
Comparative Study of LST and SJF Scheduling Algorithm in Soft Real-Time
System with its Implementation and Analysis

Abstract – The Least Slack Time First (LST) algorithm is
a dynamic scheduling algorithm and also known as Least
Laxity First. It decides the dynamic priority of the task
based on slack time; The task having minimum slack
time will be considered the highest priority. It is the most
suitable algorithm for scheduling of tasks in soft Real-
Time Operating System (RTOS). The Shortest Job First
(SJF) algorithm is a static scheduling algorithm and
decides the priority of the task based on execution time
required for a given task. Task which has minimum
execution time considered as the highest priority task in
SJF. It is not directly used for scheduling Soft Real-Time
system. In this paper, we have implemented the LST and
SJF for the soft real-time operating system.These
algorithms have been executed on periodic task set, and
observations are gathered. We have observed Success
Ratio & Effective CPU Utilization and compared both
the algorithm in the same conditions. It is noted that the
LST algorithm performs well in underload scenario but
not well in an overload situation. SJF not able to
schedule specific task even in underload situation but it
comparatively performs well in an overload situation.
Practical experiments have been conducted on a large
dataset. Data Set contains 7500 task set, and each task
set includes 1 to 9 processes. CPU load for each process
set varies from 0.5 to 5. It has been tested on 500-time
unit to validate the correctness of both algorithms.

Keywords – LST; SJF; RM; EDF; Scheduling; Real-Time
Systems

I. INTRODUCTION OF RTOS AND SCHEDULING
ALGORITHMS

Since last few years, Real-Time systems usage has
been increasing in time critical application. Designing
systems which are expected to deliver real-time results
involves an equal emphasis on managing timing constraints
of various functionalities of the system. Processes in the
real-time system has defined deadlines and need to complete
the process within its deadline. Real-time systems need a
scheduling algorithm that assign the tasks to the processor
by taking into consideration the deadline constraints as well
also supporting other requirements of scheduling.
Depending upon the deadline constraints, real-time systems
are categorized in hard and soft real-time systems. In a hard
real-time system, if it is fail when the deadline is missed
than results will be useless. However in a soft real-time
system, upon missing the dead line, results wouldn’t become
useless but performance of the system may be degreded. [1].

In a real-time system, the appropriate scheduling
approach should be selected based on the properties of the
system and base on the tasks type. Real-Time system
classified as Hard, Soft and Firm real-time system. Its task
set classified as a Periodic, Aperiodic and Sporadic task.
Task Set can also be categorized based on preemptive or
non-preemptive task.

The general scheduling algorithm is looking for an
order according to which the task should be executed such
that various constraints are satisfied. The task is
characterized by its execution time, arrival time, deadline,
and resource requirements. Scheduling algorithm can be
classified into two general categories based on its
characteristics, static and dynamic. It depends on the
approach they use. Static priority schedulers assigned a
single priority value to each task during initialization throw
out the scheduling process. Example of static priority

Apurva Shah
Computer Science and Engineering Department
The Maharaja Sayajirao University of Baroda

apurva.shah-cse@msubaroda.ac.in

Jay Teraiya
Information and Technology Department
Marwadi Education Foundation, Rajkot

jay.teraiya@gmail.com

978-1-5386-5314-2/18/$31.00 ©2018 IEEE 706

scheduling is Shortest Job First(SJF), Rate Monotonic (RM)
and Deadline Monotonic (DM).The dynamic schedulers
change the priorities of tasks depending on the current
situation of a given system. Example of dynamic priority
scheduling is Earliest Deadline First (EDF) and Least Slack
Time First (LST). EDF and LST algorithms are most
effective under the situation that the jobs are preemptable,
there is a single processor, and the processor is underloaded.
However, these algorithms performance decreases quickly in
overloaded condition[2][3]. In this paper, we have compared
static priority algorithm SJF and dynamic priority algorithm
LST with a different aspect. We are observing these
algorithms regarding Effective CPU utilization and Success
Ration. We observed both algorithms in underload and
overload situation.

This paper is organized as follows: The LST and SJF
algorithm has been discussed in Section II and III
respectively. Section IV explains related work done on LST
and SJF. Section V represents System Consideration and
Task Model. Section VI describes experimental setup and
performance measuring parameters. Section VII represents
the results analysis of both algorithms and the paper is
wrapping up with a brief conclusion in Section VIII.

II. THE LEAST SLACK TIME FIRST (LST)
ALGORITHM

The least slack time first algorithm is a dynamic pre-
emptive scheduling algorithm. The highest priority is
assigned to the task having the small slack time. The slack

time 	݈ is defined as per the following equation [4]. ݈ = ݀ − ܿ − (1)																																ݐ
Where,
 t = current time

 d = deadline
 c = remaining execution time

The scheduling algorithm is necessary to execute
when a currently running task completes or new task arrives.
The flowchart of the algorithm has been shown in Figure
1.When a new task arrives or the currently executing task is
finished, the scheduling algorithm will run and calculate the
slack time for each task based on Equation 1. The new task
selected for execution which has minimum slack time.

III. THE SHORTEST JOB FIRST (SJF) ALGORITHM

The Shortest Job First algorithm is a static priority
scheduling algorithm. The highest priority is assigned to the
task having the small execution time [5].

Fig.1- LST

New Job

Is Ready Queue
Empty?

Prepare a list of schedulable task and calculate task
priority based on Eq. 1 for each job݈ = ݀ − ܿ − ݐ

Execute the task having minimum Slack Time until
currently executing task completes OR a new task

arrives

Wait

Yes

No

Fig.2 - SJF

New Task

Is Ready Queue
Empty?

Prepare a list of schedulable Tasks and identify the task with
lowest execution time.

Execute the task having minimum Execution Time until
currently executing task completes OR a new task arrives

Wait

Yes

No

707

The execution time of a task is already known in the Real-
time system and defined as CPU time required for
completing the task. The scheduling algorithm is necessary
to execute when a currently running task completes or new
task arrives. The flowchart of the algorithm has been shown
in Figure 2:

As shown in Figure 2, when a new task arrives, or the
currently executing task is finished, the scheduling
algorithm will run and identify the task with minimum
execution time. The new task selected for execution which
has minimum execution time.

IV. RELATED WORK ON LST AND SJF

For any set of the task, we can verify its schedulability
is feasible or not. In the periodic task model, each task has
its occurrence period(T), its execution time(C) and its
deadline(D). The ratio U=C/T is called the utilization factor
of the task and represents the fraction of processor time used
by that task. At a given point of time for a set of N task,
utilization factor can be calculated by the following
equation. U୮ =෍ େ౟୘౟௡௜ୀଵ (2)

U୮ is called the total processor utilization factor and

represents the fraction of processor time used by the periodic
task set. If U୮ > 1 no feasible schedule exists for the task set

with an algorithm, and it is overload condition. If U୮ < 1,

the feasibility of the schedule depends on the task set
parameters and the scheduling algorithm used in the system
[6].

In LST, tasks priorities are decided as per its slack
times. The periodic task is pre-empted at the time when
another task with less slack time arrives. It also take care
that none of the tasks miss their deadlines. The dynamic
scheduler LST performes better than the static scheduler in
under load situation, and it can schedule the entire task set
when U୮ < 1[1].

In SJF, tasks priorities are decided based on its
execution time required. The scheduler selects the waiting
task with the shortest execution time. SJF is advantageous
because of easy to implement and because it maximizes
process throughput. It also minimizes the average amount of
time each task has to wait until its execution is complete [7].
We did not find any experimental setup which only uses SJF

algorithm for Real-Time Scheduling. SJF has been used with
EDF algorithm to decide the group priority in a non-
preemptive scheduling algorithm for soft real-time systems
[5]. We have applied SJF as a single algorithm in Soft Real-
Time system in this paper.

V. THE SYSTEM CONSIDERATION AND TASK
MODEL

We have assumed that the system knows task
deadline and necessary information to compute the time
required to execute the task on when the task is released.
The task set is considered pre-emptive. We have considered
that the system is not having resource clash problem.
Moreover, pre-emption and the scheduling algorithm acquire
no overhead.

In soft real-time systems, each task has a positive
value. The goal of the system is to gain maximum value. If
a task meets the deadline, then the system considers its
value. If a task missed the deadline, then the system gets less
value from the task [8]. In a particular case of soft real-time
systems, called a firm real-time system, if task misses its
deadline, then no value will be considered, but there is no
disaster as well [9]. In this paper, we have implemented LST
and SJF algorithm which applies to the soft real-time
system. The value of the task has been considered the same
as its computation time required [10].

VI. EXPERIMENTAL SETUP AND PERFORMANCE
MEASURING PARAMETER

 We have implemented LST and SJF algorithm in C
programming language. These scheduling algorithms
schedule the task when a new task arrives or currently
executing task completes. These algorithms execute periodic
tasks for validating their performance. For periodic tasks, U୮

(processor utilization factor) can be defined as the
summation of the ratio of executable time and period of each
task. We considered it as Load of the system and calculated
as per the Equation 1. To generate the task set we have
developed one module in C language which produces
random periodic task set. Using this tool we have built 7500
task set and each task set containing 1 to 9 tasks. These task
sets load varies from 0.5 to 5.0. Overall LST and SJF have
been tested with approx 35,000 task scheduling process on
500-time unit to get the results. Performance of LST and SJF
has been measured based on following two parameters.

708

1. SR (Success Ratio) - In real-time systems, achieve the
deadline is main key aspect, and we are concerned about
finding whether the task is meeting the deadline. Therefore
the most appropriate performance parameter is the Success
Ratio(SR). SR defined as:

 ܴܵ = ே௨௠௕௘௥	௢௙	்௔௦௞	௦௨௖௖௘௦௦௙௨௟௟௬	௦௖௛௘ௗ௨௟௘ௗ்௢௧௔௟	ே௨௠௕௘௥	௢௙	்௔௦௞	௔௥௥௜௩௘ௗ 	(3) [11]

2. ECU (Effective CPU Utilization) - It is essential that how
efficiently the scheduler utilizes the processes, particularly
during overloaded condition. Therefore, the other
performance metric is Effective CPU utilization (ECU).
ECU defined as:
	ܷܥܧ = 	∑ ௏೔்௜	∈ோ (4) [12]

Where,

• V represents the value of task and,
o V = Computation time of the task, if the task completes

within its deadline.
o V = 0, if the task fails to meet the deadline.

• R represents a set of tasks, which are scheduled successfully,
i.e., meets its deadline.

• T represents the total time of scheduling.
.

VII. RESULT AND ANALYSIS

Table I and Table II show the results gathered by
executing LST and SJF algorithm on the simulator. Table I
represents the scenario where task set contains 1 to 9 task
and Load is less than 1 or equal to 1 (U୮ ≤ 1). Results show

that ECU values remain nearly the same for LST and SJF,
but SR is not 100% in case of SJF. When Load is less than
1, it means that task set is schedulable, and all process can
meet their deadline, but SJF is not able to schedule all task
whereas LST is successfully able to schedule these task set.
It means in under load situation LST gives a guarantee to
schedule all task, so it is advisable to use LST instead of
SJF.

Table II represents the scenario where task set contains 1
to 9 task and Load is greater than 1 (U୮ > 1). Results show

waste in ECU and SR values for LST and SJF. When Load
is greater than 1, it means that the task set is not schedulable

Load ECU% SR%

LST SJF LST SJF
1.05 16.09 56.63 15.84 73.49
1.10 8.33 63.60 7.90 75.98
1.15 5.58 62.66 5.06 73.66
1.20 4.21 70.08 3.67 73.06
1.25 3.56 73.20 3.06 77.47
1.30 3.09 72.24 2.53 75.34
1.35 2.63 70.99 2.09 71.55
1.40 2.20 76.57 1.71 73.80
1.45 2.01 74.45 1.52 68.76
1.50 1.83 80.07 1.33 69.96
1.60 1.77 77.26 1.29 67.20
1.70 1.58 79.16 1.07 64.60
1.80 1.45 77.28 0.95 63.04
1.90 1.31 77.53 0.85 62.21
2.00 1.19 78.10 0.76 61.00
2.25 1.13 76.95 0.65 55.91
2.50 0.98 74.97 0.54 49.92
2.75 0.91 74.42 0.47 46.83
3.00 0.86 77.23 0.40 41.67
3.50 0.75 73.37 0.33 36.76
4.00 0.73 79.57 0.27 34.09
4.50 0.71 71.58 0.24 27.74
5.00 0.66 78.22 0.20 25.71

 Load ECU% SR%

LST SJF LST SJF

0.50 49.49 49.49 100 100

0.55 54.66 54.31 100 100

0.60 59.39 59.39 100 100

0.65 64.35 64.35 100 100

0.70 69.35 69.35 100 100

0.75 74.31 74.31 100 100

0.80 79.22 79.22 100 100

0.85 84.16 84.15 100 99.99

0.90 89.16 89.00 100 99.84

0.95 94.17 93.89 99.99 99.78

1.00 99.10 96.74 100 98.74

TABLE I

(LST AND SJF PERFORMANCE IN UNDERLOAD)

TABLE II

(LST AND SJF PERFORMANCE IN OVERLOAD)

709

and few tasks will miss their deadline. Table 2 observations
reflect that in slightly overload situation LST performance
degrades very poorly whereas SJF able to meet the deadline
for few of their task set. It means in overload situation SJF
gives better performance than LST. Figure 3 and 4 provides
a graphical representation of Table 1 and Table 2
respectively.

