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7  PROPOSED PSO BASED SCHEDULING ALGORITHM  

 

Different static (e.g., RM, SJF) and dynamic (e.g., EDF, LST) scheduling algorithms have been 

evaluated and compared for Soft Real-Time Systems. The performance of Static and Dynamic 

scheduling algorithms vary based on the CPU load. It has been observed that EDF and LST 

perform well in the underload scenario where CPU load is less than or equal to one. Even EDF is 

one of the optimal scheduling algorithms, and it makes sure that in the underload scenario, all 

task will meet their deadline. Static algorithms like RM and SJF also perform well in the 

underload scenario. Still, in some instances, it has been observed that there is possible to 

schedule all task by EDF, but static algorithms fail to schedule those tasks, and few tasks missed 

their deadline. In a slightly overload situation, when CPU load is higher than one at that time, the 

performance of the dynamic scheduling algorithm degrades very fast. In contrast, static 

scheduling algorithms can still schedule a few tasks and meet their deadline. Thus, the Dynamic 

Priority scheduling algorithm performs well in the underload scenario, and the Static Priority 

scheduling algorithm performs decently in the overload scenario [20]. 

 

The Dynamic Priority scheduling algorithms are more responsive to the average cases, but their 

worst-case real-time performance may be more unsatisfactory than the Static Priority scheduling 

algorithm. Still, there is no single priority scheduling algorithm exist which perform well in 

underload and overload scenario. Hybrid priority driven scheduling algorithms have been 

developed, which use characteristics of both types of algorithms, like D_EDF and S_LST, which 

is using features of dynamic scheduling algorithm during underload scenarios and static 

scheduling algorithms during overload scenarios [24][53][60]. The problem with this kind of 
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hybrid algorithm is scheduling algorithm needs to keep checking with the status of CPU load, 

and based on that; it will assign the priority to the task. It has been proposed a technique for 

scheduling tasks using Artificial Intelligence and Swarm techniques. Swarm Intelligence is the 

study of computational systems inspired by collective intelligence. Collective Intelligence 

emerges through the cooperation of large numbers of homogeneous agents in the environment. 

Examples include schools of fish, flocks of birds, and colonies of ants. Such intelligence is 

decentralized, self-organizing, and distributed throughout an environment. In nature, such 

systems are commonly used to solve problems such as effective foraging for food, prey evading, 

or colony re-location. The information is typically stored throughout the participating 

homogeneous agents or stored or communicated in the environment itself, such as through 

pheromones in ants, dancing in bees, and proximity in fish and birds. Using Swarm Intelligence, 

it is possible to find optimal solutions for problems like scheduling of the task [22][23]. 

Previously, ACO-based scheduling algorithm has been proposed, and it has been shown that the 

swarm intelligence-based scheduling algorithm performs equally well like a dynamic scheduling 

algorithm. Moreover, it gives better performance in an overload scenario as well [33][52]. 

 

A study of various swarm intelligence techniques have been done and it has been identified that 

Particle Swarm Optimization is a strong candidate solution for scheduling in Soft Real-Time 

systems. Particle Swarm Optimization investigates probabilistic algorithms inspired by flocking, 

schooling, and herding. Like evolutionary computation, swarm intelligence algorithms or 

strategies are considered adaptive strategies and are typically applied to search and optimization 

domains [41]. This research has used PSO (Particle Swarm Optimization) based swarm 

technique to design the new scheduling approach. It considered each task as a particle and 
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applied a modified PSO technique to identify the most critical task to execute. The efficiency of 

the newly proposed method has been compared with existing EDF and ACO based scheduling 

algorithms considering two significant parameters, the SR (Success Ratio) and the ECU 

(Effective CPU Utilization). All three algorithms have been tested on the simulator with a Soft 

Real-time periodic task set on 500 timelines. It has been observed that during the underload 

scenario, the proposed algorithm performs equally to EDF and ACO based algorithms. However, 

during overload and highly overload situations, the proposed algorithm performs better 

compared to EDF and ACO based algorithms.    

 

7.1 Swarm Intelligence Techniques  

 

Different Swarm Intelligence Techniques have been studied to identify the best fitted for 

problem statements. It is an emerging field of biologically-inspired artificial intelligence based 

on the behavioral models of social insects such as ants, bees, wasps, termites, etc. The following 

are the few well-applied Swarm Techniques [61].  

 

1) PSO - Particle Swarm Optimization belongs to Swarm Intelligence and Collective 

Intelligence and is a sub-field of Computational Intelligence. PSO is inspired by the 

social foraging behavior of some animals, such as the flocking behavior of birds and the 

schooling behavior of fish. Particles in the swarm fly through an environment, following 

the fitter members of the swarm and generally biasing their movement toward historically 

good areas of their environment. The algorithm's goal is to have all the particles locate 

the optima in a multi-dimensional hyper-volume [62].  
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2) ACO - It is inspired by the pheromone communication of the blind ants regarding the 

right path between the colony and the food source in an environment. The probability of 

the ant following a particular route is not only a function of pheromone intensity but also 

a function of distance to that city, the function known as visibility. The objective of the 

strategy is to exploit historical, i.e., pheromone-based and heuristic information to 

construct candidate solutions each in a probabilistic step-wise manner and fold the 

information learned from constructing solutions into the history. The probability of 

selecting a component is determined by the heuristic contribution of the component to the 

overall cost of the solution, and the quality of solution and history is updated 

proportionally to the quality of the best-known solution [56]. 

