2D or insulin resistance includes the dysre-
gulated secretion of pro and anti-inflammatory adipokines [2,3].
A, Free Fatty Acid; TC, Total
oprotein; HDL, High Density
Restriction Fragment Length

egum).

for Clinical Nutrition and Metabol

al., Genetic variants of tumo
tion (2018), https://doi.org/10
TNF-a, a pro-inflammatory cytokine/adipokine secreted from
infiltrating macrophages, is highly expressed in the adipose tissues
of obese animals and human subjects [4]. It impedes insulin-
induced phosphorylation of the tyrosine residues in insulin re-
ceptor and its substrates which is suggested to affect insulin
sensitivity [5]. Feingold et al. have reported that TNF-a increases
triglycerides in humans by promoting lipolysis and elevating free
fatty acid concentration [6].

It is well-known that T2D is a multifactorial and polygenic
metabolic disorder [7]. Substantial variation between different
ethnic populations has been reported with regard to the genetic
architecture underlying T2D [8,9]. Several single nucleotide
polymorphisms (SNPs) in the TNF-a promoter region i.e. �238
G/A, �308 G/A, �857 C/T, and �863 C/A (rs361525, rs1800629,
ism. All rights reserved.
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rs1799724, and rs1800630 respectively) [10,11] have been consid-
ered as potent contributors in the pathogenesis of T2D in different
ethnicities [12e15]. Reports suggest that genetic variants in the
promoter region of TNF-a are associated with differences in its gene
expression [14,16,17]. Further, �238G/A and �308G/A poly-
morphisms of TNF-a are documented to alter circulating free fatty
acid (FFA) concentrations and insulin resistance in obese subjects
with T2D [18]. Several studies have revealed a correlation between
TNF-a expression and risk factors like Body Mass Index (BMI) and
plasma lipids [19,20]. Moreover, TNF-a also plays a role in the
pathogenesis of various autoimmune diseases like rheumatoid
arthritis, inflammatory bowel disease, psoriasis, ankylosing
spondylitis [21], cardiovascular disease [22], cancer [23] and vitiligo
[24].

The aim of this study was to examine whether i) promoter
polymorphisms in TNF-a (�238 G/A, �308 G/A, �857 C/T,
and �863 C/A) are associated with its altered transcript levels and
plasma concentrations, and T2D in Gujarat population, ii) plasma
FFA as a marker for dyslipidemia is associated with TNF-a, iii) the
genotypeephenotype correlation of the above-mentioned SNPs,
plasma FFA and TNF-a with the metabolic profile. This is the first
genetic association study of TNF-a variants and its association with
altered gene expression and protein concentration, and FFA con-
centrations serving as a potent risk factor for dyslipidemia and T2D
in Gujarat population.

2. Materials and methods

2.1. Study subjects

This study was conducted according to the declaration of Hel-
sinki and was approved by the Institutional Ethical Committee for
Human Research (IECHR), Faculty of Science, The Maharaja Saya-
jirao University of Baroda, Vadodara, Gujarat, India (FS/IECHR/2013/
1). A written consent was obtained from all participants after
explaining the importance of the study. The study group included
478 T2D patients (213 males and 265 females) and 502 control
subjects (251males and 251 females) as shown in Table 1. The study
size was decided based on the previous literature so as to obtain a
significant proportion of the less frequent genotypes. Additionally,
tissue samples from abdominal region were taken from 22 obese
subjects (10 T2D patients and 12 controls) having BMI > 30 kg/m2

for the gene expression studies. Visceral (omental) adipose tissue
was collected by a single surgeon at the time of elective laproscopic
Table 1
Baseline characteristics of diabetic and non-diabetic individuals from Gujarat
population.

Controls Patients P value

(Mean ± SD) (Mean ± SD)

(n ¼ 502) (n ¼ 478)

Age 39.64 ± 16.35 yr 55.99 ± 10.42 yr e

Sex 251 (50%) 213 (44.5%) e

Male
Female 251 (50%) 265 (55.5%) e

Fasting blood glucose (mg/dL) 100.1 ± 7.32 155.3 ± 62.09 < 0.0001
BMI (Kg/m2) 24.24 ± 5.2 27.04 ± 5.1 < 0.0001
Total Cholesterol (mg/dL) 160.9 ± 42.2 166.2 ± 39.68 0.0420
Triglycerides (mg/dL) 111.7 ± 60.90 164.5 ± 111.1 < 0.001
HDL (mg/dL) 42.79 ± 15.94 38.2 ± 12.6 < 0.0001
LDL (mg/dL) 95.32 ± 41.79 95.10 ± 37.52 0.9322
Onset age (Years) NA 50.65 ± 10.10 e

Duration of disease (Years) NA 8.06 ± 7.3 e

Family history NA 64 (14%) e

Data are presented as Mean ± SD. Statistical significance was considered at p < 0.05.
Bold signifies p values.

