
25

4 CRITICAL ANALYSIS OF STATIC AND DYNAMIC

SCHEDULING ALGORITHMS

In Soft Real-Time System, a suitable scheduling algorithm needs to select grounded on the

characteristics of the System and the process type. Its task set classifies as a Periodic, Aperiodic,

and Sporadic task. Task sets can be divided into preemptive and non-preemptive task sets. The

task has different characteristics like its execution time, arrival time, deadline, and resource

requirements. The scheduling algorithm can be divided into two categories, static and dynamic,

which depend on the priority they follow. The Earliest Deadline First (EDF) and Least Slack

Time first (LST) are dynamic scheduling algorithms in real-time systems. It chooses the priority

of the processes grounded on deadline and slack time correspondingly. The process, which has

the shortest deadline and shortest slack time, will have more priority in EDF and LST. EDF and

LST are more appropriate for scheduling processes in the soft real-time operating systems

(RTOS) [3][26][45]. The rate monotonic (RM) and shortest job first (SJF) are static scheduling

algorithms in real-time systems. It chooses the priority of the processes grounded on its

occurrence and time required to execute for a given process correspondingly. The process which

has the smallest period and shortest time needed to execute will be considered as more priority in

RM and SJF [46] [47].

In this section, two dynamic scheduling algorithms (EDF and LST) and two static algorithms

(RM and SJF) have been evaluated for the soft Real-Time System and did a critical analysis of

these algorithms. Algorithms are tested with a periodic task set (describe in section 3), and

26

results are collected. It has observed the success ratio (SR) and effective CPU utilization (ECU)

for all algorithms in a similar environment (describe in section 3) [48].

4.1 The Static Scheduling Algorithms

The static scheduling algorithm can calculate the order of execution before runtime as well. The

static scheduling algorithm also decides the sequence of tasks based on priority, but the priority

value will not change during runtime [30]. In this section, two static scheduling algorithms RM

and SJF have been explained.

4.1.1 The Rate Monotonic (RM) Algorithm

The Rate Monotonic is a static preemptive scheduling algorithm. It gives priority to the task

based on its Rate (task occurrence period). The task with the smallest Rate will get high priority

[31][27][49]. The period of any task is predefined in Real-Time System and defined as the task

occur again in a given duration. Figure 4.1 shows the flow of this algorithm. When the currently

executing task is completed; or a new task comes, the scheduling algorithm will run and check

the lowest rate of each active task. The task which has the lowest rate will be selected for the

subsequent execution [10][50]. Due to this nature task having smallest rate value will get chance

to execute first and have more chances to meet their deadline before the new occurrence of the

same task come again.

27

4.1.2 The Shortest Job First (SJF) Algorithm

The Shortest Job First algorithm is a static priority scheduling algorithm. The highest priority is

assigned to the task having a short execution time [31]. The execution time of a task is already

known in the real-time system and is defined as the CPU time required for completing the task.

The scheduling algorithm is necessary to execute when a currently running task completes or a

new task arrives. The flowchart of the algorithm has been shown in Figure 4.2. When a new task

arrives or the currently executing task is finished, the scheduling algorithm will run and identify

the task with minimum execution time. The new task selected for execution has a minimum

execution time. Due to this nature task having smallest execution time will get chance to execute

first and it make sure that small task will always meet their deadline and increase the overall

benefits of the given system.

Figure 4.1 - Flow of the RM Algorithm Figure 4.2 - Flow of the SJF Algorithm

28

4.2 The Dynamic Scheduling Algorithms

Dynamic scheduling algorithms make decisions at the runtime. It allows to not only design a

more flexible system but also associate calculation overhead with it. The dynamic scheduling

algorithms decide what task to execute depending on the importance of the task, called priority.

The task priority may change during the runtime [26][25]. In this section, two dynamic

scheduling algorithms EDF and LST have been explained.

4.2.1 The Earliest Deadline First (EDF) Algorithm

The Earliest Deadline First (EDF) algorithm is a dynamic preemptive scheduling algorithm. It

gives priority to the task based on the absolute deadline. Priorities of tasks are allocated

dynamically and are inversely proportional to the absolute deadlines of the active tasks [6][10].