 

3) Bees - It is inspired by the foraging behavior of honey bees. The hive sends out the Scout 

bees when locating nectar (a sugary fluid secreted within flowers), return to the hive, and 

communicate the other bees the fitness, quality, distance, and direction of the food source 

via waggle dance. The objective of the algorithm is to locate and explore good sites 

within a problem search space. Many scout bees are sent out; each iteration is always in 

search of additional good sites that are continually exploited in the local search 

application [63]. 

 

4) GSA - Gravitational search algorithm (GSA) is a newly developed stochastic search 

algorithm based on the Newtonian gravity- "Every particle in the universe attracts every 

other particle with a force that is directly proportional to the product of their masses and 
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inversely proportional to the square of the distance between them" and the mass 

interactions. In this approach, the search agents are a collection of masses that interact 

with each other based on the Newtonian gravity and the laws of motion in which all of 

the objects attract each other by the gravity force, while this force causes a global 

movement of all objects towards the objects with heavier masses. Thus, the heavy masses 

correspond to good solutions to the problem [64]. 

 

During the literature study, it has been observed that Particle Swarm Optimization has been 

widely used in scheduling for the Cloud Computing environment. A. S. Ajeena Beegom and M. 

S. Rajasree proposed the Integer-PSO algorithm for task scheduling in a cloud computing system 

in 2019 [35]. A two-level particle swarm optimization algorithm was created for the flexible job-

shop scheduling problem [36], and PSO based scheduling was also applied in workflow 

applications in cloud computing environments [37]. However, the PSO-based scheduling 

approach has not been explored with the Real-Time Operating system. In this research, PSO-

based Swarm Intelligence Techniques has been considered to resolve the problem statement. 

This approach has been selected because it is highly recommended for scheduling problems and 

it is the right approach when the problem size is between 20 to 40 [40][41]. 

 

7.2 Particle Swarm Optimization Technique 

 

The Particle Swarm Optimization algorithm comprises a collection of particles that move around 

the search space influenced by their own best past location and the best past location of the 
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whole swarm or a close neighbour. Each iteration, a particle’s velocity is updated using 

following equation 12 [41][65][66][67]. 

 

𝑣𝑖,𝑑(𝑡 + 1) =  𝑣𝑖,𝑑(𝑡) + (𝑐1  × 𝑟1 × (𝑝𝑖,𝑑
𝑏𝑒𝑠𝑡 −  𝑝𝑖,𝑑(𝑡))) + (𝑐2  × 𝑟2 × (𝑝𝑔𝑏𝑒𝑠𝑡,𝑑 − 𝑝𝑖,𝑑(𝑡))) (12) 

 

 

𝑝𝑖,𝑑(𝑡 + 1) =  𝑝𝑖,𝑑(𝑡) +  𝑣𝑖,𝑑(𝑡 + 1)              (13) 

 

 

where,  

• 𝑣𝑖,𝑑(𝑡 + 1) and 𝑣𝑖,𝑑(𝑡) represent the current and previous velocity in the 𝑑𝑡ℎ  dimension 

of particle 𝑖, respectively.  

• 𝑐1 and 𝑐2 are acceleration coefficient for the personal best and global best positions, 

respectively.  

• 𝑝𝑖,𝑑(𝑡 + 1) and 𝑝𝑖,𝑑(𝑡) are the current and previous position of particle  𝑖. 

• 𝑝𝑖,𝑑
𝑏𝑒𝑠𝑡 and 𝑝𝑔𝑏𝑒𝑠𝑡,𝑑 are the best position found by particle 𝑖  so far and the best position 

found by the whole swarm so far, respectively 

• 𝑟1 𝑎𝑛𝑑 𝑟2 are the randomly generated numbers in the range of [0, 1]. 

• 𝑑 ∈ 𝐷 is the dimension 𝑑 in the search space.  

 

Variants on this update equation consider the best positions within a particle’s local 

neighbourhood at time t. A particle’s position is updated using equation 13 [41]. 
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Figure 7.1 shows the graphical representation of the Particle Swarm Optimization. After each 

iteration, the particle moves in a new direction, and most of the time, it is optimal, and that 

decision will be based on the personal best position and global best position. 

 

 

 

 

Heuristics for this approach are [40][41][65]: 

• The number of particles should be low, around 20-40, 

• The speed a particle can move should be bounded, 

• The learning factors should be between 0 and 4, typically 2.0,  

• Particles may leave the problem space's boundary and maybe penalise, be reflected in the 

domain, or be biased to return toward a position in the problem domain. Alternatively, a 

wrapping strategy may be used at the edge of the domain, creating a loop or related 

geometrical structures at the chosen dimensionality. 