Please cite this article in press as: Patel R, et al., Genetic variants of tumo
type 2 diabetes susceptibility, Clinical Nutrition (2018), https://doi.org/10
surgery. Clinical parameters of all the study subjects were taken in
fasted state. Anthropometric and biochemical parameters are as
shown in Table S1. Further, fasting blood glucose (FBG) levels
>125 mg/dL were considered for the recruitment of T2D subjects.
Height and weight were measured to calculate BMI (weight kg/
height m2).

2.2. Blood collection, DNA extraction, and lipid profiling

Three ml venous blood was drawn from diabetic patients and
ethnically matched non-diabetic individuals and collected in
K3EDTA coated tubes (Greiner Bio-One, North America Inc., North
Carolina, USA). Plasma was separated and stored at �20 �C for lipid
profile and assay of FFA and TNF-a. FBG, total cholesterol (TC), tri-
glycerides (TG), and high-density lipoprotein (HDL) were estimated
by using appropriate commercial kits (Reckon Diagnostics P. Ltd,
Vadodara, India). Low-density lipoprotein (LDL) was calculated by
using Friedewald's (1972) formula. DNA was extracted by phenol-
chloroform method and the DNA content and purity were deter-
mined spectrophotometrically by 260/280 absorbance ratio. The
integrity of DNA was checked electrophoretically on 0.8% agarose
gel. The DNA was normalized and stored at 4 �C until further
analysis.

2.3. Genotyping of TNF-a SNPs by PCR-RFLP

Polymerase Chain Reaction-Restriction Fragment Length Poly-
morphism (PCR-RFLP) was used to genotype the four promoter
polymorphisms of TNF-a. The primers used for genotyping are
mentioned in Table S2. The reactionmixture (20 mL) included 3.0 mL
(150 ng) of genomic DNA, 11.0 mL nuclease-free water, 2.0 mL 10X
PCR buffer, 2.0 mL of 25 mM dNTPs (Puregene, Genetix Biotech),
1.0 mL of 10 mM corresponding forward and reverse primers
(Eurofins, Bangalore, India), and 0.2 mL (5U/mL) Taq Polymerase
(Puregene, Genetix Biotech). DNA amplification was performed
using an Eppendorf Mastercycler gradient (USA Scientific, Inc.,
Florida, USA). The protocol followed was: initial denaturation at
95 �C for 10 min followed by 39 cycles of 95 �C for 30 s (denatur-
ation), primer-dependent annealing (Table S2) for 30 s, extension at
72 �C for 30 s and the final extension at 72 �C for 10 min 5 mL of the
amplified product was checked by electrophoresis on a 2% agarose
gel stained with ethidium bromide. Details of the restriction en-
zymes (Fermentas, Thermo Fisher Scientific Inc., USA) and digested
products are mentioned in Table S2 15 ml of the amplified product
was digested with 1U of the corresponding restriction enzyme in a
total reaction volume of 20 ml as per the manufacturer's instruction.
The digested products with 50 base pair DNA ladder (Genei Ban-
galore, India) were resolved on 3.5% agarose gels or 15% poly-
acrylamide gels stained with ethidium bromide and visualized
under UV transilluminator. More than 10% of the samples were
randomly selected for confirmation and the results were 100%
concordant (analysis of the chosen samples was repeated by two
researchers independently) and, further confirmed by sequencing.