Figure 4.3 shows the flow of the EDF algorithm. When the currently executing task is

completed; or a new task comes, the scheduling algorithm will run and check the absolute

deadline of each active task. The task which has the earliest deadline will be selected for the

subsequent execution.

4.2.2 The Least Slack Time First (LST) Algorithm

The Least Slack Time First algorithm is a dynamic preemptive scheduling algorithm. The highest

priority is assigned to the task having the short slack time. The slack time 𝑙 is defined as per the

following equation [29][51].

29

𝑙 = 𝑑 − 𝑐 − 𝑡 (4)

where,

 𝑡 = current time

𝑑 = deadline

𝑐 = remaining execution time

The scheduling algorithm is necessary to execute when a currently running task completes or a

new task arrives. The flowchart of the algorithm has been shown in Figure 4.4. When a new task

arrives or the currently executing task is finished, the scheduling algorithm will run and calculate

the slack time for each task based on Equation 4. The new task selected for execution has

minimum slack time.

Figure 4.3 - Flow of the EDF Algorithm Figure 4.4 - Flow of the LST Algorithm

30

4.3 Performance Analysis and Result Comparison

All Dynamic and static scheduling algorithms have been implemented using the simulator,

explained in Section 3.3. The algorithm executes when a new task arrives, or the current task

completes its execution. All algorithms are tested with the periodic task set (Data Set) described

in Section 3.2 to evaluate their performance. Load of the system (Up) is calculated based on

Equation 3 (Described in Section 3.2). All algorithms have been assessed with three major

categories of Up values which consider as underload, overload, and highly overload scenarios. If

the value of Up ≤ 1, it is considered as underload scenario, if it is 1.0 < Up ≤ 1.5, it considered

an overload scenario, and if it is 1.5 < Up ≤ 5.0, it is considered a highly overload scenario.

The value of Up varies between 0.5 to 5 for the entire Data Set. All algorithms have been tested

on 500-time units to prove their effectiveness. Performance of all algorithms has been measured

and evaluated concerning SR and ECU parameters which are explained in Section 3.1. Detailed

performance analysis and result comparison has been given in this section.

4.3.1 Underload Scenario

All Static and Dynamic algorithms have been tested in the underload scenario. The scenario is

considered an underload when the utilization factor for the task set is less than or equals one.

Table 4.1 represents the scenario where the task set contains 1 to 9 tasks, and the utilization

factor (CPU Load) is less than 1 or equal to 1 (Up ≤ 1). Results show that ECU values remain

nearly the same for dynamic algorithms, whereas for static, it is slightly less. Results also

indicate SR is not 100% in the case of static scheduling algorithms. When CPU Load is less than

31

one, it means that the task set is schedulable, and the scheduling algorithm can schedule all tasks,

and all tasks can meet their deadline. Still, static algorithms cannot schedule all tasks, whereas

dynamic scheduling algorithms can successfully schedule these task sets. It means in underload

situation dynamic algorithms like EDF guarantee to schedule all task, and dynamic algorithm

like LST performs batter then static scheduling algorithm like RM and SJF. So, it is advisable to

use the characteristics of the dynamic scheduling algorithm in the underload scenario compare to

the static scheduling algorithms. Figure 4.5 and 4.6 provides the performance comparison of

static and dynamic scheduling algorithms in underload scenario concerning ECU and SR

parameters.

Table 4.1 - Static and Dynamic scheduling algorithms performance in Underload Scenario