VIII. CONCLUSION

The LST and SJF are implemented for scheduling of
soft real-time system with a single processor and pre-
emptive task sets. These algorithms are simulated with
periodic task sets; results are obtained and compared.
Observation suggests that dynamic algorithm LST performs
well in underload situation and able to schedule most of all
task when Load is 1. In overload (Load is > 1) situation,
LST performs poorly. So in underload, LST is advisable but
not with an overload situation. Static algorithm SJF
performs moderately to underload situation. It has been
observed that with specific task set even it is possible that all
tasks meet their deadline but SJF is failed to schedule it. So
in underload, SJF is not advisable, but in overload, it
performs well compared to LST. This happens because the
characteristic of SJF, it is selecting the task which has
minimum execution time and because of that, it has more
chance to meet their deadline even in an overload condition.
Because of that ECU% and SR% is good in comparison with
LST in an overload situation. LST work on slack time,

which does not only depend on execution time. It
iscalculated based on deadline and remaining execution time
because of that ECU% and SR% decrease very fast in an
overload situation.

In the future, we can propose a new algorithm which
will use the characteristics of LST and SJF. Therefore it may
perform well in overload and underload situation.

REFERENCES

[1] Belagali, R., Kulkarni, S., Hegde, V., & Mishra, G.
(2016, December). “Implementation and validation of
dynamic scheduler based on LST on FreeRTOS”, in
Electrical, Electronics, Communication, Computer and
Optimization Techniques (ICEECCOT), Mysore, India, pp.
325-330.

[2] A. Mohammadi and S. G. Akl, “Scheduling Algorithms
for Real-Time Systems”, in School of Computing, Queen’ s
University, Kingston, Ontario, 2005.

[3] Thakor, D., & Shah, A. (2011, December). “D_EDF: An
efficient scheduling algorithm for real-time multiprocessor
system”, in Information and Communication Technologies
(WICT).,2011, Mumbai, India, pp. 1044-1049.

[4] M. Patel and B. Oza, “An Improved LLF_ DM
Scheduling Algorithm for Periodic Tasks by Reducing
Context Switches,” in International Journal of Advance
Engineering and Research ., 2015, vol. 2, pp. 248–254.

[5] Li, W., Kavi, K., & Akl, R. (2007). “A non-preemptive
scheduling algorithm for soft real-time systems”, in
Computers & Electrical Engineering, Vol. 33(1), pp. 12-29.

0
10
20
30
40
50
60
70
80
90

100
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

7
1.

9
2.

25
2.

75 3.
5

4.
5

ECU% LST

ECU% SJF

0
10
20
30
40
50
60
70
80
90

100

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
7

1.
9

2.
25

2.
75 3.

5
4.

5

SR% LST

SR% SJF

Fig. 4 – SR% Vs Load Fig. 3 – ECU% Vs Load

710

[6] Buttazzo, G. C. (2005). “Rate monotonic vs. EDF:
judgment day”, in Real-Time Systems, Vol. 29(1), pp. 5-26.

[7] Chen, G., & Xie, W. (2011, March). “On a laxity-based
real-time scheduling policy for fixed-priority tasks and its
non-utilization bound”, in Information Science and
Technology (ICIST) 2011, Tebessa, Algeria, pp. 7-10

[8] Locke, C. D. (1986). “Best-effort decision making for
real-time scheduling” (Ph. D Thesis), Computer Science
Department, CMU.

[9] Koren, G., & Shasha, D. (1995). “D_over: An Optimal
On-Line Scheduling Algorithm for Overloaded
Uniprocessor Real-Time Systems” in SIAM Journal on
Computing, Vol. 24(2), pp. 318-339.

[10] A Shah , “Adaptive scheduling algorithm for real-time
distributed systems ”, in Biologically-Inspired Techniques
for Knowledge Discovery and Data Mining pp. 236-248,
2014.

 [11] Ramamritham, K., Stankovic, J. A., & Shiah, P. F.
(1990). “Efficient scheduling algorithms for real-time
multiprocessor systems” in IEEE Transactions on Parallel
and Distributed systems, Vol.1(2), 184-194.

 [12] Shah, A., & Kotecha, K. (2010, November).
“Scheduling Algorithm for Real-Time Operating Systems
Using ACO” in Computational Intelligence and
Communication Networks (CICN), 2010, Bhopal, India, pp.
617-621.

[13] J.W.S.Liu, “Real-Time Systems,” in Pearson
Education, India, 2001.

 [14] Baruah, S., Koren, G., Mishra, B., Raghunathan, A.,
Rosier, L., & Shasha, D. (1991). “On-line scheduling in the
presence of overload” in Proceedings 32nd Annual
Symposium of Foundations of Computer Science. Puerto
Rico, USA.

711

Analysis of Earliest Deadline First and Rate Monotonic Scheduling Algorithm in

Soft Real-Time System

Abstract— The Earliest Deadline First (EDF) is a dynamic scheduling algorithm, and It gives priority

to the task based on its absolute deadline; the task having the nearest deadline will have the highest priority.

EDF one of the best suitable for scheduling tasks with Soft Real-Time Operating System (RTOS). The

Rate Monotonic (RM) algorithm is a static scheduler. It gives priority to the task based on its occurrence

period, or we can say it gives priority based on the rate of the task. A task which has the lowest rate will

assign the highest priority in the RM algorithm. In this paper has implemented the EDF and RM for the

Soft-RTOS. These algorithms have been tested with the periodic task set, and observations are gathered.

Algorithms are compared based on Success Ratio & Effective CPU Utilization in similar conditions. It

has been observed that the EDF algorithm performs well in underload conditions, but in an overload

situation, performance gets degraded. Whereas RM not able to schedule specific tasks set in underload

condition but it reasonably performs well in an overload condition compare to EDF. Practical experiments

have been executed with an extensive process set. Process Set contains a 6000-task set, and every task set

has a different number of tasks between one to nine. Every process set also has different CPU utilization

factor 0.5 to 5. These algorithms have been evaluated on a 500-time line to validate the performance in all

scenarios.

Keywords—RTOS, Real-Time Systems, Scheduling, RM, EDF

1. Introduction

 The usage of Real-Time based systems is getting increased day by day. Developing a system that is

expected to generate real-time results need to manage timing constraints of all functionalities. All tasks in

RTOS have their related deadlines and have to finish the task within the given deadline. Based on RTOS

type, it is necessary to select a scheduler that assigns a task to the processor by taking into considering the

timing constraints and supporting all other needs of scheduling. Based on the time criticality, real-time

systems divided into three significant categories hard, soft, and firm real-time systems. In Hard RTOS, if

the deadline is missed, the disaster will occur even though the miss is minor. A Soft RTOS if the deadline

is missed, the disaster will not happen, but the overall performance of the system will degrade. [1].

Jay Teraiya

Computer Engineering Department

Marwadi University

Rajkot, India

jay.teraiya@gmail.com

Apurva Shah

Department of Computer Science and

Engineering

The Maharaja Sayajirao University of Baroda

Vadodara, India

apurva.shah-cse@msubaroda.ac.in

Based on the property of the RTOS and task sequence, the appropriate scheduling method should be

applied. In RTOS, the task can be categorized as Periodic, Aperiodic, and Sporadic task. It is also classified

based on the non-preemptive or pre-emptive task.

The scheduler is organizing the sequence of tasks such a way that it can satisfy its different conditions.

A task has characteristics like execution and arrival time. It also has a deadline, period, and other

requirements. The Static and Dynamic algorithms are two types of scheduling algorithm which is used

depends on the approach. The scheduler, which assigns priority only once at the time of initialization, is

referred to as a Static scheduling algorithm. Rate Monotonic (RM) is one of the examples of static priority

scheduler. The scheduler, which keeps changing the priority based on the current situation, is referred to as

a dynamic scheduling algorithm. The Earliest Deadline First (EDF) is one of the examples of the dynamic

scheduling algorithm. [2][3]. This paper has evaluated the Earliest Deadline First and Rate Monotonic

schedulers with a diverse scenario. This paper has evaluated these algorithms based on two different

parameters called Effective CPU utilization (ECU) and Success Ratio (SR). Paper has evaluated both

schedulers in underload and overload situations [4].

Paper has been arranged in the following way: The scheduling method EDF and RM described in Section

2 and 3. Related work is described in Section 4. Algorithm Evolution Criteria and Practical Setup are

described in Section 5. Section 6 discussed the analysis and evaluation of both schedulers, and the paper is

ended with a conclusion in Section 7.

2. The EDF Algorithm

The EDF algorithm is a dynamic pre-emptive scheduler. It gives priority to the task based on the absolute

deadline. Priorities of tasks are allocated dynamically and are inversely proportional to the absolute

deadlines of the active tasks [6][10]. Figure 1 shows the flow of the EDF algorithm. When the currently

executing task is completed, or a new task comes, the scheduler will run and check the absolute deadline

of each active task. The task which has the earliest deadline will be selected for the next execution.

3. The RM Algorithm

The RM algorithm is a static pre-emptive scheduler. It gives priority to the task based on its Rate (task

occurrence period). The task with the smallest Rate will get high priority [5][6]. The period of any task is

pre-defined in RTOS and defined as the task occur again in a given duration. Figure 2 shows the flow of

the RM algorithm. When the currently executing task is completed, or a new task comes, the scheduler will

run and check the lowest rate of each active task. The task which has the lowest rate will be selected for the

next execution [10].

4. EDF and RM Related Work

It is possible to verify the stimulability of any set of the periodic task set. The periodic task set has its

deadline(D), its occurrence period(T), and its execution time(C). The utilization factor 𝑈 =
𝐶

𝑇
 gives the

time used by the assigned task of the processor. For any point in time, the utilization factor can be calculated

with the following equation.

Up = ∑
Ci

Ti

𝑛

𝑖=1
 (1)

The total CPU utilization factor Up stats the fraction of processor time used by the periodic task set. The

given task set is schedulable or not will be decided based on the value of Up. If vale of Upis less than 1,

then it is possible to schedule the given task set, but if the value of Up is greater than one than there is no

scheduler exist which can schedule tasks set completely. [6].

The EDF assigns priorities based on its absolute deadline. The periodic task can be pre-empted when a

new task with the smallest absolute deadline arrives. The EDF scheduler performs well compare to any

other static scheduler in underload scenario, and it is possible to schedule all the task within the task set if

Up < 1[1]. The RM assigns priorities based on its occurrence period (Rate). The scheduler chose the task

from the whole ready task with the shortest period to execute next. RM has advantages like easy to

implement, it has less runtime overhead, simple to evaluate, and it is predictable in overload scenario [6][7].

5. Algorithm Evaluation Criteria and Practical Setup

The Soft-RTOS task set has the required data to calculate the time required to complete the task when

the task is dispatched. This paper is assuming that the task set is periodic and pre-emptive. During the

evolution of these algorithms, it has been considered that the task does not have any resource clash issue,

and it has also been considered that there is no overhead in the pre-emption and scheduling algorithm.

This paper evaluating EDF and RM method, and these algorithms are implemented using the C

programming language. These algorithms execute and schedule the task as per Figure 1 and Figure 2. This

paper has considered a periodic task set for evaluating the performance of the algorithm. The task set has

been generated using a software module that is developed in C language. This module has generated a large

amount of task set, which has 1 to 9 tasks in each set. Each task set has a different utilization factor, and it

varies from 0.5 to 5.0 [11]. At a glance, EDF and RM have been evaluated with more than 30,000+ task to

prove its performance. Each task set has been scheduled for a 500-time unit to test the effectiveness of the

algorithm.

Evaluation of EDF and RM algorithms have been measured based on following two-parameter

Success Ratio (SR) - Soft RTOS expects to meet all the deadlines of a given task in the task set, and it is a

crucial parameter for any scheduler to check its performance. This paper is trying to find out that any given

task can meet their deadline or not. Because of that essential parameter is SR and it defines as below [8][9],

𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑎𝑟𝑟𝑖𝑣𝑒𝑑
 (2)

Effective CPU Utilization(ECU) – This parameter will calculate the effective use of CPU. It shows the

time which is used by the task to schedule the task and the task which can meet their deadline. ECU defined

as:[8][9]

𝐸𝐶𝑈 = ∑
𝑉𝑖

𝑇
𝑖 ∈𝑅

(3)

Here,

 V represents task value and,

• Value of task = Execution time of the task, if it completes its execution before its deadline.