2.4. Determination of TNF-a transcript

2.4.1. RNA extraction and cDNA synthesis
Total RNA from whole blood and adipose tissue samples was

extracted by Trizol method. RNA integrity and purity were verified
by 1.5% agarose gel electrophoresis/ethidium bromide staining and
O.D. 260/280 absorbance ratio 1.95, respectively. Further, RNA was
treated with DNase I (Puregene, Genetix Biotech) before cDNA
synthesis to avoid DNA contamination. One microgram of total RNA
was used to prepare cDNA using the Transcriptor High Fidelity
cDNA Synthesis Kit (Roche Diagnostics GmbH, Mannheim,
r necrosis factor-a and its levels: A correlation with dyslipidemia and
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Germany) according to the manufacturer's instructions in the
Eppendorf Mastercycler gradient (USA Scientific, Inc., Florida, USA).

2.4.2. Real-time PCR
The expression of TNF-a and GAPDH transcript levels were

measured by LightCycler®480 Real-time PCR (Roche Diagnostics
GmbH, Mannheim, Germany) using gene-specific primers (Euro-
fins, Bangalore, India) as shown in Table S2. Expression of GAPDH
gene was used as a reference. Real-time PCR was performed as
described previously [25].

2.5. Estimation of plasma TNF-a and FFA concentrations

Plasma concentrations of TNF-a and FFA in patients and controls
were measured using human TNF-a ELISA Kit (Ray Biotech., GA,
USA) and Free Fatty Acid Quantification Colorimetric/Fluorometric
Kit (BioVision, Inc., CA, USA) respectively as per the manufacturer's
protocol.

2.6. Statistical analyses

Biochemical parameters were compared using unpaired t-test
using Prism 5 software (GraphPad software Inc; San Diego CA, USA).
Evaluation of the HardyeWeinberg equilibrium (HWE) was per-
formed for all the polymorphisms in patients and controls by
comparing the observed and expected frequencies of the genotypes
using chi-squared analysis. The distribution of the genotypes and
allele frequencies of TNF-a promoter polymorphisms for patients
and control subjects were compared using the chi-squared test
with 2 � 2 contingency tables respectively using Prism 5 software.
P values less than 0.0125 for genotype and allele distribution were
considered as statistically significant as per Bonferroni's correction
for multiple testing. Odds ratio (OR) with respective confidence
interval (95% CI) for disease susceptibility was also calculated.
Haplotypes and linkage disequilibrium (LD) coefficients D’ ¼ D/
Dmax and r2values for the pair of the most common alleles at each
site were obtained using http://analysis.bio-x.cn/myAnalysis.php
[26]. Relative gene expression of TNF-a, plasma TNF-a, and FFA
concentrations in patient and control groups was plotted and
analyzed by unpaired t-test using Prism 5 software. 2�DDCt values
(fold change) for TNF-a expression levels were compared using t-
test between the study groups. Association studies of poly-
morphisms with other parameters were performed using analysis
of variance (ANOVA) and KruskaleWallis test while correlation
analysis was performed using multiple linear regression and
spearman's correlation analysis in GraphPad Prism ver. 5 software.
P values less than 0.05 were considered significant for all the as-
sociation analysis.

3. Results

Clinical parameters differed significantly between controls and
patients (Table 1). Patients had a significantly higher FBG
(p < 0.0001). Moreover, obesity factors like BMI, TC, and TG were
significantly elevated (p < 0.0001, p ¼ 0.0420, p ¼ 0.001 respec-
tively) while HDL was significantly decreased (p < 0.0001) in pa-
tients as compared to the controls. However, LDL did not differ in
the study groups (p ¼ 0.9322).

3.1. Association of TNF-a polymorphisms with T2D

The genotype and allele frequencies of the investigated TNF-a
promoter polymorphisms (�238 G/A, �308 G/A, �857 C/T,
and �863 C/A) are summarized in Table 2 while the representative
gel images for PCR-RFLP analysis are shown in Fig. S1. The
Please cite this article in press as: Patel R, et al., Genetic variants of tumo
type 2 diabetes susceptibility, Clinical Nutrition (2018), https://doi.org/10
distribution of genotype frequencies for all the polymorphisms
investigated was consistent with HardyeWeinberg expectations in
both patient and control groups (p > 0.05).

The genotype and allelic frequencies of TNF-a promoter poly-
morphisms (�238 G/A, �308 G/A, �863 C/A) were found to be
statistically indifferent (p > 0.0125) with Bonferroni's correction for
multiple testing as shown in Table 2. However, �857 C/T was found
to be significantly associated with T2D (genotype and allele fre-
quencies, p < 0.0001). The CT genotype increased the risk for the
disease with an odds ratio (OR) of 1.907 while the mutant homo-
zygous TT genotype increased the risk by 7.585 fold as suggested by
OR.