• An inertia or momentum coefficient can be introduced to limit the change in velocity. 

Figure 7.1 – Graphical representation of PSO 
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7.3 PSO Based Scheduling Algorithm  

 

Selecting the scheduling algorithm for Soft Real-Time System is a crucial decision, as discussed 

previously. This research introduced the scheduling algorithm, which is based on PSO 

techniques. The algorithm considering each given task as a particle, and all tasks which are 

eligible for scheduling are viewed as a set of particles. The ultimate goal of the scheduling 

algorithm is to choose a task at a given point in time in such a way that the task can meet its 

deadline [37]. In the Soft Real-Time system, it is intended to ensure that all tasks will meet their 

deadline in the underload condition, and the maximum tasks will meet their deadline in the 

overload scenario. 

 

The scheduling algorithm executes when a new task arrives, or the currently performing task is 

completed. When more than one task is ready to run, the scheduling algorithm needs to select the 

task effectively. This thesis has proposed the PSO based scheduling algorithm, which has the 

following significant steps.   

 

 

Step 1: Initialization of Task as a Particle 

Step 2: Compute the velocity and position of each task 

Step 3: Analyze the position and velocity of each task 

Step 4: Selection of Task for execution 
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7.3.1 Initialization of Task as a Particle 

 

At given point of time, all schedulable task is considered as a set of N = {𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛}.  Each 

task (particle) 𝑇𝑖  ∈ 𝑁 , needs to initialize with its initial position and velocity. Each Periodic task 

𝑇𝑖 in task set, 𝑁 has essential characteristics associated with it, like execution time of task (𝐸𝑖), 

deadline of the task (𝐷𝑖) and rate (period) of the task (𝑅𝑖). These characteristics are already 

known in Soft Real-Time System before the scheduling algorithm is going to select the task for 

scheduling. Each task (particle) 𝑇𝑖  ∈ 𝑁, needs to initialize with its initial position (𝑃𝑖)  and initial 

velocity (𝑉𝑖). P is the set of the initial position of each task and P = {𝑃1, 𝑃2, 𝑃3, … 𝑃𝑛}. V is set of 

the initial velocity of each task and V = {𝑉1, 𝑉2, 𝑉3, … 𝑉𝑛}.  Initial value of 𝑣𝑖 and 𝑝𝑖 is going to 

calculate for each task 𝑇𝑖  ∈ 𝑁 based on the following equation 14 and equation 15.  

 

𝑣𝑖  =  𝑇𝑖 (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒)  (14) 

 

𝑝𝑖  =  𝑇𝑖 (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒)  +  𝑇𝑖 (𝑃𝑒𝑟𝑖𝑜𝑑)  − 𝑇𝑖 (𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒) (15) 

 

It is also necessary to initialize individual task best position 𝑝𝑖
𝑏𝑒𝑠𝑡 and global best position 𝑝𝑔𝑏𝑒𝑠𝑡. 

Initially, for each task 𝑝𝑖
𝑏𝑒𝑠𝑡 =  𝑝𝑖 and initial value of 𝑝𝑔𝑏𝑒𝑠𝑡 for the whole task set is chosen from 

a minimum of the set P. Figure 7.2 represents the task set with its parameters like Execution 

Time, Deadline, and Rate. Then, for each task, the algorithm initializes its position, velocity, and 

best position using Equation 14 and Equation 15, as described above.   
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7.3.2 Compute the velocity and position for each task 

 

The algorithm calculates the velocity (𝑣) for each task which is ready to execute and part of task 

set N. To calculate the velocity (𝑣) value for each task, this algorithm has considered Equation 

12 as a base equation and proposed Equation 16, and it is an optimal equation for scheduling 

problem of Soft Real-Time System.  

 

𝑣𝑖,𝑑(𝑡 + 1) =  𝑣𝑖,𝑑(𝑡) + (𝑐1𝑟1 (𝑝𝑖,𝑑
𝑏𝑒𝑠𝑡 −  𝑝𝑖,𝑑(𝑡))) + (𝑐2𝑟2 (𝑝𝑔𝑏𝑒𝑠𝑡,𝑑 −  𝑝𝑖,𝑑(𝑡)))             (16) 

where,  

• 𝑣𝑖,𝑑(𝑡 + 1) is the new velocity of task 𝑇𝑖 in the 𝑑𝑡ℎdimension, 

• 𝑣𝑖,𝑑(𝑡) is the current velocity of task 𝑇𝑖 in the 𝑑𝑡ℎ  dimension, 

• 𝑐1 =  (𝑇𝑖 (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒))−1, where 𝑇𝑖 (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒) is the execution time of the task 𝑇𝑖, 

which is required on the processor to complete the task, 

• 𝑐2 =  (𝑇𝑖 (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒))−1, where 𝑇𝑖 (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒) is the deadline of the task 𝑇𝑖  