• Value of task = 0, if the task miss deadline.

• R is a set of tasks, which are scheduled successfully, i.e., completed within their deadline.

• T is the total time of scheduling.

6. Result and Discussion

 EDF and RM algorithm has been evaluated on the simulator, which is developed in the C programming

language. Results have been gathered and represented in Table I and Table II. Underload scenario results

have been displayed in Table I, where task set have utilization factor which is less than or equal to 1. It has

been observed that EDF can meet all the deadlines, whereas RM is missing a few of them. Based on this

observation, we can say that the EDF algorithm is advisable in the underload scenario compare to RM.

Overload scenario results have been displayed in Table II, where task set have utilization factor which is

greater than 1. Table II reflects a significant performance difference between EDF and RM in the overload

scenario. If the utilization factor is more than 1 for any given task set than it is not possible to schedule a

task set, and few of their task will miss their deadline. Table II observation says that EDF performance

degraded very rapidly in slightly overload situations, whereas RM is still able to meet a few of their

deadlines. Table I and Table II have been represented in the plotted graph in Figure 3 and Figure 4.

 Table I: Underload Scenario Table II : Overload Scenario

Load

ECU% SR%

EDF RM EDF RM

0.50 49.49 49.49 100.00 100.00

0.55 54.66 54.40 100.00 100.00

0.60 59.39 59.39 100.00 100.00

0.65 64.35 64.35 100.00 100.00

0.70 69.35 69.35 100.00 100.00

0.75 74.31 74.31 100.00 100.00

0.80 79.22 79.22 100.00 100.00

0.85 84.16 84.16 100.00 100.00

0.90 89.16 89.15 100.00 99.99

0.95 94.17 94.08 100.00 99.93

1.00 99.10 97.78 100.00 98.92

Load
ECU% SR%

EDF RM EDF RM

1.05 17.45 70.85 18.27 78.49

1.10 9.21 75.82 9.31 80.49

1.15 6.29 73.20 6.19 75.88

1.20 4.62 83.50 4.22 79.47

1.25 4.06 79.05 3.67 77.58

1.30 3.63 75.66 3.19 73.81

1.35 3.12 74.65 2.65 70.77

1.40 2.66 83.55 2.24 75.47

1.45 2.50 79.75 2.00 69.03

1.50 2.21 85.27 1.71 70.33

1.60 2.17 85.61 1.61 69.52

1.70 2.03 86.26 1.42 65.99

1.80 1.93 86.12 1.30 65.98

1.90 1.90 85.83 1.29 63.51

2.00 1.84 85.78 1.20 62.88

2.25 1.76 84.27 1.04 56.16

2.50 1.55 87.06 0.89 53.82

2.75 1.46 89.21 0.78 52.07

3.00 1.32 94.46 0.63 48.36

3.50 1.27 93.48 0.57 44.50

4.00 1.11 95.04 0.43 39.52

4.50 1.08 96.77 0.38 36.45

5.00 0.97 98.13 0.31 31.72

7. Conclusion

This paper has assessed the EDF and RM scheduling methods for Soft RTOS by considering the periodic

task set with a single processor and also believed that the task set is pre-emptive. A comparison of results

is given in Table I, which suggests that the EDF, which is dynamic scheduling methods, meets a 100%

deadline in the given task set in the underload scenario. In contrast, it is possible to schedule a given task

set, but RM failed to schedule it.

In an overload scenario, which results described in Table II, where the EDF scheduling method misses

most of the deadline in the given task set, whereas the RM scheduling method still able to meet some the

deadline and performs well compared to EDF. Based on the above practical observation, it is advisable to

use EDF (dynamic scheduling method) in the underload scenario, whereas RM (static scheduling method)

in overload scenario so scheduling method will get more effectiveness.

8. References

[1] R. Belagali, S. Kulkarni, V. Hegde, and G. Mishra, “Implementation and validation of dynamic

scheduler based on LST on FreeRTOS,” 2016 Int. Conf. Electr. Electron. Commun. Comput. Optim.

Tech. ICEECCOT 2016, pp. 325–330, 2017.

[2] F. Lindh, T. Otnes, and J. Wennerström, “Scheduling algorithms for real-time systems,” Dep. Comput.

Eng. Malardalens Univ. Sweden, 2010.

[3] D. Thakor and A. Shah, “D_EDF: An efficient scheduling algorithm for real-time multiprocessor

system,” Inf. Commun. Technol. (WICT), 2011 World Congr., pp. 1044–1049, 2011.

[4] J. Teraiya and A. Shah, “Comparative Study of LST and SJF Scheduling Algorithm in Soft Real-Time

System with its Implementation and Analysis,” 2018 Int. Conf. Adv. Comput. Commun. Informatics,

ICACCI 2018, pp. 706–711, 2018.

[5] W. Li, K. Kavi, and R. Akl, “A non-preemptive scheduling algorithm for soft real-time systems,”

Comput. Electr. Eng., vol. 33, no. 1, pp. 12–29, 2007.

[6] G. C. Buttazzo, “Rate Monotonic vs. EDF: Judgment day,” Real-Time Syst., vol. 29, no. 1, pp. 5–26,

2005.

[7] G. Chen and W. Xie, “On a laxity-based real-time scheduling policy for fixed-priority tasks and its

non-utilization bound,” 2011 Int. Conf. Inf. Sci. Technol. ICIST 2011, pp. 7–10, 2011.

[8] K.Ramamritham, J.A.Stankovik, and P.F.Shiah, “Efficient scheduling algorithms for real-time

multiprocessor systems,” IEEE Transaction on Parallel and Distributed Systems, vol. 1, April 1990.

[9] Shah, A., & Kotecha, K. Scheduling Algorithm for Real-Time Operating Systems Using ACO. In

Computational Intelligence and Communication Networks (CICN), 2010 International Conference on

(pp. 617-621). IEEE. November 2010.

[10] Mohammadi, A., & Akl, S. G. Technical Report No. 2005-499 Scheduling Algorithms for Real-

Time Systems∗. 2005.

[11] http://processdataset.in/

Analysis of Dynamic and Static

Scheduling Algorithms in Soft Real-Time

System with Its Implementation

Jay Teraiya and Apurva Shah

Abstract The earliest deadline first (EDF) and least slack time first (LST) are

dynamic schedulers in real-time system. It chooses the priority of the processes

grounded on deadline and slack time correspondingly. The process which has the

shortest deadline and smallest slack time will have more priority in EDF and LST.

EDF and LST are more appropriate for scheduling of process in soft real-time oper-

ating system (RTOS). The rate monotonic (RM) and shortest job first (SJF) are static

schedulers in real-time system. It chooses the priority of the processes grounded on

its occurrence and time required to execute for given process correspondingly. The

process which has the smallest period and smallest time required to execute will be

considered as more priority in RM and SJF. In this paper, we have implemented the

two dynamic scheduling algorithms (EDF and LST) and two static algorithms (RM

and SJF) for the soft RTOS. Algorithms are tested with a periodic task set, and results

are collected. We have observed the success ratio (SR) and effective CPU utilization

(ECU) for all algorithms in a similar environment. It has been observed that the EDF

and LST (dynamic algorithms) perform well in underload condition, but in overload

situation, they are not able to perform well, whereas the RM and SJF (static algo-

rithms) are failed to schedule a specific process in the underload scenario as well.

They perform well in an overload situation compared with static algorithm. Practical

investigations have been led on a huge dataset. Dataset consists of the 7000+ process

set, and each process set has one to nine processes, and load varies between 0.5 and

5. It has been tried on 500-time unit to approve the rightness everything being equal.

Keywords Real-time systems · RTOS · Scheduling · LST · SJF · RM · EDF

J. Teraiya (B)

Marwadi University, Rajkot, Gujarat, India

e-mail: jay.teraiya@gmail.com

A. Shah

The M.S. University Baroda, Vadodara, Gujarat, India

© Springer Nature Singapore Pte Ltd. 2020

M. Pant et al. (eds.), Soft Computing: Theories and Applications,

Advances in Intelligent Systems and Computing 1053,

https://doi.org/10.1007/978-981-15-0751-9_69

757

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0751-9_69&domain=pdf
mailto:jay.teraiya@gmail.com
https://doi.org/10.1007/978-981-15-0751-9_69

758 J. Teraiya and A. Shah

1 Introduction

The use of real-time systems for time-critical applications has been increasing over

the past years. All tasks in RTOS have associated deadlines, and it needs to be

completed within given time. RTOS needs a scheduling algorithm that assigns the

processor to tasks by considering the timing constraints as well as supporting all other

requirements of scheduling. Depending upon the time criticality, RTOS is divided

into hard and soft RTOS. A hard RTOS is one which would fail when the deadline is

missed even though the miss is very small. A soft RTOS is one in which a deadline

miss is acceptable, but it degrades the overall performance of the system [1].

In RTOS, the suitable scheduling algorithm needs to select grounded on the char-

acteristics of the RTOS and the process type. RTOS categorizes as hard, soft, and

firm system. Its process set classifies as a periodic, aperiodic, and sporadic pro-

cess. Process set can be divided into the preemptive and non-preemptive process.

The process has a different characteristic like its execution time, arrival time, dead-

line, and resource requirements. The scheduler can be divided into two categories,

static and dynamic, which depend on the priority they follow. The static algorithm

uses a unique priority to each process to throw out the scheduling. Rate monotonic

(RM) and deadline monotonic (DM) are an example of static priority algorithms.

Dynamic algorithm priority changes during the scheduling process. Earliest deadline

first (EDF) and least slack time first (LST) are an example of dynamic priority algo-

rithms. Dynamic algorithms perform well in underload situation and when processes

are preemptable. However, the limitation of these algorithms is their performance

decreases exponentially if the system becomes slightly overloaded [2, 3].

In the paper, a comparison of dynamic and static algorithms has been compared

with a different aspect. Algorithms have been compared with parameters like ECU

and SR, and the algorithms are observed in overload and underload scenario. This

paper is prepared as: The dynamic and static algorithms have been discussed in

Sects. 2 and 3. Section 4 explains background work. Section 5 represents the process

set and system consideration. Section 6 defines the practical environment and mea-

suring parameters. Section 7 represents the result and analysis of all four algorithms,

and the paper is wrapping up with a brief conclusion in Sect. 8.

2 Dynamic Scheduling Algorithms

Dynamic schedulers make decisions during the runtime of the system. This allows to

not only design a more flexible system, but also associate calculation overhead with

it. The dynamic schedulers decide what task to execute depending on the importance

of the task, called priority. The task priority may change during the runtime [4, 5]. In

this section, we have explained two dynamic scheduling algorithms EDF and LST

as follows.

Analysis of Dynamic and Static Scheduling Algorithms in Soft … 759

Fig. 1 EDF

2.1 Earliest Deadline First (EDF)

The earliest deadline first is a dynamic scheduling algorithm, which gives the highest

priority to the task which has a nearest absolute deadline. Priorities of tasks are

allocated dynamically and are inversely proportional to the absolute deadlines of the

active processes [6]. The algorithm executes when the current process completes or

new process arrives. Figure 1 shows a flowchart for the EDF algorithm.

2.2 Least Slack Time First (LST)

The LST is a dynamic scheduling algorithm, which gives maximum priority to the

process which has the smallest slack time. The slack time (l) can be calculated at

time t with the deadline interval d and remaining execution time c [7].

l = d − c − t (1)

760 J. Teraiya and A. Shah

Fig. 2 LST

The algorithm executes when the current process completes or new process arrives.

Figure 2 shows a flowchart for the LST algorithm. The new process selected for

execution has the smallest slack time.

3 Static Scheduling Algorithms

The static scheduler can calculate the order of execution before runtime as well. The

static scheduler also decides the sequence of task based on priority, but the priority

value will not change during runtime [8]. In this section, we have explained two

static scheduling algorithms RM and SJF as follows.

Analysis of Dynamic and Static Scheduling Algorithms in Soft … 761

Fig. 3 RM

3.1 The Rate Monotonic (RM)

The rate monotonic is a static scheduling algorithm, which gives maximum priority

to the process which has the smallest period or smallest rate [6, 9]. The rate of a

process is already known in RTOS and defined as the task occurs again in a given

duration. The algorithm executes when the current process completes or new process

arrives. Figure 3 shows a flowchart for the RM algorithm.