3.2. Haplotype analyses of TNF-a polymorphisms

A haplotype evaluation of the four polymorphic sites of TNF-a
(�238 G/A, �308 G/A, �857 C/T, �863 C/A) revealed that the
haplotypes differed significantly between patients and controls
(p ¼ 3.11 � 10�5) and the disease susceptible haplotypes were
GGCA (p ¼ 0.035) and GGTC (p ¼ 1 � 10�4) (Table 3).

3.3. Linkage disequilibrium analyses of TNF-a polymorphisms

The LD analysis revealed that the four polymorphic sites of TNF-
a were found to be in low to high LD association (Fig. S2).
Specifically, �238G/A: �308G/A, �857C/T, �863C/A were in high
and low LD association respectively (D’ ¼ 0.99, r2 ¼ 0.00; D’ ¼ 0.88,
r2 ¼ 0.00; D’ ¼ 0.44, r2 ¼ 0.00). �308G/A: �857 C/T, �863C/T
showed complete linkage and moderate LD association respec-
tively. (D’ ¼ 1, r2 ¼ 0.00 and D’ ¼ 0.91, r2 ¼ 0.01). Further, �857C/
T: �863C/A were in low LD association (D’ ¼ 0.26, r2 ¼ 0.0).

3.4. Correlation of TNF-a polymorphisms with FBG, BMI and plasma
lipids

Correlation analysis of TNF-a polymorphisms (Table 4) revealed
that �238 GA þ AA genotype was found to be associated only with
BMI (p ¼ 0.02) while, TNF-a �857 TT genotype with elevated FBG
and TG levels (p ¼ 0.01 and p ¼ 0.001 respectively). As the fre-
quency was less for AA genotype, it was cumulatively assessed with
GA genotype of �238 G/A polymorphism. Further, no association
was observed for �308 G/A and �863 C/A SNPs with FBG, BMI and
plasma lipids (p > 0.05).

3.5. Relative gene expression of TNF-a

Comparison of the findings showed significantly increased
expression of TNF-a transcript levels in PBMCs of 150 patients
compared to 152 controls after normalization with GAPDH
expression as suggested by Mean DCp values (p < 0.0001) (Fig. 1a).
Moreover, a 2�DDCp analysis showed approximately 2.072 fold
change in the expression of TNF-a transcript in patients as
compared to controls (Fig. 1b).

Further, TNF-a transcript levels were also found to be signifi-
cantly increased in the adipose tissue of 10 patients compared to 12
controls as suggested by Mean DCp values (p ¼ 0.0381) (Fig. 2a).
2�DDCp analysis showed approximately 6.7 fold change in the
expression of TNF-a transcript in patients as compared to controls
(Fig. 2b).

3.6. Correlation of TNF-a transcript levels with its promoter
polymorphisms, BMI, FBG and plasma lipids

The AA genotype of �238 G/A and �308 G/A and, TT genotype
of �857 C/T was assessed along with the heterozygous genotype of
r necrosis factor-a and its levels: A correlation with dyslipidemia and
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Table 2
Genotype and allele frequency distribution of TNF-a promoter polymorphisms in T2D patients.

Gene/SNP Genotype or allele Controls (Frequency) Patients (Frequency) p for Association Odds ratio (95% CI)

(n ¼ 295) (n ¼ 320)
TNF-a
�238 G/A
(rs361525)

GG 257 292 R e e

GA 37 27 0.0955a 0.6423 0.3804 to 1.084
AA 1 1 0.9288b 0.8801 0.05474 to 14.15

G 551 (0.93) 611 (0.95) 0.1110c 0.6706 0.4090 to 1.099
A 39 (0.07) 29 (0.05)

(n ¼ 493) (n ¼ 388)

TNF-a
�308 G/A
(rs1800629)

GG 449 351 R e e

GA 42 34 0.8850a 1.036 0.6451 to 1.662
AA 2 3 0.4690b 1.919 0.3187 to 11.55

G 940 (0.95) 736 (0.95) 0.6360c 1.111 0.7191 to 1.715
A 46 (0.05) 40 (0.05)

(n ¼ 478) (n ¼ 408)