 

Figure 7.2 – Task Set for PSO Algorithm with its parameters and initial values 
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• 𝑟1  and 𝑟2 are generated uniformly between 0 and 1,  

• 𝑝𝑖,𝑑(𝑡) is the 𝑇𝑖 task’s position at time t in the 𝑑𝑡ℎ  dimension, 

• 𝑝𝑖,𝑑
𝑏𝑒𝑠𝑡 is the 𝑇𝑖 task’s best-known position in the 𝑑𝑡ℎ  dimension, 

• 𝑝𝑔𝑏𝑒𝑠𝑡,𝑑is the best position known to the entire task set in the 𝑑𝑡ℎ  dimension, 

• 𝑑 ∈ 𝐷 is the dimension 𝑑 in the search space. 

 

The algorithm also needs to calculate the new position (𝑝) for each task and to calculate it; it is 

using equation 13, mention in section 7.2.  

 

7.3.3 Analyze the position and velocity of each task 

 

The goal of the algorithm is to have all the tasks locate the optima in a multi-dimensional 

hypervolume. It can be achieved by assigning initial velocity and position to each task as per 

7.3.1. The algorithm is executed and, in each iteration, it calculates the new position of each task 

based on equation 13 and updates its velocity based on equation 16. The evolution of velocity 

and position is carried out for the specified number of iterations, and the number of iterations 

depends on the problem size. Over the period, through a combination of exploration and 

exploitation of known right positions in the search space, the task set cluster or converge together 

around an optimal task. If any task leaves the boundary of the problem space, then it will be 

penalized and reflected in the domain by changing its velocity [68]. 
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7.3.4 Selection of task for execution 

 

The algorithm calculates the new velocity and the new position of the task in each iteration. The 

algorithm also changes the value of 𝑝𝑔𝑏𝑒𝑠𝑡 in every iteration. 𝑝𝑔𝑏𝑒𝑠𝑡 value will be set as the 

smallest 𝑝𝑖
𝑏𝑒𝑠𝑡 value. The task which has 𝑝𝑔𝑏𝑒𝑠𝑡 =  𝑝𝑖

𝑏𝑒𝑠𝑡 will be considered and will get the 

chance to execute on the processor.  

 

7.3.5 The Algorithm  

Algorithm: PSO based scheduling approach for Soft Real-Time System 

Input     : Task Set N = {𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛} 

Output  :  𝑇𝑚𝑜𝑠𝑡_𝑖𝑚𝑝_𝑡𝑎𝑠𝑘_𝑡𝑜_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 

1. 𝑇𝑚𝑜𝑠𝑡_𝑖𝑚𝑝_𝑡𝑎𝑠𝑘_𝑡𝑜_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 =  −1;  

/* Initializing each task 𝑇𝑖 (𝑇𝑖  ∈ 𝑁)with its initial velocity(𝑣𝑖), position (𝑝𝑖)  and local 

best position (𝑝𝑖
𝑏𝑒𝑠𝑡)  value. İt also initializing global best (𝑝𝑔𝑏𝑒𝑠𝑡) value. */  

2. for each task 𝑇𝑖 in set N do 

3. |           𝑣𝑖  =  𝑇𝑖 (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒) ; 

4. |           𝑝𝑖  =  𝑇𝑖 (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒)  +  𝑇𝑖 (𝑃𝑒𝑟𝑖𝑜𝑑)  −  𝑇𝑖 (𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑇𝑖𝑚𝑒); 

5. |           𝑝𝑖
𝑏𝑒𝑠𝑡 =  𝑝𝑖 ; 

6. |           if 𝑝𝑖
𝑏𝑒𝑠𝑡 <  𝑝𝑔𝑏𝑒𝑠𝑡 then 

7. |            |       𝑝𝑔𝑏𝑒𝑠𝑡 =  𝑝𝑖
𝑏𝑒𝑠𝑡; 

8. |            |       𝑇𝑚𝑜𝑠𝑡_𝑖𝑚𝑝_𝑡𝑎𝑠𝑘_𝑡𝑜_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 =  𝑇𝑖; 

9. |           end if 
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10. end for  

/* Updating velocity(𝑣𝑖), position (𝑝𝑖) and local best position (𝑝𝑖
𝑏𝑒𝑠𝑡) values of each task 

𝑇𝑖 (𝑇𝑖  ∈ 𝑁). İt also update global best (𝑝𝑔𝑏𝑒𝑠𝑡) values after each iteration if the condition 

is satisfied. At the end of stopping condition 𝑇𝑚𝑜𝑠𝑡_𝑖𝑚𝑝_𝑡𝑎𝑠𝑘_𝑡𝑜_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 will contain the 

most important task which needs to execute by the processor. */ 

11. while stopingcondition() do 

12.  |            for each 𝑇𝑖  ∈ 𝑁 do  

13.  |            |        𝑣𝑖(𝑡 + 1) =  𝑣𝑖(𝑡) + (𝑐1𝑟1 (𝑝𝑖
𝑏𝑒𝑠𝑡 −  𝑝𝑖(𝑡))) + (𝑐2𝑟2 (𝑝𝑔𝑏𝑒𝑠𝑡 −  𝑝𝑖(𝑡))); 