3.2 The Shortest Job First (SJF)

The shortest job first algorithm is a static scheduling algorithm, which gives maxi-

mum priority to the process which has the smallest execution time [9]. The execution

time of a process is already known in RTOS and defined as the process that needs CPU

time to complete the given task. The algorithm executes when the current process

completes or new process arrives. Figure 4 shows a flowchart for the SJF algorithm.

762 J. Teraiya and A. Shah

Fig. 4 SJF

4 Background Work

For specific periodic process set, it is possible to identify that can we schedule process

set or not. Periodic process has specific parameters like period (T), execution time

(C), and deadline (D). The relation U = C/T is named as utilization factor of process

set and characterizes processor time required by the process set to complete all

process. At a given time, for a set of N processes, utilization factor can be considered

by the following equation.

Up =

n∑

i=1

Ci

Ti

(2)

Up is named utilization factor and signifies the CPU time required by the periodic

process set. If Up > 1, no feasible algorithm exists for the process set and it is

overload situation. If Up < 1, then feasible algorithm exists which can schedule the

process set [6]. The dynamic scheduling algorithms like EDF and LST are better

Analysis of Dynamic and Static Scheduling Algorithms in Soft … 763

compared with the static scheduling algorithm in under load situation, and it can

schedule the whole process set when Up < 1 [1]. The static scheduling algorithm like

RM and SJF decides priority grounded on its rate and required CPU time to complete

the task, respectively. The scheduler selects the waiting task with the smallest period

and the smallest execution time to execute the next task, respectively [10]. SJF as

a single algorithm for RTOS is not observed in any experimental setup. A hybrid

approach of SJF and EDF has been followed to decide the group priority of process

set [9]. In this paper, it has also been experimented by considering SJF as a single

scheduling algorithm with soft real-time system.

5 The Process Set and System Consideration

We considered that process deadline, its rate, and other necessary information are

available with the system when the process is released. The process set is preemptive

and considered that all the required resources for execution of the process are avail-

able. In soft RTOS, each task has a positive value. The system aims to gain maximum

benefit. If the process meets its deadline, then the system will get its value. If the

process misses its deadline, then the system will gain less value. [11]. Firm RTOS is

a kind of real-time system where if the process missed the deadline, then value gain

for the given process is zero. But, it is also not considered as a complete failure of the

system. This paper includes the implementation of dynamic and static scheduling

algorithms which is considered for soft RTOS [12].

6 Practical Environment and Measuring Parameter

Dynamic and static scheduling algorithms have been implemented using C program-

ming language. The algorithm will be executed when a new process is generated or

current process completes its execution. Algorithms are tested with the periodic pro-

cess set for authenticating their performance. Load of the system is calculated based

on Eq. (1). If the load is less than one system, it is considered as underload, and if

it is more than one system, it is considered as overload scenario. Processes set have

been generated with all possible combination. The software module has generated

the 7000+ process set, and each process set has one to nine processes. A load of

process set varies between 0.5 and 5. It has been tried on 500-time unit to approve

the rightness everything being equal. Performance of these (EDF, LST, RM, and SJF)

algorithms has been measured based on SR and ECU.

764 J. Teraiya and A. Shah

1. SR—Success ratio with real-time systems is defined as the ratio of a set of the

process which meets their deadline and a total number of process. Success ratio

is determined with the following Eq. (3) [13].

SR =
Number of Task successfully scheduled

Total Number of Task arrived
(3)

2. ECU—Effective CPU utilization is defined as how much CPU time has been

utilized for the processes which can meet their deadline. ECU is determined with

the following Eq. (4) [13].

ECU =

∑

i∈R

Vi

T
(4)

where

• V represents process value and

– process value = time required to complete the process, if the process meets its

deadline.

– Process value = 0 if the process does not meet the deadline.

• R is a set of process, which is scheduled successfully, i.e., completed within their

deadline.

• T is the total time of scheduling.

7 Result and Analysis

In this paper, EDF, LST, RM, and SJF algorithms are implemented and evaluated

with SR and ECU parameters, and the results are given in Tables 1 and 2. Table 1

contains the underload scenario, and Table 2 includes the result of an overload sit-

uation where in underload it is Up ≤ 1 and in overload it is Up > 1. Observation

with these results indicates that ECU values persist nearly the same for dynamic and

static algorithms, but SR values are not 100% with the static scheduling algorithms.

When Up ≤ 1, it indicates that scheduling of given task set is possible, but static

scheduling algorithms are failing to schedule all process, whereas dynamic schedul-

ing algorithm can schedule this process set. Dynamic scheduling algorithms give

optimum result in underload scenario, and it is advisable to use the dynamic sched-

ulers with underload condition. Table 2 contains the results of overload situation,

Analysis of Dynamic and Static Scheduling Algorithms in Soft … 765

Table 1 Dynamic and static algorithms performance in underload

Load ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

0.50 49.49 49.49 49.49 49.49 100.00 100.00 100.00 100.00

0.55 54.66 54.40 54.40 54.31 100.00 100.00 100.00 100.00

0.60 59.39 59.39 59.39 59.39 100.00 100.00 100.00 100.00

0.65 64.35 64.35 64.35 64.35 100.00 100.00 100.00 100.00

0.70 69.35 69.35 69.35 69.35 100.00 100.00 100.00 100.00

0.75 74.31 74.31 74.31 74.31 100.00 100.00 100.00 100.00

0.80 79.22 79.22 79.22 79.22 100.00 100.00 100.00 100.00

0.85 84.16 84.16 84.16 84.15 100.00 100.00 100.00 99.99

0.90 89.16 89.16 89.15 89.00 100.00 100.00 99.99 99.84

0.95 94.17 94.17 94.08 93.89 100.00 99.99 99.93 99.78

1.00 99.10 99.10 97.78 96.74 100.00 100.00 98.92 98.74

and the observation indicates that dynamic algorithms performance reduces quickly,

whereas static algorithms like RM and SJF are still able to meet few of their deadlines

for given process set. This observation can conclude that in underload scenario, EDF

and LST give optimal results, whereas in overload scenario, RM and SJF performed

well (Figs. 5 and 6).

8 Conclusion

The dynamic and static algorithms are evaluated in this paper for soft RTOS and

considering it for a single processor and preemptive process sets. It is also believed

that process set is periodic. All four algorithms are evaluated in a similar environ-

ment, and the results have been observed and equated. EDF and LST are dynamic

algorithms, and they do well in underload scenario and schedule all process in a given

process set. LST and SJF are static algorithms, and they do well in overload scenario

and try to schedule maximum process in given process set. The ideal algorithm can

be designed which uses the features of dynamic and static algorithm, and it performs

well in underload as well as overload scenario.

766 J. Teraiya and A. Shah

Table 2 Dynamic and static algorithms performance in overload

Load ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

1.05 17.45 16.09 70.85 56.63 18.27 15.84 78.49 73.49

1.10 9.21 8.33 75.82 63.60 9.31 7.90 80.49 75.98

1.15 6.29 5.58 73.20 62.66 6.19 5.06 75.88 73.66

1.20 4.62 4.21 83.50 70.08 4.22 3.67 79.47 73.06

1.25 4.06 3.56 79.05 73.20 3.67 3.06 77.58 77.47

1.30 3.63 3.09 75.66 72.24 3.19 2.53 73.81 75.34

1.35 3.12 2.63 74.65 70.99 2.65 2.09 70.77 71.55

1.40 2.66 2.20 83.55 76.57 2.24 1.71 75.47 73.80

1.45 2.50 2.01 79.75 74.45 2.00 1.52 69.03 68.76

1.50 2.21 1.83 85.27 80.07 1.71 1.33 70.33 69.96

1.60 2.17 1.77 85.61 77.26 1.61 1.29 69.52 67.20

1.70 2.03 1.58 86.26 79.16 1.42 1.07 65.99 64.60

1.80 1.93 1.45 86.12 77.28 1.30 0.95 65.98 63.04

1.90 1.90 1.31 85.83 77.53 1.29 0.85 63.51 62.21

2.00 1.84 1.19 85.78 78.10 1.20 0.76 62.88 61.00

2.25 1.76 1.13 84.27 76.95 1.04 0.65 56.16 55.91

2.50 1.55 0.98 87.06 74.97 0.89 0.54 53.82 49.92

2.75 1.46 0.91 89.21 74.42 0.78 0.47 52.07 46.83

3.00 1.32 0.86 94.46 77.23 0.63 0.40 48.36 41.67

3.50 1.27 0.75 93.48 73.37 0.57 0.33 44.50 36.76

4.00 1.11 0.73 95.04 79.57 0.43 0.27 39.52 34.09

4.50 1.08 0.71 96.77 71.58 0.38 0.24 36.45 27.74

5.00 0.97 0.66 98.13 78.22 0.31 0.20 31.72 25.71

Analysis of Dynamic and Static Scheduling Algorithms in Soft … 767

0

10

20

30

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.25 2.75 3.5 4.5

ECU% EDF ECU% LST ECU% RM ECU% SJF

Fig. 5 ECU% versus load

0

10

20

30

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.25 2.75 3.5 4.5

SR% EDF SR% LST SR% RM SR% SJF

Fig. 6 SR% versus load

768 J. Teraiya and A. Shah

References

1. Belagali, R., Kulkarni, S., Hegde, V., Mishra, G.: Implementation and validation of dynamic

scheduler based on LST on FreeRTOS. In: Electrical, Electronics, Communication, Computer

and Optimization Techniques (ICEECCOT), Mysore, India, Dec 2016, pp. 325–330

2. Mohammadi, A., Akl, S.G.: Scheduling Algorithms for Real-Time Systems. School of Com-

puting, Queen’s University, Kingston, Ontario (2005)

3. Thakor, D., Shah, A.: D_EDF: an efficient scheduling algorithm for real-time multiprocessor

system. In: Information and Communication Technologies (WICT), Mumbai, India, Dec 2011,

pp. 1044–1049

4. Harkut, D.G.: Comparison of different task scheduling algorithms in RTOS: a survey. Int. J.

Adv. Res. Comput. Sci. Softw. Eng. 4(7), 1236–1240 (2014)

5. Koren, G., Shasha, D.: D_over: an optimal on-line scheduling algorithm for overloaded unipro-

cessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

6. Buttazzo, G.C.: Rate monotonic vs. EDF: judgment day. Real-Time Syst. 29(1), 5–26 (2005)

7. Patel, M., Oza, B.: An improved LLF_DM scheduling algorithm for periodic tasks by reducing

context switches. Int. J. Adv. Eng. Res. 2, 248–254 (2015)

8. Ramamritham, K., Stankovic, J.A., Shiah, P.F.: Efficient scheduling algorithms for real-time

multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 1(2), 184–194 (1990)

9. Li, W., Kavi, K., Akl, R.: A non-preemptive scheduling algorithm for soft real-time systems.

Comput. Electr. Eng. 33(1), 12–29 (2007)

10. Chen, G., Xie, W.: On a laxity-based real-time scheduling policy for fixed-priority tasks and

its non-utilization bound. In: Information Science and Technology (ICIST), Tebessa, Algeria,

pp. 7–10 (2011)

11. Locke, C.D.: Best-effort decision making for real-time scheduling. Ph.D. Thesis, Computer

Science Department, CMU (1986)

12. Shah, A.: Adaptive scheduling algorithm for real-time distributed systems. In: Biologically-

Inspired Techniques for Knowledge Discovery and Data Mining, pp. 236–248 (2014)

13. Shah, A., Kotecha, K.: Scheduling algorithm for real-time operating systems using ACO. In:

Computational Intelligence and Communication Networks (CICN), Bhopal, India, Nov 2010,

pp. 617–621

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

2885

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP

DOI: 10.35940/ijeat.B3837.129219



Abstract: In the Soft Real-Time System scheduling process with

the processor is a critical task. The system schedules the processes

on a processor in a time interval, and hence the processes get

chance to executes on the processor. Priority-driven scheduling

algorithms are sub-categorized into mainly two categories called

Static Priority and Dynamic Priority Scheduler. Critical Analysis

of more static and dynamic priority scheduling algorithms have

been discussed in this paper. This paper has covered the static

priority algorithms like Rate Monotonic (RM) and Shortest Job

First (SJF) and the dynamic priority algorithms like Earliest

Deadline First (EDF) and Least Slack Time First (LST). These all

algorithms have been analyzed with preemptive process set and

this paper has considered all the process set are periodic. This

paper has also proposed a hybrid approach for efficient

scheduling. In a critical analysis, it has been observed that while

scheduling in underload situation dynamic priority algorithms

perform well and even EDF also make sure that all process will

meet their deadline. However, in an overload situation, the

performance of dynamic priority algorithms reduce quickly, and

most of the task will miss its deadline, whereas static priority

scheduling algorithms miss a few deadlines, even it is possible to

schedule all processes in underload situation, whereas in an

overload situation, the static algorithms perform well compared to

the dynamic scheduler. This paper is proposing one Hybrid

algorithm call S_LST which uses the concept of LST and SJF

scheduling algorithm. This algorithm has been applied to the

periodic task set, and observations are registered. We have

observed the Success Ratio (SR) & Effective CPU Utilization

(ECU) and compared all algorithms in the same conditions. It is

noted that instead of using LST and SJF as an independent

algorithm, Hybrid algorithm S_LST performs well in underload

and overload scenario. Practical investigations have been led on a

huge dataset. Data Set consists of the 7000+ process set, and each

process set has one to nine processes and load varies between 0.5

to 5. It has been tried on 500-time unit to approve the rightness

everything being equal.