TNF-a
�857 C/T
(rs1799724)

CC 384 270 R e -
CT 91 122 < 0.0001a 1.907 1.394 to 2.608
TT 3 16 0.0002b 7.585 2.188 to 26.30

C 859 (0.90) 662 (0.81) 154 (0.19) < 0.0001c 2.060 1.567 to 2.708
T 97 (0.10)

(n ¼ 489) (n ¼ 464)

TNF-a
�863 C/A
(rs1800630)

CC 292 256 R e -
CA 130 141 0.1522a 1.237 0.9243 to 1.656
AA 67 67 0.4948b 1.141 0.7816 to 1.665

C 764 (0.71) 653 (0.81) 0.8042c 1.025 0.8451 to 1.242
A 314 (0.29) 154 (0.19)

‘n’ represents number of samples, ‘R’ represents reference group, CI refers to confidence interval, a, b Patients vs controls (genotype) with respect to Reference using chi-square
test with 2 � 2 contingency table, c Patients vs controls (allele) using chi-square test with 2 � 2 contingency table, Values are significant at p < 0.0125 due to Bonferroni's
correction.
Bold signifies p values.

Table 3
Haplotype frequencies of TNF-a polymorphisms in T2D patients and controls.

Haplotype
(TNF-a �238G/A, �308 G/A, �857C/T, �863C/A)

Patients
(Freq. %)
(n ¼ 475)

Controls
(Freq. %)
(n ¼ 502)

p for Association p (global) Odd Ratio [95%CI]

GGCC 243 (0.461) 317 (0.584) 0.003 3.11 � 10�5 0.744 [0.611e0.907]
GACC 29 (0.055) 28 (0.051) 0.729 1.097 [0.647e1.859]
GGCA 133 (0.252) 109 (0.201) 0.035 1.336 [1.019e1.751]
AGCC 18 (0.034) 30 (0.055) 0.118 0.627 [0.347e1.132]
GGTA 22 (0.041) 15 (0.027) 0.182 1.563 [0.805e3.031]
GGTC 75 (0.142) 38 (0.07) 1 £ 10�4 2.178 [1.459e3.253]

‘CI’ represents confidence interval (Frequency <0.03 in both case and control has been dropped and was ignored in the analysis).
Bold signifies p values.
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their respective polymorphisms, due to their lesser frequency. Fold
change of TNF-a transcript with respect to its promoter poly-
morphisms revealed that �857 CT þ TT genotypes cumulatively
increased the expression of TNF-a by 3.6 fold (Fig. 3).

Furthermore, none of the other polymorphisms or their ge-
notypes showed increased expression of TNF-a. There was no
difference in the expression of TNF-a between individuals
with �238 GG and GA þ AA genotype (p ¼ 0.543), �308 GG and
GA þ AA genotype (p ¼ 0.6412), �857 CC and CT þ TT genotype
(p ¼ 0.6329) and, �863 CC, CA and AA genotypes (p ¼ 0.3149) as
suggested by Mean DCp values (Fig. S3a). Moreover, ANOVA's
trend test was used to see the change in Mean DCp values across
the different genotypes in controls and patients. The analysis
revealed no significant difference in the Mean DCp values for
patients (p ¼ 0.7483) (Fig. S3b) and controls (p ¼ 0.9517) (Fig. S3c).
However, overall difference across the genotypes between con-
trols and patients was significant (p < 0.0001). When, TNF-a
transcript levels were correlated with FBG, BMI and plasma lipids,
it showed weak correlation with TC & LDL (R2 ¼ 0.04, p ¼ 0.02 and
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R2 ¼ 0.04, p ¼ 0.02 respectively) (Table 5). Moreover, TNF-a
transcript levels were also correlated with the haplotypes of TNF-a
polymorphisms but no significant difference was observed
between them (p > 0.05) (Fig. S4).