CPU

Load

ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

0.50 49.49 49.49 49.49 49.49 100.00 100.00 100.00 100.00

0.55 54.66 54.40 54.40 54.31 100.00 100.00 100.00 100.00

0.60 59.39 59.39 59.39 59.39 100.00 100.00 100.00 100.00

0.65 64.35 64.35 64.35 64.35 100.00 100.00 100.00 100.00

0.70 69.35 69.35 69.35 69.35 100.00 100.00 100.00 100.00

0.75 74.31 74.31 74.31 74.31 100.00 100.00 100.00 100.00

0.80 79.22 79.22 79.22 79.22 100.00 100.00 100.00 100.00

0.85 84.16 84.16 84.16 84.15 100.00 100.00 100.00 99.99

0.90 89.16 89.16 89.15 89.00 100.00 100.00 99.99 99.84

0.95 94.17 94.17 94.08 93.89 100.00 99.99 99.93 99.78

1.00 99.10 99.10 97.78 96.74 100.00 100.00 98.92 98.74

32

0

10

20

30

40

50

60

70

80

90

100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

EC
U

%

Utilization Factor (CPU Load)

ECU% in Underload

EDF

LST

RM

SJF

0

10

20

30

40

50

60

70

80

90

100

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

SR
%

Utilization Factor (CPU Load)

SR% in Underload

EDF

LST

RM

SJF

Figure 4.5 – ECU% Vs CPU Load for Static and Dynamic Scheduling Algorithms Underload Scenario

Figure 4.6 – SR% Vs CPU Load for Static and Dynamic Scheduling Algorithms Underload Scenario

33

4.3.2 Overload Scenario

All Static and Dynamic algorithms have been tested in the overload scenario. The scenario is

considered as an overload when the utilization factor for the task set is 1.0 < Up ≤ 1.5. Table

4.2 represents the scenario where task set contains 1 to 9 task, and utilization factor (CPU Load)

vary between 1.0 < Up ≤ 1.5. Results show a significant difference in ECU and SR values for

static and dynamic scheduling algorithms. When the CPU load is greater than 1, the task set is

not schedulable, and few tasks will miss their deadline. Table 4.2 observations reflect that

dynamic scheduling algorithms performance degrades very poorly in a slightly overload

situation, whereas static scheduling algorithms can meet the deadline for a few of their task sets.

It means that in overload situations; static scheduling algorithms give better performance than

dynamic scheduling algorithms. Figure 4.7 and 4.8 provides the performance comparison of

static and dynamic scheduling algorithms in overload scenario concerning ECU and SR

parameters.

34

Table 4.2 - Static and Dynamic scheduling algorithms performance in Overload Scenario

CPU

Load

ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

1.05 17.45 16.09 70.85 56.63 18.27 15.84 78.49 73.49

1.10 9.21 8.33 75.82 63.60 9.31 7.90 80.49 75.98

1.15 6.29 5.58 73.20 62.66 6.19 5.06 75.88 73.66

1.20 4.62 4.21 83.50 70.08 4.22 3.67 79.47 73.06

1.25 4.06 3.56 79.05 73.20 3.67 3.06 77.58 77.47

1.30 3.63 3.09 75.66 72.24 3.19 2.53 73.81 75.34

1.35 3.12 2.63 74.65 70.99 2.65 2.09 70.77 71.55

1.40 2.66 2.20 83.55 76.57 2.24 1.71 75.47 73.80

1.45 2.50 2.01 79.75 74.45 2.00 1.52 69.03 68.76

1.50 2.21 1.83 85.27 80.07 1.71 1.33 70.33 69.96

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

EC
U

%

Utilization Factor (CPU Load)

ECU% in Overload

EDF

LST

RM

SJF

Figure 4.7 – ECU% Vs CPU Load for Static and Dynamic Scheduling Algorithms in Overload

Scenario

35

4.3.3 Highly Overload Scenario

All Static and Dynamic algorithms were also tested in the highly overload scenario. The scenario

is considered a Highly Overload when the utilization factor for the task set is more than 1.5.