Keywords: Soft Real-Time System, RTOS, RM, SJF, LST,

EDF, S_LST

I. INTRODUCTION

Real-Time Systems has to complete its work and deliver its

services on a timely basis. It makes sure that its task will be

completed before its deadline. Example of a Real-Time

system is vehicle control, flight control, healthcare

Revised Manuscript Received on December 15, 2019.
* Correspondence Author

Jay Teraiya*, Department of Computer Engineering, Marwadi

University, Rajkot, India. Email: jay.teraiya@gamil.com

Apurva Shah, Department of Computer Science and Engineering The

Maharaja Sayajirao University of Baroda, Baroda, India. Email:

apurva.shah-cse@msubaroda.ac.in

equipment, and many more. Typical PC run nonreal-time

applications such as a browser, editor, different user

applications. When the real-time system works correctly, and

well, they make us forget their existence [1].

The real-time system is sub-categorized into mainly two

types: hard and soft. There are many definitions of hard and

soft real-time systems. Real-Time system is considered as

Hard if the process fails to meet its deadline, then it will be a

fatal fault. In Hard Real-Time, if the process missed its

deadline, then result produced by the job after the deadline

may have disastrous consequences. A few examples of Hard

Real-Time Systems are Metro Train and its signal system,

Missile technology, Flight control system. The real-time

system is considered as Soft if the late completion of the

process is undesirable. However, a few misses of soft

deadlines do no serious harm; only the system’s performance

becomes poor. A few examples of Soft Real-Time systems

include ATM System, Mobile application and telephone

switches [7].

The real-time system has three kinds of task model call

Periodic, Aperiodic and Sporadic tasks. In the periodic task,

each task generated at regular time intervals. The Real-Time

system is invariably required to respond to external events

and to respond; it executes aperiodic or sporadic tasks whose

release times are not known to the system in advance. We call

the task is aperiodic if the process in it have soft deadlines.

Each unit of work is scheduled and executed by the system as

a process. Each process has a different characteristic like

release time, deadline, period and execution time. The release

time of a process is the instant of time at which the job become

available for execution. The process can be scheduled and

executed at any time after its release. The deadline for a

process is the instant of time by which its execution needs to

be completed. The deadline for a process sometimes called

absolute deadline, which is equal to its release time plus its

relative deadline. The execution time of any process is

considered as the unit amount of time required for the process

to execute it on the processor. If the process is periodic, then

the period of the process indicates the occurrence interval of

the given process.

In RTOS, selecting the scheduling algorithm is a critical

task, and it will be decided based on the characteristics of the

RTOS and the process type [2]. The scheduler can be divided

into two categories, static and dynamic, which depends on the

priority they follow in selecting the process for execution.

Hybrid Scheduler (S_LST) for Soft Real-Time

System based on Static and Dynamic

Algorithm

Jay Teraiya, Apurva Shah

mailto:jay.teraiya@gamil.com
mailto:apurva.shah-cse@msubaroda.ac.in

Hybrid Scheduler (S_LST) for Soft Real-Time System based on Static and Dynamic Algorithm

2886

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B3837129219/2019©BEIESP

DOI: 10.35940/ijeat.B3837.129219

The static algorithm uses a unique priority to each process

throughout the scheduling. Rate Monotonic (RM) and

Deadline Monotonic (DM) are an example of static priority

algorithms. Dynamic algorithm priority changes during the

scheduling process. Earliest Deadline First (EDF) and Least

Slack Time First (LST) are an example of dynamic priority

algorithms [10][11].

In this paper, we have compared all dominant dynamic and

static scheduling algorithms and did their critical analysis. All

algorithm has been compared based on Success Ratio (SR)

and Effective CPU Utilization (ECU) parameters. This paper

also proposed an effective scheduling algorithm call S_LST,

which is using characteristics of LST and SJF. The new

algorithm also compared with the rest of all algorithms based

on SR and ECU parameters. This paper explains the Static

and Dynamic Scheduling algorithm in section II. Their critical

analysis based on SR and ECU has been described in section

III, and a new efficient algorithm call S_LST has been

proposed in section IV, and performance of a new algorithm

has been compared and discussed in section V, and paper is

ended with a brief conclusion in section VI.

II. THE STATIC AND DYNAMIC SCHEDULING

ALGORITHMS

Priority-driven scheduling algorithms are online schedulers

that schedule the process according to some priority. It does

not pre-decide the process; instead of that, it assigns priorities

to process when it is ready to execute. The scheduling

algorithm will be executed whenever a new process is

released, or currently, running process completes its

execution. Priority-driven schedulers categorize based on

how priority assigned to each process. Priority-driven

algorithms are classified in to two categories: Static Priority

and Dynamic Priority. A Static Priority algorithm assigns the

same priority to all the periodic processes, and it will remain

fixed relative to other processes. Whereas dynamic-priority

algorithm changes the priority of the process based on the new

process arrives or currently running process completes

[12][22].

A. Static Scheduling Algorithms

The Rate Monotonic (RM) and the Shortest Job First (SJF)

are well known static priority algorithms. The RM assigns the

priority to the process based on their period (the frequency of

the task when it occurs). The Rate of the process is already

known in RTOS for the periodic task. The rate of a process is

the inverse of its period, so higher the rate, the priority of the

process will be high [6][13][14]. The Shortest Job First (SJF)

assigns the priority to the process based on their required

execution time. The required execution time of the process is

also known in RTOS and process with the shortest execution

time will have the highest priority in SJF [13]. By looking at

the approach of both algorithms, its ultimate aim is to gain

maximum profit or try to meet the maximum deadline of the

given processes.

B. Dynamic Scheduling Algorithms

The Earliest Deadline First (EDF) and the Least Slack

Time First (LST) are well known dynamic priority

algorithms. The EDF assigns the priority to the process based

on the absolute deadline. The absolute deadline for each

process is already known in RTOS, and the process which has

the smallest absolute deadline will consider as highest priority

process [8][14]. The LST is another well-known dynamic

priority algorithm, and it assigns priority based on the slack

time of the given process. The slack value of the process is

equal to absolute deadline minus given time t minus

remaining execution time x (slack=d-t-x). The algorithm

checks the slacks of all the ready process each time a new

process is released, or the existing process completes. The

process with the smallest slack value will have the highest

priority [9][15][16][17]. By looking at the approach of both

algorithms, its ultimate aim is to meet the deadline of the

given process.

For any set of periodic processes, we can verify its

stimulability is possible or not using its occurrence period(T),

its execution time(C), and its deadline(D). This ratio is

called the utilization factor of the task set as shown in

equation 1.

 (1)

is called the total processor utilization factor and

represents the fraction of processor time used by the periodic

task set. If >1 no feasible schedule exists for the task set

with an algorithm, and it is overload condition.

III. CRITICAL ANALYSIS OF STATIC AND

DYNAMIC SCHEDULING ALGORITHM

A. System Consideration and Task Model

In Soft Real Time System, system is already aware with

task deadline, its period and the other required data to

compute the required time by the task when task is dispatch.

The process set is considered pre-emptive. This paper has

believed that the system is not having a resource clash

problem. Each task in soft real-time systems has a positive

value and ultimate goal is to gain maximum value. If a process

succeeds, then the system considers its value. If a process

fails, then the system gets less benefit from it [18] [19]. In this

paper, we have implemented Dynamic and Static scheduling

algorithms that apply to the soft real-time system. The value

of the task has been considered the same as its computation

time required [20].

B. Experimental Environment and Evaluating

Parameters

1) Success Ratio (SR):

Success Ratio with real-time systems defined as the ratio of a

set of the process which meets their deadline and a total

number of process. Success Ration determined with the

following equation 2 [21].

 (2)

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

2887

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP

DOI: 10.35940/ijeat.B3837.129219

2) Effective CPU Utilization (ECU):

Effective CPU Utilization defined as how much CPU time has

been utilizing for the processes which can meet their deadline.

ECU determined with the following equation 3 [21].

 (3)

Where,

• V represents process value and,

Process Value = time required to complete the process if the

process meets its deadline.

Process Value = 0 if the process does not meet the deadline.

• R is a set of processes, which are scheduled successfully,

i.e., completed within their deadline.

• T is the total time of scheduling.

C. Analysis and Observation

RM, SJF, EDF, and LST algorithms are implemented and

evaluated with SR and ECU parameters (explained in section

3), and results have been observed. Observation with these

results indicates that ECU values persist nearly the same for

Dynamic and Static algorithms, but SR values are not 100%

with the Static scheduling algorithms. When U_p≤1, it

indicates that scheduling of a given task set is possible, but

Static scheduling algorithms are failing to schedule all

processes, whereas Dynamic scheduling algorithm can

schedule this process set. Dynamic scheduling algorithms

give optimum results in underload scenario, and it is advisable

to use the Dynamic schedulers with underload conditions. In

overload situation when U_p>1, observation indicates that

Dynamic algorithms performance reduce quickly whereas

Static algorithms like RM and SJF are still able to meet a few

of their deadline for a given process set. This observation can

conclude that in underload EDF and LST give optimal results

whereas in overload RM and SJF performed well. Fig. 1 and

Fig. 2 provides a graphical representation of results.

The Static and Dynamic algorithms are evaluated here for

Soft – RTOS and considering it for a single processor, and

pre-emptive process sets and all process set is periodic. All

algorithms are evaluated in a similar environment and results

have been observed and equated. EDF and LST are dynamic

algorithms, and they do well in underload scenario and

schedule all processes in a given process set. LST and SJF are

static algorithms, and they do well in an overload scenario and

try to schedule the maximum process in a given process set.

The ideal algorithm can be designed, which uses the features

of Dynamic and Static algorithm, and it performs well in

underload as well as overload scenario [3][4][5].

Fig. 1 Load Vs. ECU%

Fig. 2 Load Vs. SR%

IV. THE HYBRID APPROACH FOR EFFICIENT

SCHEDULING – S_LST ALGORITHM

S_LST algorithm uses the characteristics of LST and SJF. In

underload, situation task priority will be given based on slack

time, and in an overload situation, task priority will be

assigned based on the shortest execution time. We are

considering that the execution time of the task, its arrival time,

its period and total CPU load is available with Soft Real-Time

System. The scheduling algorithm executes when a currently

running task completes or a new task arrives. The algorithm

has been described as follows.

__
_

S_LST Algorithm for Scheduling

__
_

Input: Process Set

Output: MIProcess

1: if (Underload Scenario)

2: for each process in process set

3: Calculate Slack time for each Process
in Process Set

4: Select MIProcess with lowest slack
time

5: end for

6: else

7: for each process in process set

8: Calculate Shortest Execution Time for
each process

9: Select MIProcess with lowest
Execution time

10: end for

11: end if

12: return MIProcess

__
_

As shown in Algorithm, when scheduling algorithm invokes;

first it observed the CPU load, based on the current process

set and available processes are

ready for scheduling.

Hybrid Scheduler (S_LST) for Soft Real-Time System based on Static and Dynamic Algorithm

2888

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B3837129219/2019©BEIESP

DOI: 10.35940/ijeat.B3837.129219

If it will assign the task priority based on slack time

(Dynamic scheduling algorithm) and if it will assign

the task priority based on shortest execution time (Static

Scheduling algorithm). The static scheduler aim is to gain

maximum profit from the given process set. So, in overload

situation where dynamic scheduler performs poorly, SJF

algorithm gets more processes meets their deadline.

V. S_LST ALGORITHM RESULTS AND

DISCUSSION

Table 1 represents the results of LST, SJF and the S_LST

algorithm on the simulator. To evaluate S_LST, we are using

a similar environment which we have used to evaluate all

Static and Dynamic priority algorithm as per section 3. Table

1 first eleven rows represent the scenario where task set

contains 1 to 9 task and Load is less than 1 or equal to 1

(). Results show that S_LST performs equally well in

underload scenarios like LST algorithm in terms of ECU and

SR parameter. S_LST uses slack time value of task to assign

dynamic priority in underload situation.

Table 1 rest of rows represents the scenario where process

set contains 1 to 9 process and Load is greater than 1

(). Results show a waste difference in ECU and SR

values compare to a simple LST algorithm. When Load is

greater than 1, it means that task set is not schedulable, and

most of the process misses their deadline with LST algorithm.