14.  |            |         if 𝑣𝑖(𝑡 + 1) < 0.0 do 

15.  |               |          |          𝑣𝑖(𝑡 + 1) = 0.0; 

16.  |            |         end if 

17.  |               |            𝑝𝑖(𝑡 + 1) =  𝑝𝑖(𝑡) +  𝑣𝑖(𝑡 + 1); 

18.  |            |         if 𝑝𝑖(𝑡 + 1) <  𝑝𝑖
𝑏𝑒𝑠𝑡 do  

19.  |            |         |         𝑝𝑖
𝑏𝑒𝑠𝑡 =  𝑝𝑖(𝑡 + 1); 

20.  |            |         |         if  𝑝𝑖(𝑡 + 1) <  𝑝𝑔𝑏𝑒𝑠𝑡 do  

21.  |            |         |         |        𝑝𝑔𝑏𝑒𝑠𝑡 =  𝑝𝑖(𝑡 + 1) ; 

22.  |            |         |         |        𝑇𝑚𝑜𝑠𝑡_𝑖𝑚𝑝_𝑡𝑎𝑠𝑘_𝑡𝑜_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 =  𝑇𝑖; 

23.  |            |         |         end if 

24.  |            |         end if 

25.  |            end for 

26. end while  

27. return 𝑇𝑚𝑜𝑠𝑡_𝑖𝑚𝑝_𝑡𝑎𝑠𝑘_𝑡𝑜_𝑒𝑥𝑒𝑐𝑢𝑡𝑒 ;     
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7.3.6 Convergence Analysis and Parameter Selection 

 

The algorithm proposed in the research is using the following equations to update the value of 

velocity (𝑣𝑖) and position (𝑝𝑖) of the task during every iteration,  

 

𝑣𝑖(𝑡 + 1) =  𝑣𝑖(𝑡) + (𝑐1𝑟1 (𝑝𝑖
𝑏𝑒𝑠𝑡 −  𝑝𝑖(𝑡))) + (𝑐2𝑟2 (𝑝𝑔𝑏𝑒𝑠𝑡 −  𝑝𝑖(𝑡))) 

And  

𝑝𝑖(𝑡 + 1) =  𝑝𝑖(𝑡) +  𝑣𝑖(𝑡 + 1) 

 

where, 

𝑐1 =  (𝑇𝑖 (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒))−1, 

𝑐2 = (𝑇𝑖 (𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒))−1 and 

0 <  𝑐1, 𝑐2  ≤ 1 

 

Here, it has been assumed that for 𝑟1𝑎𝑛𝑑 𝑟2 are random values between 0 and 1. Also, assumed 

that ∅1 =  𝑐1𝑟1 and ∅2 =  𝑐2𝑟2 and ∅ =  ∅1 +  ∅2 such that 0 <  ∅1  ≤ 1, 0 <  ∅2  ≤ 1 and 

0 <  ∅ ≤ 2. 

 

Also, this research has considered that when one task is taken into consideration, the other tasks 

are frizzed in their positions. This assumption gives us the flexibility to omit the suffix 𝑖 and 

rewrite the equations as 
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𝑣(𝑡 + 1) =  𝑣(𝑡) +  ∅1(𝑝𝑏𝑒𝑠𝑡 −  𝑝(𝑡)) +  ∅2(𝑝𝑔𝑏𝑒𝑠𝑡 −  𝑝(𝑡))     (17) 

And 

𝑝(𝑡 + 1) =  𝑝(𝑡) +  𝑣(𝑡 + 1)                  (18) 

 

This research has used a similar approach adopted by zheng (2003) in their research to check the 

behaviour and convergence of this algorithm [69]. The equation (17) and (18) can be combined 

and written in a compact matrix-vector form as follows [68]. 

 

𝑋(𝑡 + 1) = 𝐴𝑋(𝑡) + 𝐵      (19) 

 

where,  

𝑋(𝑡 + 1) = [
𝑣(𝑡 + 1)
𝑝(𝑡 + 1)

] and 𝑋(𝑡) = [
𝑣(𝑡)
𝑝(𝑡)

] 

 

𝐴 =  [
1 −∅
1 1 − ∅

] and  𝐵 =  [
𝑃𝑏𝑒𝑠𝑡∅1 + 𝑃𝑔𝑏𝑒𝑠𝑡∅2

𝑃𝑏𝑒𝑠𝑡∅1 + 𝑃𝑔𝑏𝑒𝑠𝑡∅2

] 

 

Here, 𝑋(𝑡) is the “task state” which is defined by its current position 𝑝(𝑡) and velocity 𝑣(𝑡). ‘A’ 

is the dynamic matrix which will use to determine the convergence of Algorithm. The 

characteristic equation of matrix A is given by 

 