3.7. Plasma TNF-a concentrations and its correlation with FBG, BMI
and plasma lipids

Plasma TNF-a concentrations were estimated in 44 controls and
43 patients and it was significantly increased in T2D patients as
compared to controls (p ¼ 0.0122) as shown in Fig. 4a. Moreover,
we found significant elevation in TNF-a concentrations in obese
patients as compared to lean controls (p¼ 0.0405) (Fig. 4b). Further,
correlation analysis was performed for TNF-a plasma concentration
with the anthropometric parameters. We found a significant cor-
relation between BMI (r ¼ 0.3039, p ¼ 0.0475) and HDL
(r ¼ �0.3907, p ¼ 0.0096) (Table 5) whereas, no significant differ-
ence was found between TNF-a and its haplotypes (p > 0.05)
(Fig. S5).
r necrosis factor-a and its levels: A correlation with dyslipidemia and
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Fig. 1. a) Relative gene expression of TNF-a in PBMCs of controls and patients: Significant increase in TNF-a mRNA transcript was observed patients (Mean DCp ± SEM:
4.24 ± 0.21 vs 3.63 ± 0.13; p < 0.0001). b) Relative fold change of TNF-a expression in controls and patients. Diabetic patients showed 2.072 fold increase in TNF-a mRNA
expression as determined by 2�DDCp method.

Fig. 2. a) Relative gene expression of TNF-a in adipose tissues of controls and patients: Significant increase in TNF-a mRNA transcript was observed patients (Mean DCp ± SEM:
17.23 ± 0.99 vs 13.87 ± 0.98; p ¼ 0.0381). b) Relative fold change of TNF-a expression in controls and patients. Diabetic patients showed 6.7 fold increase in TNF-a mRNA
expression as determined by 2�DDCp method.

Table 4
Genotype-phenotype correlation analyses of TNF-a polymorphisms with BMI, FBG and plasma lipid profile.

Genotype FBG
(mg/dL)

BMI
(Kg/m2)

TG
(mg/dL)

TC
(mg/dL)

HDL
(mg/dL)

LDL
(mg/dL)

TNF-a -238 G/A (rs361525)
GG 127.2 (56.64) 25.33 (5.440) 135.3 (99.37) 161.5 (39.46) 39.64 (12.62) 94.77 (37.42)
GA þ AA 118.4 (29.64) 26.92 (5.420) 154.1 (106.7) 167.6 (36.96) 39.15 (9.918) 97.64 (35.76)
P value 0.5124 0.0270 0.0983 0.1720 0.9807 0.5507
TNF-a -308 G/A (rs1800629)
GG 125.8 (48.35) 25.49 (5.456) 137.2 (95.31) 162.9 (41.27) 40.78 (13.95) 94.70 (39.38)
GA 113.0 (31.56) 24.67 (4.352) 126.4 (75.80) 162.6 (38.91) 39.97 (16.66) 97.31 (40.18)
AA 163.5 (87.03) 22.94 (3.136) 115.2 (75.33) 144.3 (20.86) 38.06 (11.14) 83.16 (17.20)
P value 0.0634 0.2606 0.7373 0.5438 0.6102 0.5856
TNF-a -857 C/T (rs1799724)
CC 129.5 (54.65) 25.51 (5.524) 133.8 (91.73) 162.6 (42.03) 40.80 (15.26) 95.05 (40.88)
CT 132.6 (57.94) 25.74 (4.897) 150.8 (93.47) 161.8 (37.54) 39.99 (11.61) 91.62 (35.60)
TT 185.0 (98.90) 24.24 (5.379) 162.8 (83.93) 166.3 (52.18) 42.13 (21.68) 91.59 (52.69)
P value 0.0122 0.3069 0.0015 0.8958 0.9246 0.4256
TNF-a -863 C/A (rs1800630)
CC 131.1 (54.84) 25.46 (5.696) 138.5 (96.24) 164.4 (40.63) 40.70 (14.45) 96.03 (39.17)
CA 135.4 (63.24) 26.03 (5.182) 140.4 (88.26) 164.4 (42.66) 39.17 (13.65) 97.16 (40.96)
AA 134.1 (57.10) 25.69 (4.403) 142.8 (91.06) 164.0 (39.25) 42.13 (17.51) 93.34 (40.84)
P value 0.7091 0.2976 0.4698 0.9383 0.2968 0.9413

Data are presented as Mean (SD). Statistical significant was considered at p < 0.05.
Bold signifies p values.
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3.8. Plasma free fatty acid and its correlation with plasma TNF-a,
and anthropometric parameters

Plasma free fatty acid concentrations were monitored in 150
controls and 100 patients. FFA concentrations were found to be
significantly elevated in patients as compared to controls
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(p ¼ 0.0215) (Fig. 5a). Subjects were further classified into lean and
obese. FFA was found to be significantly higher in obese control
than lean controls (p < 0.0001) (Fig. 5b). However, there was no
difference between lean and obese patients (p > 0.05) (Fig. 5c).
Further, FFA concentrations were correlated with TNF-a promoter
polymorphisms which were indifferent (p > 0.05) (Fig. S6).
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Fig. 3. Genotype-Phenotype correlation of TNF-a polymorphisms with its mRNA
fold change. Individuals with �857 CT þ TT showed 3.6 fold increase in its expression
as compared to CC genotype. No difference was observed with respect to other poly-
morphisms and respective genotypes.