Table 1 observations reflect that in slightly overload

situations LST performance degrades very poorly, whereas

SJF able to meet the deadline for few of their process sets. It

means in overload situation, SJF gives better performance

than LST. That is why S_LST uses static priority in an

overload situation. Fig. 3 and Fig. 4 provides a graphical

representation of Table 1.

Fig. 3 Load Vs. ECU%

Fig. 2 Load Vs. SR%

Table- I: Comparison of LST, SJF and S_LST

 ECU SR

Load LST SJF S_LST LST SJF S_LST

0.5 49.49 49.49 49.49 100.00 100.00 100.00

0.55 54.40 54.31 54.40 100.00 100.00 100.00

0.6 59.39 59.39 59.39 100.00 100.00 100.00

0.65 64.35 64.35 64.35 100.00 100.00 100.00

0.7 69.35 69.35 69.35 100.00 100.00 100.00

0.75 74.31 74.31 74.31 100.00 100.00 100.00

0.8 79.22 79.22 79.22 100.00 100.00 100.00

0.85 84.16 84.15 84.16 100.00 99.99 100.00

0.9 89.16 89.00 89.16 100.00 99.84 100.00

0.95 94.17 93.89 94.17 99.99 99.78 99.99

1 99.10 96.74 99.10 100.00 98.74 100.00

1.05 16.09 56.63 56.63 15.84 73.49 73.49

1.1 8.33 63.60 63.60 7.90 75.98 75.98

1.15 5.58 62.66 62.66 5.06 73.66 73.66

1.2 4.21 70.08 70.08 3.67 73.06 73.06

1.25 3.56 73.20 73.20 3.06 77.47 77.47

1.3 3.09 72.24 72.24 2.53 75.34 75.34

1.35 2.63 70.99 70.99 2.09 71.55 71.55

1.4 2.20 76.57 76.57 1.71 73.80 73.80

1.45 2.01 74.45 74.45 1.52 68.76 68.76

1.5 1.83 80.07 80.07 1.33 69.96 69.96

1.6 1.77 77.26 77.26 1.29 67.20 67.20

1.7 1.58 79.16 79.16 1.07 64.60 64.60

1.8 1.45 77.28 77.28 0.95 63.04 63.04

1.9 1.31 77.53 77.53 0.85 62.21 62.21

2 1.19 78.10 78.10 0.76 61.00 61.00

2.25 1.13 76.95 76.95 0.65 55.91 55.91

2.5 0.98 74.97 74.97 0.54 49.92 49.92

2.75 0.91 74.42 74.42 0.47 46.83 46.83

3 0.86 77.23 77.23 0.40 41.67 41.67

3.5 0.75 73.37 73.37 0.33 36.76 36.76

4 0.73 79.57 79.57 0.27 34.09 34.09

4.5 0.71 71.58 71.58 0.24 27.74 27.74

5 0.66 78.22 78.22 0.20 25.71 25.71

VI. CONCLUSION

The Static Algorithms (RM and SJF) and Dynamic

Algorithms (EDF and LST) are implemented for scheduling

of soft real-time system with a single processor and

pre-emptive task sets and done a critical analysis of these

algorithms with ECU and SR parameter in this paper. These

algorithms are simulated with periodic task sets; results are

obtained and compared. Observation says that dynamic

algorithms perform well in underload situations and gives a

guarantee to meet all the deadlines of a given process set. In

overload (Load is > 1) situation, dynamic algorithms

performance degrades very poorly. So, in underload, dynamic

algorithms are advisable but not with an overload situation.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

2889

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B3837129219/2019©BEIESP

DOI: 10.35940/ijeat.B3837.129219

Static algorithms miss few process deadlines even in

underload situations. It has been observed that with the

specific process set, even it is possible that all processes can

meet their deadline, but static algorithms are failed to

schedule it. So, in underload, static schedulers are not

advisable, but in overload, they perform well compared to

dynamic algorithms. Based on this observation we have

proposed a hybrid approach for efficient scheduling in Soft

Real-Time system call S_LST. S_LST algorithm assigns the

static priority in overload situations will perform better in all

situations compare to a single approach. Developing a

scheduling algorithm using swarm (ACO) has been done for

the Soft Real-Time system [21]. There is still multiple

research possibility where we can use swarm intelligence

techniques like Gravitational Search Algorithm (GSA) or

Particle Swarm Optimization (PSO) and can design an

efficient scheduling algorithm which can perform well in

underload and overload situation.

REFERENCES

1. El Ghor, H., Hage, J., Hamadeh, N., & Chehade, R. H. (2018).

Energy-Efficient Real-Time Scheduling Algorithm for Fault-Tolerant

Autonomous Systems. Scalable Computing: Practice and Experience,

19(4), 387-400.

2. A. Magdich, Y. Hadj Kacem, M. Kerboeuf, A. Mahfoudhi, and M.

Abid, “A design pattern-based approach for automatic choice of

semi-partitioned and global scheduling algorithms,” Inf. Softw.

Technol., vol. 97, no. November 2017, pp. 83–98, 2018.

3. J. Teraiya and A. Shah, “Comparative Study of LST and SJF

Scheduling Algorithm in Soft Real-Time System with its

Implementation and Analysis,” 2018 Int. Conf. Adv. Comput.

Commun. Informatics, ICACCI 2018, pp. 706–711, 2018.

4. J. Teraiya, A. Shah, and E. Foundation, “Analysis of Dynamic and

Static Scheduling Algorithms in Soft Real-Time System with its

Implementation,” Soft-Computing: Theories and Applications

(SoCTA - 2018) Jalandhar, India 21-23 December 2018.

5. Konar, D., Bhattacharyya, S., Sharma, K., Sharma, S., & Pradhan, S.

R. (2017). An improved Hybrid Quantum-Inspired Genetic Algorithm

(HQIGA) for scheduling of real-time task in multiprocessor system.

Applied Soft Computing, 53, 296-307.

6. Feld, T., Biondi, A., Davis, R. I., Buttazzo, G., & Slomka, F. (2018). A

survey of schedulability analysis techniques for rate-dependent tasks.

Journal of Systems and Software, 138, 100-107.

7. Laalaoui, Y., & Bouguila, N. (2014). Pre-run-time scheduling in

real-time systems: Current researches and artificial intelligence

perspectives. Expert Systems with Applications, 41(5), 2196-2210.

8. Yang, K., & Anderson, J. H. (2015, August). On the soft real-time

optimality of global EDF on multiprocessors: From identical to

uniform heterogeneous. In 2015 IEEE 21st International Conference

on Embedded and Real-Time Computing Systems and Applications

(pp. 1-10). IEEE.

9. Benhai, Z., Yuan, Y., Hongyan, M., Dapeng, Y., & Libo, X. (2016,

May). Research on optimal ELSF real-time scheduling algorithm for

CPS. In 2016 Chinese Control and Decision Conference (CCDC) (pp.

6867-6871). IEEE.

10. A. Mohammadi and S. G. Akl, “Scheduling Algorithms for Real-Time

Systems”, in School of Computing, Queen’s University, Kingston,

Ontario, 2005.

11. Thakor, D., & Shah, A. (2011, December). “D_EDF: An efficient

scheduling algorithm for real-time multiprocessor system”, in

Information and Communication Technologies (WICT), Mumbai,

India, pp. 1044-1049, 2011.

12. D. G. Harkut, “Comparison of Different Task Scheduling Algorithms

in RTOS : A Survey,” vol. 4, no. 7, pp. 1236–1240, 2014

13. Li, W., Kavi, K., &Akl, R. “A non-preemptive scheduling algorithm

for soft real-time systems”, in Computers & Electrical Engineering,

Vol. 33(1), pp. 12-29, 2007.

14. Buttazzo, G. C. “Rate monotonic vs. EDF: judgment day”, in

Real-Time Systems, Vol. 29(1), pp. 5-26, 2005.

15. M. Patel and B. Oza, “An Improved LLF_ DM Scheduling Algorithm

for Periodic Tasks by Reducing Context Switches,” in International

Journal of Advance Engineering and Research, vol. 2, pp. 248–254,

2015.

16. Belagali, R., Kulkarni, S., Hegde, V., & Mishra, G. “Implementation

and validation of dynamic scheduler based on LST on Free RTOS”, in

Electrical, Electronics, Communication, Computer and Optimization

Techniques (ICEECCOT), Mysore, India, pp. 325-330, 2016,

December.

17. Chen, G., & Xie, W. “On a laxity-based real-time scheduling policy for

fixed-priority tasks and its non-utilization bound”, in Information

Science and Technology (ICIST), 2011,Tebessa, Algeria, pp. 7-10,

2011.

18. Locke, C. D. “Best-effort decision making for real-time scheduling”

(Ph. D Thesis), Computer Science Department, CMU, 1986.

19. Koren, G., & Shasha, D. “D_over: An Optimal On-Line Scheduling

Algorithm for Overloaded Uniprocessor Real-Time Systems” in SIAM

Journal on Computing, Vol. 24(2), pp. 318-339, 1995.

20. A Shah, “Adaptive scheduling algorithm for real-time distributed

systems”, in Biologically-Inspired Techniques for Knowledge

Discovery and Data Mining,pp. 236-248, 2014.

21. J. Teraiya, A. Shah, & K. Kotecha, “ACO Based Scheduling Method

for Soft RTOS with Simulation and Mathematical Proofs” in

International Journal of Innovative Technology and Exploring

Engineering, Vol. 8, Issue. 12 pp. 4736-4740, 2019.

22. D. G. Harkut, “Comparison of Different Task Scheduling Algorithms

in RTOS : A Survey,” vol. 4, no. 7, pp. 1236–1240, 2014.

AUTHORS PROFILE

Jay Teraiya, has completed Bachelor of

Engineering from GCET – Vallabh

Vidyanagar under S. P. University. He has

also completed his M. S. in Software

Engineering from BITS Pillani. He is pursuing

in Ph. D from the M. S. University of Baroda

under the guidance of Dr. Apurva Shah.

Dr. Apurva Shah, Associate Professor and

Head of Department (Computer Science and

Engineering) in Faculty of Technology, the

M. S. University of Baroda Gujarat. He is

also director of Computer Center in the

University. His area of interest are Real Time

System, Artificial intelligence and distributed

computing. He has completed his Ph. D. from

S. P. University Vallabh Vidyanagar.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12, October 2019

4736

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L3606081219/2019©BEIESP

DOI: 10.35940/ijitee.L3606.1081219



Abstract: The Ant Colony Optimization (ACO) algorithm is a

mathematical model enlivened by the system searching conduct of

ants. By taking a gander at the qualities of ACO, it is most suitable

for scheduling of tasks in soft real-time systems. In this paper, the

ACO based scheduling method for the soft real-time operating

system (RTOS) has been profound with mathematical and

practical proof. In Mathematical proof, three different

Propositions and two Theorems have been given, which prove the

correctness of the proposed algorithm. Practical experiments also

support mathematical proofs. During the investigation,

observations are gathered with different periodic task set.

Algorithms have been observed regarding Success Ratio (SR) and

Effective CPU utilization (ECU). ACO based scheduling

algorithm has been compared with the Earliest Deadline First

(EDF) algorithm with parameter SR and ECU. The EDF is

dynamic scheduling algorithm and it is most suitable in RTOS

when task set is preemptable. It is noted that the new algorithm is

equally efficient during under loaded conditions when CPU load

is less than one. ACO based scheduling algorithm performs

superior during the overloaded conditions when CPU load is more

than one where as EDF algorithm performance degraded in

overload condition. Empirical study has been executed with a

hefty Dataset consist of more than 7500 task set, and a set contains

different one to nine processes where CPU load is dynamic for

each process set and differ from 0.5 to 5. Algorithms have been

executed on five-hundred-time unit for each process set to

authenticate the accuracy of both algorithms.

Keywords: ACO, EDF, ACO, Real-Time Systems, RTOS

I. INTRODUCTION

Real-time system is the systems in which the accuracy of

the system not only defined by the logical accuracy but also

with the time it takes to produce the result. Real-Time systems

have decisive, unchanging time restrictions, i.e., the task must

be ended within the specified duration; otherwise, the system

fails. One can find the existence of two types of real-time

systems: Hard and Soft Real-Time System. Hard Real-Time

System needs that task deadlines must be met; otherwise, the

disastrous situation will arise whereas in Soft Real-Time

System, lost an occasional deadline is unwanted but

reasonable. Real-time task manager aims to make sure that it

meets the deadline for scheduled tasks in the system when we

consider the soft real-time system. Vast re-searches are going

on real-time task scheduling in order get this desired target. In

general, all the real-time systems that exist use preemption

Revised Manuscript Received on October 05, 2019.