𝜆2 − (𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝐴)𝜆 + det(𝐴) = 0 

 

where the trace of 𝐴 = (1) + (1 − ∅) = 2 −  ∅ and det(𝐴) = 1 
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𝜆2 − (2 −  ∅)𝜆 + 1 = 0 

To find the roots of this equation,  

  

∆ =  (∅ − 2)2 − 4(1)(1) = (∅2 − 4∅ + 4) − 4 

 

∆ =  (∅2 − 4∅), 0 <  ∅ ≤ 2 

 

The definition of ∅ suggests that  

 

∆ ≤ 0 as we have 0 <  ∅ ≤ 2 

 

The experimental data suggests that the value of ∆ remains negative for all the processes. For 

∆ < 0, the eigenvalues are given by  

 

𝜆1 =  𝛼 +  𝛽𝑖 and 𝜆2 =  𝛼 −  𝛽𝑖 

where 

 𝛼 =  
(2−∅)

2
 𝑎𝑛𝑑 𝛽 =  

1

2
√−∆  

 

Here the product of eigenvalues is 1 and the L2 norm of 𝜆1and 𝜆2are ||𝜆1|| = ||𝜆2|| = 1. To get 

the optimum results, we need particles to converge at the optimum location i.e., lim
𝑡 → ∞

𝑃𝑡 =  𝑃∗. 

When a particle finds the equilibrium state than 𝑋𝑒𝑞(𝑡 + 1) =  𝑋𝑒𝑞(𝑡) for any t then Equation 

(19) lead us to  
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𝑋𝑒𝑞 =  [
𝑃∗

0
] , 𝑃𝑒𝑞 =  𝑃∗, 𝑉𝑒𝑞 = 0  (20) 

 

This is evident because, at the equilibrium state, particle velocity becomes zero. The eigenvalues 

of the dynamic matrix have 𝐿2 norm equal to 1, and both eigenvalues are complex numbers. In 

this case, the particle trajectories show harmonic oscillations around the equilibrium point and 

converge to the optimum value. The discussion clarifies that the algorithm used in the research 

can get the optimum results, and the system remains stable.  

 

7.4 Case Study for Instance of Task Set  

 

The proposed algorithm in section 7.3 has been tested with a set of the periodic task set. This 

section demonstrates how it operates with one case study shown in Table 7.1. It shows one task 

set with its arrival time, its deadline, and its required execution time. As described in section 7.3, 

each task will be initialized with its initial position (𝑝𝑖) using equation 14 and equation 15, and 

its initial value has been shown in Table 7.2. To get an optimal position for each task 𝑝𝑖 will be 

calculated for N number of times. After that task set will be evaluated, and identify the most 

important task which needs to be executed by the system. In the above task set (shown in Table 

7.1), T5 is the most crucial task, and the scheduling algorithm will select it for execution, so it 

will meet the deadline, as shown in Table 7.2. 
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Table 7.1 – An instant of Task Set for Case Study 

Task 
Arrival 

 Time 

Absolute 

Deadline 

Execution 

 Time 

T1 0 12 1 

T2 0 12 2 

T3 0 3 1 

T4 0 12 2 

T5 0 2 1 

 

Table 7.2 – PSO Algorithm Calculation for Instance of Task Set 

Task 
Initial Values of  

𝒑𝒊 

After N iteration 

Values of 𝒑𝒊 

Selection for Execution of Task 

by PSO Algorithm at t=0 is 

T1 13.00 28.25 

T5 

T2 14.00 32.70 

T3 04.00 07.24 

T4 14.00 32.70 

T5 03.00 05.25 

 

 

7.5 Performance Analysis and Result Comparison  

 

PSO based scheduling algorithm has been implemented using the simulator, which was 

developed in C language and compared with EDF and ACO based scheduling algorithms. The 

algorithm executes when a new task arrives, or the current task completes its execution. All 

algorithms are tested with the periodic task set (Data Set) described in Section 3.2 to evaluate 

their performance. Load of the system (Up) is calculated based on equation 3 (described in 

section 3.2). All algorithms have been assessed with three major categories of CPU load (Up) 

values which consider as underload, overload, and highly overload scenarios. If the value of 
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Up ≤ 1, it is considered as underload scenario, if it is 1.0 <  Up ≤ 1.5, it considered an overload 

scenario, and if it is 1.5 <  Up ≤ 5.0 is considered a highly overload scenario. The value of Up 

varies between 0.5 to 5 for the entire Data Set. All algorithms have been tested on 500-time units 

to prove their effectiveness [70]. Performance of all algorithms has been measured and evaluated 

concerning SR and ECU parameters which are explained in Section 3.1. Detailed performance 

analysis and result comparison has been given in this section. 

 

7.5.1 Underload Scenario   

 

PSO, ACO and EDF based scheduling algorithms have been tested in the underload scenario. 