Table 4.3 represents the scenario where the task set contains 1 to 9 tasks, and the utilization

factor (CPU Load) is between 1.5 and 5 (1.5 < Up ≤ 5.0). Results show that ECU and SR

values are very low for the dynamic scheduling algorithms because most of the task sets are

missing their deadlines. When the CPU load is more than one, the task set is not schedulable, and

no scheduling algorithm can schedule all tasks. There will be tasks in the task set that will miss

0

10

20

30

40

50

60

70

80

90

100

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

SR
%

Utilization Factor (CPU Load)

SR% in Overload

EDF

LST

RM

SJF

Figure 4.8 – SR% Vs CPU Load for Static and Dynamic Scheduling Algorithms in Overload Scenario

36

their deadline, but static algorithms can still schedule some of the tasks that meet their deadline,

whereas dynamic scheduling algorithms fail. In highly overload situations, static algorithms like

RM and SJF perform well compared to dynamic scheduling algorithms like EDF and LST. So, it

is advisable to use the characteristics of static scheduling algorithms in highly overload scenarios

compare to the dynamic scheduling algorithms. Figure 4.9 and 4.10 provides the performance

comparison of static and dynamic scheduling algorithms in highly overload scenario concerning

ECU and SR parameters.

Table 4.3 - Static and Dynamic scheduling algorithms performance in Highly Overload Scenario

CPU

Load

ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

1.60 2.17 1.77 85.61 77.26 1.61 1.29 69.52 67.20

1.70 2.03 1.58 86.26 79.16 1.42 1.07 65.99 64.60

1.80 1.93 1.45 86.12 77.28 1.30 0.95 65.98 63.04

1.90 1.90 1.31 85.83 77.53 1.29 0.85 63.51 62.21

2.00 1.84 1.19 85.78 78.10 1.20 0.76 62.88 61.00

2.25 1.76 1.13 84.27 76.95 1.04 0.65 56.16 55.91

2.50 1.55 0.98 87.06 74.97 0.89 0.54 53.82 49.92

2.75 1.46 0.91 89.21 74.42 0.78 0.47 52.07 46.83

3.00 1.32 0.86 94.46 77.23 0.63 0.40 48.36 41.67

3.50 1.27 0.75 93.48 73.37 0.57 0.33 44.50 36.76

4.00 1.11 0.73 95.04 79.57 0.43 0.27 39.52 34.09

4.50 1.08 0.71 96.77 71.58 0.38 0.24 36.45 27.74

5.00 0.97 0.66 98.13 78.22 0.31 0.20 31.72 25.71

37

0

10

20

30

40

50

60

70

80

90

100

1.6 1.7 1.8 1.9 2 2.25 2.5 2.75 3 3.5 4 4.5 5

EC
U

%

Utilization Factor (CPU Load)

ECU% in Highly Overload

EDF

LST

RM

SJF

0

10

20

30

40

50

60

70

80

90

100

1.6 1.7 1.8 1.9 2 2.25 2.5 2.75 3 3.5 4 4.5 5

SR
%

Utilization Factor (CPU Load)

SR% in Highly Overload

EDF

LST

RM

SJF

Figure 4.9 – ECU% Vs CPU Load for Static and Dynamic Scheduling Algorithms in Highly Overload Scenario

Figure 4.10 – SR% Vs CPU Load for Static and Dynamic Scheduling Algorithms in Highly Overload Scenario

38

4.4 Conclusion

The Dynamic and Static algorithms are evaluated for the Soft Real-Time System and considering

it for a single processor and pre-emptive task set in this research. It is also believed that the

process set is periodic. All algorithms are evaluated in a similar environment, and results have

been observed and equated. Observation suggests that dynamic algorithms like EDF and LST

performs well in underload situation and able to schedule most of all task when Up ≤ 1. In

overload and highly overload scenarios performance of the dynamic scheduling algorithms starts

decreasing rapidly. So, in an underload scenario, dynamic scheduling algorithms are advisable

but not with an overload situation. Static algorithms perform moderately to underload situations.

It has been observed that with a specific task set, even it is possible that all tasks can be

scheduled, but static scheduling algorithms are failed to schedule it. So, in an underload, static

scheduling algorithms are not advisable. But in an overload and highly overload scenario, it

performs well compared to dynamic scheduling. This happens because static algorithms select

the task so that more tasks meet their deadline in overload and highly overload scenario, and the

system gets maximum profit. Because of that, ECU% and SR% are good compared to dynamic

scheduling algorithms in an overload and highly overload scenario. situation. The ideal algorithm

can be designed, which uses Dynamic and Static algorithm features, and it performs well in

underload and overload scenarios.