* Correspondence Author

Jay Teraiya*, Computer Engineering Department, Marwadi University,

Rajkot, India.

Apurva Shah, Computer Science and Engineering Department, The

Maharaja Sayajirao University of Baroda, Baroda, India.

Ketan Kotecha, The Symbiosis Institute of Technology, Pune, India.

and multitasking. Real-Time scheduling methods are widely

separated into two methods: Static and Dynamic Methods.

Static methods allocate all priorities at design time, and it

remains steady for the lifespan of a task. Dynamic methods

keep changing the priority at the scheduled time, based on

design parameters of any job. Dynamic methods can be

endured with static or dynamic priority. Rate Monotonic

(RM) and Deadline Monotonic (DM) are the examples of the

dynamic scheduling method with static priority [1][2]. There

are examples of dynamic scheduling with dynamic priority

such as- Earliest Deadline First (EDF) and Least Slack Time

First (LST). These algorithms are most the favorable where

jobs are preemptable, consist of a single processor, which in

turn is under-loaded [3],[4]. However, the constraint of such

algorithm is its performance, which diminishes exponentially

if the system becomes somewhat overloaded [5].The

scheduling is treated as online if the scheduler forges

scheduling outcome and doesn’t know about the task that is to

be released in the future. It is stated that, in an overloaded

situation, no other online scheduling algorithm can attain a

competitive factor prominent than 0.25. Certainly, many

researchers have identified that for any system whose loading

factor is nearly equal to 1, the competitive factor of an online

scheduling algorithm is nearly equivalent to 0.385 [6],[7].

Certain features make ACO based algorithm an exclusive

method: it is effective, population-based metaheuristic that

feeds an indirect form of memory of an earlier performance

[8][9]. That is one reason why we have considered the same

approach for RTOS scheduling.This paper has aimed to

formulate as follows: In Section II, the projected algorithm is

described and explained. Section III contains mathematical

proofs for this algorithm, which includes three Propositions

and two Theorems. Section IV illustrates the Simulation

method, System and Task Model. Section V represents

Results and Discussion and the paper ends with a concise

decision in Section VI.

II. THE PROPOUND METHOD

The scheduling method is required to plan when a directly

running task completes or any new task gets generated. The

main steps of the method are shown in subsequent sections,

and the consecutive algorithm has been described.

1. Design a journey of distinct ants to yield the better

execution sequence of the task.

2. Evaluate the sequences of the task for the given

processor.

3. Modify pheromone value.

4. Calculate the probability of all tasks and chose the best

task for execution.

ACO Based Scheduling Method for Soft RTOS

with Simulation and Mathematical Proofs

Jay Teraiya, Apurva Shah, Ketan Kotecha

ACO Based Scheduling Method for Soft RTOS with Simulation and Mathematical Proofs

4737

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L3606081219/2019©BEIESP

DOI: 10.35940/ijitee.L3606.1081219

A. Creation of Tour

One is required to find the probability of each task using

equation in the initial phase. (1) In addition to that, all

schedulable tasks are considered as a node and using

pheromone τ, and heuristic value η, the probability of all

nodes are selected for execution,

 (1)

Where,

is the probability of i
th

 fork at time t; where i ∈ N1 and

N1 is a set of the node (schedulable tasks) at time t.

 is the value of pheromone of i
th

 node at time t.

 is the value of heuristic of i
th

 node at time t, which

can be regulated as,

 (2)

Here, t is the current time, K is constant (scale 5 - 10) and
is the absolute deadline of i

th
 fork.

 α and β are the constants that decide the significance

of τ and η.

Ants form their journey based on value p for each fork, as per

the following,

 Ant-1: 1
st
 maximum p(t) → 2

nd
 maximum p(t) → 3

rd

maximum p(t) →

 Ant-2: 2
nd

 maximum p(t) → 1
st
 maximum p(t) → 3

rd

maximum p(t) →

 Ant-3: 3rd maximum p(t) → 1
st
 maximum p(t) → 2

nd

maximum p(t) →

Consider on-time t; there are four tasks schedulable shown

in Algorithm 1. Each task will be served as a fork, and from

another fork, an ant will start its tour. Let’s assume the

preference of all the forks is in descending order such as T1,

T2, T3, T4; ants will pass over different forks as per the

following paths.

 Ant-1: T1→ T2→ T3→ T4

 Ant-2: T2→ T1→ T3→ T4

 Ant-3: T3→ T1→ T2→ T4

 Ant-4: T4→ T1→ T2→ T3

Fig. 1. Ants Journey.

B. ACO Based Algorithm

Once ants have finished their respective journeys, calculate

the progress of all ant’s journey is calculated. We studied this

foundation based on relative number of successful tasks and

missed tasks. After that, consider the two leading trips of ants

and modify the pheromone cost consequently.

Algorithm 1: ACO Based Scheduling

Input: A set of Processes, Pheromone (τ), Heuristic Value

(ɳ), (α, β, ρ) are constants.

Output: Executes the Most Important Process.

for each New Process Arrives or Currently running process

complete do

if Is Ready Queue is Empty then,

 Wait;

/* this step identifies the most suitable process for

execution */

Compute Most_important_Process() ;

Analyze the Ant’s Journey using two tasks:

Success Task = {Successfully Scheduled:

Total Task Arrived};

Missed Task = {Unsuccessfully Scheduled:

Total Task Arrived};

/* Update of Pheromone is needed to forget wicked

journey of ants */

Compute Pheromone_update() to satisfy the

Most_Important_Process()

Determine the Probability of each process using

Most_Important_Process and execute the process

having the highest probability.

end

Most_Important_Process (Pi(t)) (Set of Process P) for the

i
th

 node at time t.

/* Probebility of each task will be calculated based on

following equation 1. */

Calculate Pi(t) =

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12, October 2019

4738

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L3606081219/2019©BEIESP

DOI: 10.35940/ijitee.L3606.1081219

Pheromone_Update (τ)

Calculate Evaporation (τi) = (1- ρ) τi to ignore the

lousy path and support new paths.

Calculate Best of two paths to get the Best Path

C. Update Pheromone Value

Pheromone update on every node will be done via two

different operations:

1. Evaporation Value of Pheromone: Pheromone

evaporation is needed to for-get the lousy journey of ants

and to support new paths. Value of τ is updated using,

 (3)

Here,

 ρ is constant (suitable value is 0.2 to 0.4).

 i∈ N1; N1 is set of all (schedulable and

non-schedulable) task.

2. Value of Pheromone Laying: Pheromone will be

adjoined only for two ultimate journeys of ants. Select the

most favorable journey and add pheromone to it, based on

their order of travelling node. The quantity of pheromone

(∆τ) added will be different and vary from node to node,

i.e., the possible nearby node will get the highest quantity

of pheromone, and the farthest node will get the smallest

quantity.

 (4)

Where,

 i∈ N2, N2 is set of nodes travel by the ants.

 (5)

Here,

 (6)

 S is the sequence number of any fork that is

 hit by the ant during its leading journey.

 C is a constant (near to 0.1).

D. Selection of Execution Task

After modifying the pheromone value, one needs to

compute the possibility of every node bye Eq. 1, then chose

the new task for further enactment that has the outrageous

value of probability.

E. Algorithm Key Points

 All schedulable tasks are considered as a node, they store τ

values, and it is pheromone. The pheromone τ is

initialized with value 1 for each node.

 α and β values are decided for the weightage of τ and η. In

the experiment, both constants have given equivale

weightage which is 1.

 A number of ants which construct the tour is essential in

design criteria. During the test, the system is having the

same time, and the number of ants decided based on the

number of executable tasks.

III. MATHEMATICAL PROOF FOR THE

PROJECTED ALGORITHM

The probability of each node will be calculated based on

Eq. 1. It will decide which task one should execute to get an

optimal result in the proposed algorithm. Following

mathematical propositions and theorems have been given

with its proof.

Proposition 1: After analyzing journey pheromone will be

increased at the rate of (Eq. 4), where , i∈ ,

 is a set of nodes travel by the ants.

Proof - Possible amount of pheromone added to any node

after analyzing the journey is , Where (Eq. 5) , s

is the sequence number of nodes visited by ant during the tour

and value will be identified based on Eq. 6. Clearly, at first

node maximum, possible pheromone is , for the second

node it is and so on. It means the nearest node will get the

highest amount of pheromone and far most will get least.

Proposition 2: Pheromone will be decreased at the rate of

 (Eq. 3) , where ρ is constant and is the

set of schedule and non-schedule task at that time.

Proof - Pheromone evaporation is required to forget the lousy

journey of ant and to encourage new paths. Possible amount

of pheromone decreases to any node after analyzing the

journey is .

Theorem 1: Let P be the probability that the algorithm finds

an optimal solution within the first analyzing journey, then for

an arbitrary small , . By

definition .

Proof - For best two journeys, , where i is the

task which is part of both ant journey then pheromone lying

will be done on i is as per proposition-1 and according to

Eq. 1, the probability will increase.

If and then pheromone value will

continuously decreasing and it will help us to forget a bad

journey. Due to pheromone trail limits and one

can guarantee that any feasible choice in Eq. 1, for any

solution is made with a probability [15]. At trivial

lower bound for

 (7)

Proposition 3: Once an optimal solution has been found for

any task such that , it holds that .

Proof - After the execution of the task, the task will not

belong to the optimal solution and do not receive pheromone

anymore.

Theorem 2: The probabilistic decision taken by ant will be

biased when incorporating heuristic information into an ACO

based solution.

Proof - Prior available information on the schedulable task

can be used to derive heuristic information that biases the

probabilistic decision taken by the ant (Eq.2). When

assimilating such heuristic information into ACO solution, the

favorable choice is . Based on Eq. 1

and Eq. 2 measures the heuristic desirability of choosing a

solution as a task i. Infect,

Theorem-1 are not going to

ACO Based Scheduling Method for Soft RTOS with Simulation and Mathematical Proofs

4739

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L3606081219/2019©BEIESP

DOI: 10.35940/ijitee.L3606.1081219

affected by the heuristic information, η is limited to some

(instant specific) interval with and

 . Then the heuristic information only affected of

changing the lower bound of the probability of making a

specific decision.

IV. SIMULATION METHOD, SYSTEM AND TASK

MODEL

When the task is released, we pretend that the system

already knows about the task deadline and imperative data to

figure out the required time to complete the task. The task set

is considered to be preemptive and pretending that the system

doesn’t have any constraint of resource clash. Furthermore, it

also considered that scheduling and preemption do not have

any other overhead. In Soft RTOS, each task possesses a

positive value. The simple ideology is to yield as much benefit

as possible. If a particular task succeeds, then the system

contemplates its benefits; otherwise, the system attains less

benefit from the task [10]. In a distinct case of firm real-time

system, that suggest if any task missed its deadline, then no

value will be mediated, but there is no collapse as well [11].

With this work, we propound an algorithm which affixes to

the firm real-time system, and the value of the task has been

treated very similar to that of its required computation

time.[12].

This paper analyses proposed algorithm with the EDF

algorithm and execute the simulations to gather the

experimental outcomes; also, we considered periodic tasks in

order to get effective results. For that, a system load can be

described as the aggregate of the ratio of executable time and

the time of each task. In order to achieve effective results, at

every load value we have produced 7500 task sets and every

load contains utmost 1 to 9 tasks. The outcomes from this

experiment contain different values of load (ranges from 0.5 -

5), and it examined on 35,000+ task. Moreover, the results of

this phenomena are revealed in Table 3 and Figure 3 [16].

Higher the amount of work is scheduled, the better and

competent the algorithm is. For this reason, we have measured

the two of our main performance metrics:

1. In RTOS, meeting the deadline is utmost significant and

crucial, and therefore, we are more concerned towards result,

whether the task is meeting the deadline or not. Based on that,

the most reliable metric that we get is Success Ratio (SR), and

is defined as [13],

 (8)

2. It is potentially important to know how effectively the

scheduler exploits the processes, peculiarly during heavy load

condition. Therefore, we also considered other performance

metrics such as Effective CPU utilization (ECU) and is

defined in [16],

 (9)

Where,

• V is the task value and,

o Task Value = Estimated time of the task if the

task accomplishes its work within its

deadline.

o Task Value = 0 if the task fails in order to meet

its deadline.

• R is a task set, which is scheduled profitably, i.e.,

executed within its deadline.

• T is the scheduling total time.