The scenario is considered an underload when the utilization factor for the task set is less than or 

equals one. Table 7.3 represents the scenario where the task set contains 1 to 9 tasks, and the 

utilization factor (CPU load) is less than 1 or equal to 1 (Up ≤ 1). Results show that ECU values 

remain nearly the same for all these algorithms, whereas for PSO based scheduling algorithm, it 

is slightly less. Results also indicate SR is not 100% in the very specific case of a task set for the 

PSO based scheduling algorithm. When the Load of the CPU is less than one, it means that the 

task set is schedulable and the scheduling algorithm can schedule all tasks, and all tasks can meet 

their deadline. PSO-based scheduling algorithm equally performs compared to the ACO and 

EDF-based scheduling algorithm, but still, there is a specific task set where EDF and ACO can 

schedule it, but PSO missed few task deadlines. Figure 7.3 and 7.4 provides the performance 

comparison of PSO, ACO and EDF scheduling algorithms in underload scenario concerning 

ECU and SR parameters. 
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Table 7.3 – EDF, ACO, and PSO based scheduling algorithms performance in Underload Scenario 

CPU  

Load 

ECU% SR% 

EDF ACO PSO EDF ACO PSO 

0.50  49.49 49.98 49.49 100.00 100.00 100.00 

0.55  54.66 55.04 54.40 100.00 100.00 100.00 

0.60  59.39 59.88 59.39 100.00 100.00 100.00 

0.65  64.35 65.00 64.35 100.00 100.00 100.00 

0.70  69.35 69.93 69.35 100.00 100.00 100.00 

0.75  74.31 74.88 74.31 100.00 100.00 100.00 

0.80  79.22 79.83 79.22 100.00 100.00 100.00 

0.85  84.16 84.72 84.16 100.00 100.00 100.00 

0.90  89.16 89.62 89.15 100.00 100.00 99.99 

0.95  94.17 94.54 94.08 100.00 100.00 99.94 

1.00  99.10 99.37 97.99 100.00 100.00 99.26 
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Figure 7.3 – ECU% Vs CPU Load for EDF, ACO and PSO based Scheduling Algorithms in Underload Scenario 
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7.5.2 Overload Scenario   

 

PSO, ACO and EDF algorithms have been tested in the overload scenario. The scenario is 

considered as an overload when the utilization factor for the task set is 1.0 <  Up ≤ 1.5. Table 

7.4 represents the scenario where the task set contains 1 to 9 tasks, and utilization factor (CPU 

Load) vary between 1.0 <  Up ≤ 1.5. Results show a significant difference in ECU and SR 

values for PSO, ACO and EDF based scheduling algorithms. When the CPU load is greater than 

1, the task set is not schedulable, and few tasks will miss their deadline. Table 7.4 observations 

reflect that in a slightly overload situation, EDF performance degrades very poorly, whereas 

ACO and PSO based scheduling algorithms are still able to meet most of the deadlines of the 

given task set. It means in an overload situation, PSO and ACO based scheduling algorithms 

give better performance compared to the EDF. Even the PSO based scheduling algorithm 
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Figure 7.4 – SR% Vs CPU Load for EDF, ACO and PSO based Scheduling Algorithms in Underload Scenario 



84 
 

performs more batter than the ACO based scheduling algorithm. Figure 7.5 and 7.6 provides the 

performance comparison of EDF, ACO and PSO based scheduling algorithms in overload 

scenario concerning ECU and SR parameters.  

Table 7.4 – EDF, ACO, and PSO based scheduling algorithms performance in Overload Scenario 

CPU  

Load 

ECU% SR% 

EDF ACO PSO EDF ACO PSO 

1.05  17.45 63.69 65.91 18.27 67.01 78.24 

1.10 09.21 54.22 70.60 09.31 55.01 80.53 

1.15  06.29 51.86 67.90 06.19 50.87 75.91 

1.20  04.62 46.61 80.39 04.22 45.33 80.03 

1.25  04.06 45.15 77.35 03.67 36.23 78.97 

1.30  03.63 38.78 74.73 03.19 35.90 76.02 

1.35  03.12 39.03 74.06 02.65 37.14 72.65 

1.40 02.66 38.05 81.39 02.24 33.91 76.49 

1.45  02.50 34.11 78.15 02.00 30.65 70.66 

1.50  02.21 33.08 86.15 01.71 27.91 73.35 
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Figure 7.5 – ECU% Vs CPU Load for EDF, ACO and PSO based Scheduling Algorithms in Overload Scenario 



85 
 

 

 

 

7.5.3 Highly Overload Scenario  

 

PSO, ACO and EDF based scheduling algorithms were also tested in the highly overload 

scenario. The scenario is considered as a Highly Overload when the utilization factor for the task 

set is more than 1.5. Table 7.5 represents the scenario where the task set contains 1 to 9 tasks, 

and the utilization factor (CPU Load) is between 1.5 and 5 (1.5 <  Up ≤ 5.0). Results show that 

ECU and SR values are very low for the EDF scheduling algorithm because the most task in task 

sets missed their deadlines. When the CPU load is more than one, it means that the task set is not 

schedulable, and there is no scheduling algorithm exist that can schedule all tasks. There will be 

tasks in the task set that will miss their deadline, but ACO and PSO based algorithms can 

schedule some of the tasks that meet their deadline. Even PSO based scheduling algorithm 

performs better than ACO based scheduling algorithm in highly overload situation. Figure 7.7 
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Figure 7.6 – SR% Vs CPU Load for EDF, ACO and PSO based Scheduling Algorithms in Overload Scenario 
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and 7.8 provides the performance comparison of EDF, ACO and PSO scheduling algorithms in 

highly overload scenario concerning ECU and SR parameters. 