Table 5
Correlation analysis of TNF-a transcript levels, plasma TNF-a, and FFA concentrations
with BMI, FBG and plasma lipids.

TNF-a TNF-a FFA

R2 p r p r p

BMI (Kg/m2) 0.00 0.82 0.3 0.04 0.35 0.0004
FBG (mg/dL) 0.03 0.30 0.01 0.95 0.15 0.17
Triglycerides (mg/dL) 0.00 0.36 �0.07 0.64 0.01 0.37
Total Cholesterol (mg/dL) 0.04 0.02 0.08 0.61 �0.02 0.87
HDL (mg/dL) 0.01 0.14 �0.39 0.001 0.12 0.22
LDL (mg/dL) 0.03 0.02 0.28 0.07 0.01 0.89

FPG ¼ Fasting plasma glucose, BMI ¼ Body mass index, HDL ¼ High density lipids,
LDL ¼ Low density lipids, R2 ¼ Coefficient of correlation, r ¼ Spearman's correlation
coefficient [p < 0.05, significant; p > 0.05, non significant].
Bold signifies p values.
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Correlation of FFAs with anthropometric parameters revealed that
it was significantly and positively correlated with BMI (r ¼ 0.3515,
p ¼ 0.0004) (Table 5).

4. Discussion

Asian Indians have a higher percentage of body fat for a given
BMI compared to white Caucasians and African-Americans but
Fig. 4. Plasma TNF-a concentrations in a) controls vs patients Plasma TNF-a concentratio
lean vs obese. Control lean vs patient obese showed a significant difference (p ¼ 0.0405) w
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have a lower muscle mass. Additionally, they also have an inclina-
tion towards ectopic fat deposition [27]. Such a body composition
of Indians is partly responsible for predisposition to obesity and
insulin resistance [28]. Several studies have associated alterations
in cytokine gene expression with obesity, changes in insulin
sensitivity, and risk of T2D [29] and, reports suggest that SNPs in
the regulatory region of cytokines [30] alter their expression
profile.

Of the four TNF-a promoter polymorphisms studied,
only �857 C/T is seen to be significantly associated with T2D [31].
TT genotype and T allele showed approximately 7 and 2 fold
increased risk for T2D respectively. Moreover, TT genotype shows
strong association with elevated FBG and TG levels. Interestingly,
Yamashina et al. also showed an association of �857 C/T poly-
morphism with T2D and LDL in the Japanese population [15].
Further, Ohara et al. demonstrated TNF-a �857 T allele to be linked
with insulin resistance and fatty liver in the Japanese population
[32]. Our genotypeephenotype correlation analysis reveals a 3.6
fold increase in TNF-a transcript levels in the individuals
having �857 TT genotype compared to other genotypes and poly-
morphisms. Overall, T2D patients show 2 fold increase in TNF-a
transcript levels and, elevated plasma TNF-a concentration. Addi-
tionally, plasma TNF-a is particularly increased in obese patients.
Gupta et al. have reported TNF-a �863 C/A to increase plasma
concentrations of TNF-a [33]. This result confirms that genetic
variation in part plays a role in altered expression pattern. Inter-
estingly, reports suggest that TNF-a �857 C/T and �863 C/A affects
the binding of the transcription factors octamer binding tran-
scription factor (OCT-1) and nuclear factor-kB (NF-kB) respectively,
to its putative consensus binding sites, thus regulating the
expression of the TNF- a indirectly [34]. Our adipose tissue gene
expression analysis in obese subjects shows a 6.7 fold increase in
TNF-a transcript levels in T2D patients. This suggests heightened
expression of TNF-a, a pro-inflammatory adipokine in the visceral
adipose tissue of T2D individuals. The reports of Samaras et al. [35]
and Winkler et al. [36] of elevated levels of expression of pro-
inflammatory adipokines in the visceral adipose tissue and their
possible linkage with visceral obesity and insulin resistance in T2D
susceptibility provide support to our findings.