Table 7.5 – EDF, ACO, and PSO based scheduling algorithms performance in Highly Overload Scenario 

CPU  

Load 

ECU% SR% 

EDF ACO PSO EDF ACO PSO 

1.60 2.17 45.98 85.02 1.61 37.25 71.25 

1.70 2.03 40.45 86.52 1.42 30.24 68.70 

1.80 1.93 35.52 86.34 1.30 26.39 68.27 

1.90 1.90 33.56 85.17 1.29 25.35 65.52 

2.00 1.84 29.56 86.90 1.20 21.45 65.23 

2.25 1.76 32.51 85.89 1.04 21.24 59.81 

2.50 1.55 25.54 87.86 0.89 15.39 56.23 

2.75 1.46 18.31 88.82 0.78 10.16 53.75 

3.00 1.32 14.66 94.25 0.63 07.11 49.21 

3.50 1.27 15.80 94.46 0.57 07.69 45.52 

4.00 1.11 09.67 96.20 0.43 03.79 40.47 

4.50 1.08 09.86 97.69 0.38 03.37 36.99 

5.00 0.97 08.74 97.88 0.31 02.41 32.15 
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Figure 7.7 – ECU% Vs CPU Load for EDF, ACO and PSO based Scheduling Algorithms in Highly Overload Scenario 

Figure 7.8 – SR% Vs CPU Load for EDF, ACO and PSO based Scheduling Algorithms in Highly Overload Scenario 
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7.5.4 Time Complexity Analysis  

 

This section compares the time complexity of EDF, ACO, and PSO based scheduling algorithms. 

Practical performance analysis of these algorithms has been done in sections 7.5.1, 7.5.2 and 

7.5.3 by implementing these algorithms on the simulator. The experiment set-up has been 

prepared for the periodic task set so, the time complexity comparison is for a periodic task only. 

At a given point of time, all schedulable task is considered as a set of N = {𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛}. EDF 

is a dynamic scheduling algorithm and identifies the most crucial task to execute based on the 

absolute deadline. When the scheduling algorithm is executed to select the most critical task, 

EDF will have 𝑂(𝑁) time complexity [10][71]. ACO based scheduling algorithm use concept of 

traversing the different path to identify the optimal route and then select the most crucial task for 

execution. Due to its traversing techniques, when scheduling algorithm will be executed to select 

the most crucial task ACO based scheduling algorithm will have 𝑂(𝑁2) time complexity to 

select the most crucial task. The algorithm which proposed with this paper also calculate 

Velocity and Position of each task for N iteration to identify optimal positions in given task set 

and because of the time complexity of PSO based scheduling algorithm is also 𝑂(𝑁2) to select 

the most crucial task. It is true that PSO based scheduling algorithm time complexity is higher 

than EDF but as discuss in section 7.5.2 and 7.5.3 it gives an excellent performance in overload 

scenario and even in the modern evolution of electronics devices Real-Time system able to 

perform faster and able to schedule a task using any algorithm by ignoring its time complexity 

overhead.   
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7.6 Conclusion  

 

The proposed PSO based scheduling algorithm has been compared with EDF and ACO based 

scheduling algorithms under the Soft Real-Time periodic task set. The performance parameters 

SR and ECU have been calculated for each algorithm for a large dataset, and a comparison has 

been made. It has been observed that during the underload scenario (Up ≤ 1) proposed 

scheduling algorithm performs similar to the EDF and ACO based algorithms. In a slightly 

overload situation when 1.00 ≤  Up ≤ 1.5, EDF performance gets degraded sharply. The 

proposed algorithm and ACO based scheduling algorithm perform better compare to EDF, and 

even the proposed approach delivers better than the ACO based scheduling algorithm. During 

highly overload scenarios (1.50 ≤  Up ≤ 5.00) EDF and ACO based algorithms perform poorly, 

whereas the PSO based scheduling algorithm is still able to meet a specific deadline. So, instead 

of static or dynamic priority, the proposed approach works well during underload, overload, and 

highly overload scenarios. The PSO based scheduling algorithm uses the equation n. 16 to take 

decision on which task should be executed first. This equation gives importance to personal task 

(𝑝𝑖,𝑑
𝑏𝑒𝑠𝑡) information as well as whole task set (𝑝𝑔𝑏𝑒𝑠𝑡,𝑑) information. By considering both of this 

information at the time of selection of task, proposed PSO based scheduling algorithm performs 

batter compare to the traditional algorithms.  

 

  