TNF-a �238 G/A and �308 G/A are not associated with T2D in
our population, an inference supported by a large-scale study by
Zeggini et al. [37]. Studies of Kolla et al. [38] and Dabhi et al. [39] on
the southern and western Indian populations also provide a similar
conclusion. However, �238 A allele seems to be associated with
increased BMI (p ¼ 0.027) in Gujarat Indian population but not
found in Caucasian and African American population [40]. In
addition, �863 C/A did not show any risk towards T2D in our
ns were increased in patients (p ¼ 0.0122) and b) control lean vs obese and patients
hile no difference was observed between the other groups.
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Fig. 5. Plasma free fatty acid concentrations in a) controls vs patients, Plasma FFA in patients showed significant elevation (p ¼ 0.0215). b) lean vs obese controls Plasma FFA
exhibited a significant increase in control obese as compared to control lean (p < 0.0001), and c) lean vs obese patients. No difference was found between patient lean vs obese
(p > 0.05).

Fig. 6. Mechanism of imbalance in adipokines leading to dyslipidemia and obesity-induced T2D. In obesity, dysregulation of pro and anti-inflammatory adipokines is man-
ifested. Genetic variant of TNF-a �857 T allele modulates its expression by strongly binding to the OCT1 transcription factor. Elevated TNF-a concentration promotes lipolysis in
adipocytes thereby increasing circulating FFA concentrations. Together, altered adipokines expression and increased FFA partly contributes to dyslipidemia and insulin resistance
conferring risk towards obesity-induced T2D in Gujarat population.
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population but it was found to be a risk factor in first-degree rel-
atives of T2D in Spain [41] and Tunisia [13].

Haplotype analysis of the four polymorphic sites in TNF-a re-
veals that the haplotypes are significantly associated with the T2D
patients. Specifically, GGCA and GGTC haplotype frequencies are
found to be higher in patients, increasing the risk for T2D by one
fold as suggested by odds ratio. Furthermore, LD analysis suggests
that TNF-a �238 G/A, �308 G/A, and �857 C/T have strong LD as-
sociation demonstrating a high linkage between these loci.

Our analysis of plasma FFA concentrations shows a significant
increase in both lean and obese T2D patients and only in control
obese individuals. In this connection, higher plasma FFA concen-
tration has been associated with obese individuals in general
[42,43] as well as with insulin resistance [44]. Fontaine-Bisson et al.
have shown �238 G/A and �308 G/A to alter circulating free fatty
acid concentrations [18]. However, we do not find any association
between FFA concentration and TNF-a polymorphisms.

Our correlation study suggests that TNF-a transcript levels show
a weak positive correlation with obesity-related traits i.e. LDL and
total cholesterol levels. It is well known that cytokines like TNF-a
induce hyperlipidemia. When TNF-a is administered exogenously
in humans, it increases serum cholesterol concentration [45e47]
demonstrating that it plays a key role in cholesterol and triglycer-
ide metabolism [48]. Herein, we find a definite positive correlation
between plasma TNF-a concentration and BMI, and a negative
correlation with HDL. Moreover, plasma FFA concentration also
shows a positive correlation with BMI.

Our earlier report suggests that pro-inflammatory cytokine ie.
Interleukin 1-b (IL1-b) is also elevated in T2D patients and also
contributes to dyslipidemia [25]. Additionally, our unpublished
data reveals that adiponectin, an anti-inflammatory adipokine, and
resistin, a pro-inflammatory adipokine, exhibit an imbalance in
their expression contributing to dyslipidemia in T2D patients
[49,50]. Thus, an imbalance in circulating adipokines and elevated
FFA concentration is a potent factor for dyslipidemia and obesity-
induced T2D in Gujarat population (Fig. 6).

5. Conclusion

Our findings collectively suggest that TNF-a �857C/T poly-
morphism is associated with increased TNF-a expression. This
taken together with the elevated plasma TNF-a and FFA concen-
trations, alludes to a strong association with dyslipidemia and
obesity, signifying a key role in T2D susceptibility.
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