Table- I: Result Obtained with Load <= 1

Load

%ECU %SR

EDF

Algorithm

ACO Based

Algorithm

EDF

Algorithm

ACO Based

Algorithm

0.50 49.96 49.97 100 100

0.55 55.04 55.04 100 100

0.60 59.88 59.88 100 100

0.65 64.99 64.99 100 100

0.70 69.92 69.92 100 100

0.75 74.87 74.87 100 100

0.80 79.87 79.87 100 100

0.85 84.71 84.72 100 100

0.90 89.61 89.61 100 100

0.95 94.54 94.54 100 100

1.00 99.36 99.36 100 100

An online scheduler has a competitive factor that exist if

and only if the value of the schedule of any finite sequence of

tasks formed by the algorithm is at least times the value of

the schedule of the tasks formed by an optimal clairvoyant

algorithm [7]. Since maximum value, seized by a clairvoyant

scheduling algorithm is a hard problem, therefore we have

instead used a rather condensed upper bound on this

maximum value, which can be obtained by summation of the

value of all tasks [14]. Hence, for the clairvoyant scheduler,

we have considered the value of ECU as 100%.

V. RESULTS AND DISCUSSION

From the empirical study, it is perceived that when the

system is not heavily loaded, our projected algorithm gives an

ideal result for a unified processor and the preemptive

conditions. Table 1 displays the outcomes achieved by our

algorithm and the EDF algorithm under loaded conditions. In

addition to that, Fig. 2. specifies the results of an overloaded

condition. Furthermore, presumed %SR and %ECU of EDF

drop quickly; however, our

algorithm works prominently

Fig. 2. CPU Load Vs. %ECU and CPU Load Vs.

%SR when Load > 1

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12, October 2019

4740

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L3606081219/2019©BEIESP

DOI: 10.35940/ijitee.L3606.1081219

and gives efficient progress. The values of %ECU and the

maximum value of the clairvoyant scheduler, we notice that

the competitive factor of our algorithm is greater than 0.595

and 0.425 when loads are 1.25 and 1.50. Furthermore, in

under loaded conditions, the competitive factor of our

scheduling has been found to 1.00 and up to load ≤ 1.

VI. CONCLUSION

In this work, an algorithm specifically for the scheduling of

a soft real-time system with a unified processor and the

preemptive task have been introduced. In addition to that, for

scheduling, ACO has been motivated and introduced. The

projected method is implemented with a periodic task, and

cumulative outcomes are gathered and collate it with EDF.

From the mathematical proof, shown in this work and the

results of the experiment, this paper concluded that the

projected method accomplishes equally best for a single

processor, preemptive conditions when the system is heavily

load-ed. This paper has also monitor and analyze the

performance of EDF that significantly diminished, during

maximum loaded conditions; however, the profound

algorithm works in a much better way. So, for real time

scheduling it is possible to use swarm techniques for batter

performance in underload as well as in overload scenario. In

future more Swarm Intelligence methods like PSO, GA etc...

can be explored to implement Soft Real Time Schedulers.

ACKNOWLEDGMENT

We would like to acknowledge and give our sincere thanks

to leading India ai group which is a nationwide initiative on

“AI and deep learning Skilling and Research”. It is funded by

Royal Academy of Engineering, UK under Newton Bhabha.

REFERENCES

1. J. Teraiya and A. Shah, “Comparative Study of LST and SJF Scheduling

Algorithm in Soft Real-Time System with its Implementation and

Analysis”, in International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Banglor, India, Proceeding

in the IEEE Xplore, pp. 706-711, 2018.

2. C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming

in a Hard-Real-Time Environment”, in Journal of the ACM, vol. 20, no.

1, pp. 46-61, 1973.

3. M.Dertouzos and K.Ogata, “Control robotics: The procedural control of

physical process,” in Proceedings IFIP Congress (IFIP'74), pp. 807-813,

1974.

4. A. Mok and A. Ka-Lau, “Fundamental design problems of distributed

systems for the hard-real-time environment”, Thesis (Ph. D.),

Massachusetts Institute of Technology, Cambridge, 1983.

5. G. Saini, “Application of fuzzy logic to real-time scheduling”, in 14th

IEEE-NPSS Real Time Conference, Stockholm, Sweden, pp. 113-116,

2005.

6. S. Baruah, G. Koren and B. Mishra, “On the competitiveness of on-line

real-time task scheduling”, in IEEE Proceedings 12th Real-Time

Systems Symposium, San Antonio, TX, USA, pp. 106-115, 1991.

7. J. Liu, Real-time systems. Upper Saddle River, N.J.: Prentice Hall, 2009.

8. M. Dorigo and G. Caro, “The Ant Colony Optimization Metaheuristic”

In D.Corne, M. Dorigo and F.Glover(eds)”, New Ideas in Optimization,

McGraw Hill, pp-13-49, 1999.

9. V.Ramos, F.Muge, and P.Pina, “Self-organized data and image retrieval

as a consequence of inter-dynamic synergistic relationships in artificial

ant colonies,” Soft Computing Systems – Design, Management and

Applications, inProceedings of the 2nd International Conference on

Hybrid Intelligent System, IOS Press, Santiago, 2002.

10. Carey, Douglass, Locke “Best-effort decision-making for real-time

scheduling”, Doctoral Dissertation, Carnegie Mellon University,

Pittsburgh, PA, USA, 1986.

11. G.Koren and D.Shasha, “Dover: An optimal on-line scheduling

algorithm for overloaded real-time systems,” in SIAM Journal of

Computing, Vol. 24(2), pp. 318-339, April 1995.

12. A Shah , “Adaptive scheduling algorithm for real-time distributed

systems ”, in Biologically-Inspired Techniques for Knowledge

Discovery and Data Mining pp. 236-248, 2014.

13. K. Ramamritham, J. Stankovic and P. Shiah, “Efficient scheduling

algorithms for real-time multiprocessor systems”, in IEEE Transactions

on Parallel and Distributed Systems, vol. 1, no. 2, pp. 184-194, 1990.

14. S. Baruah, G. Koren, B. Mishra, A. Raghunath, L. Roiser and D. Shasha,

“On-line scheduling in the presence of overload”, in Proceedings 32nd

Annual Symposium of Foundations of Computer Science, San Juan,

Puerto Rico, USA, pp. 100-110, 1991.

15. M. Dorigo and T. Stützle, “Ant colony optimization”. Cambridge,

 Mass.: MIT Press, pp. 131-132, 2004.

16. K. Kotecha and A. Shah, “Scheduling Algorithm for Real-Time

Operating Systems Using ACO.”, in International Conference on

Computational Intelligence and Communication Networks, Bhopal,

India, pp.617-621, 2010.

AUTHORS PROFILE

Jay Teraiya has completed Bachelor of

Engineering from GCET – Vallabh

Vidyanagar under S. P. University. He has

also completed his M. S. in Software

Engineering from BITS Pillani. He is pursuing

in Ph. D from the M. S. University of Baroda

under the guidance of Dr. Apurva Shah.

Dr. Apurva Shah, Associate Professor

and Head of Department (Computer Science

and Engineering) in Faculty of Technology,

the M. S. University of Baroda Gujarat. He is

also director of Computer Center in the

University. His area of interest are Real Time

System, Artificial intelligence and distributed

computing. He has completed his Ph. D. from

S. P. University Vallabh Vidyanagar.

Dr. Ketan Kotecha, Professor,

Computer Science & Engineering, Head,

Symbiosis Centre for Applied Artificial

Intelligence (SCAAI) Dean, Faculty of

Engineering, Symbiosis International (

Deemed University) Director, Symbiosis

Institute of Technology Chief Executive

Officer (CEO), Symbiosis Centre for

Entrepreneurship and Innovation TEDx

speaker 2015 | Author – Introduction to Critical Thinking (Macmillan)

Recipient of Erasmus + faculty mobility grants from European Union.

Vol.:(0123456789)1 3

Evolutionary Intelligence
https://doi.org/10.1007/s12065-021-00599-6

RESEARCH PAPER

Optimized scheduling algorithm for soft Real‑Time System using
particle swarm optimization technique

Jay Teraiya1 · Apurva Shah2

Received: 5 May 2020 / Revised: 16 March 2021 / Accepted: 21 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Scheduling of tasks in Real-Time Systems is based on static or dynamic priority like earliest deadline first (EDF) and rate
monotonic, respectively. The static scheduler does not give assurance of scheduling all tasks during the underload scenario,
whereas dynamic scheduler performs poorly during an overload scenario. This paper has proposed a swarm intelligence-
based scheduling algorithm that can overcome both the situations. This paper has used particle swarm optimization (PSO)
based swarm technique to design the new scheduling approach. It considers each task as a particle and applied modified
PSO technique to identify the most critical task to execute. The efficiency of the newly proposed method has been compared
with existing EDF and ACO based scheduling algorithms considering two significant parameters, the success ratio and the
effective CPU utilization. All three algorithms have been tested on the simulator with a Soft Real-time periodic task set on
500 timelines. It has been observed that during the underload scenario, the proposed algorithm performs equally to EDF and
ACO based algorithms. During overload and highly overload situations, the proposed algorithm performs batter compared
to EDF and ACO based algorithms.

Keywords  PSO · ACO · EDF · Real-Time System · Scheduling

1  Introduction

Real-Time Systems have become part of human life to
complete their day to day needs. Real-Time System has
lots of applications surrounding us like digital control sys-
tems, flight control, vehicle control, healthcare devices,
IoT devices, and many more. In the twenty-first century,
usage of Real-Time Systems has increased widely. Like a
conventional operating system, we also use Real-Time Sys-
tems in our day to day life, but when Real-Time Systems
work well, and they make us forget their existence. Real-
Time System focuses on completion of the task before its
deadline, whereas the conventional operating system tries
to give minimum response time for any given time. There is

always a specific deadline associated with Real-Time Task,
whereas typical task does not have any particular timeframe.
Text Editor, Browser, music players are examples of such
typical application, whereas Smart Watch, aircraft control,
and missile control systems are the example of Real-Time
applications [1].

Real-Time System is divided into mainly three categories
like Hard Real-Time, Soft Real-Time, and Firm Real-Time
System based on their timing constraints. Real-Time Sys-
tems will be considered as Hard Real-Time System if the
failure to meet its deadline is deemed to be a fatal fault.
In Contrast, the Soft Real-Time System with few misses of
the deadline does not cause serious harm; only the system’s
overall performance becomes poorer when such more jobs
miss their deadline. In Firm Real-Time System if a task
misses its deadline, then the result of the given task will be
ignored. In Real-Time Systems, considering that each unit
of work is scheduled and executed by the system, a job and
a set of related jobs which provide some system function a
task. Tasks again are divided into three different categories,
like Periodic, Aperiodic, and Sporadic Tasks. The periodic
task model, each computation that is executed repeatedly
at regular time intervals to provide a functionality of the

 *	 Jay Teraiya
	 jay.teraiya@gmail.com

	 Apurva Shah
	 apurva.shah-cse@msubaroda.ac.in

1	 Marwadi University, Rajkot, Gujarat, India
2	 The Maharaja Sayajirao University of Baroda, Vadodara,

Gujarat, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-021-00599-6&domain=pdf

	 Evolutionary Intelligence

1 3

system regularly [2]. Aperiodic and Sporadic task is a set
of aperiodic or sporadic jobs, respectively. The interarrival
times between consecutive jobs in such a task may vary
widely, and, in particular, it can be arbitrarily small.

This paper is organized as follows. Section 2 represents
related work carried out till now. The proposed algorithm
has been described in Sect. 3, where it shows fundamental
of PSO, proposed scheduling algorithm with its detail steps,
and parameter selection and one case study for instance of
the task set. Section 4 describes the simulation scenario,
dataset, and performance parameter. Critical analysis of the
proposed scheduling algorithm has been done with EDF and
ACO based scheduling algorithm in Sect. 5. Finally, Sect. 6
states the conclusion of this paper.

2 � Related work

Deciding the scheduling algorithm for Real-Time System
is a crucial task. The decision is taken based on the type of
Real-Time System; task type and task are pre-empted or not.
Scheduling of tasks is the process of identifying which task
should be executed at each instant of time. Priority driven
scheduling algorithms are implemented based on specific
priority parameters. At runtime, the scheduling algorithm
assigns priority to each active task and allocates the proces-
sor based on the highest-priority task. Based on the way
priority assign to the task, Priority driven schedulers are
divided into two significant categories call Static Priority
and Dynamic Priority Scheduler. A static priority scheduler
also referred to as a fixed priority scheduler where each peri-
odic task is assigned a unique priority [3]. The Rate Mono-
tonic (RM) and Shortest Job First (SJF) are examples of the
Static priority scheduler. RM assigned priority to the task
based on its period parameter, and the task with the small-
est period assigned the highest priority. The SJF assigned
priority to the task based on its execution time, and the task
with the shortest execution time assigned the most top prior-
ity. The dynamic priority scheduler does not put restrictions
upon how priorities are attached to the task. The priority of
a task may change arbitrarily often between its release time
and its completion time. The Earliest Deadline First (EDF)
and Least Slack Time First (LST) are examples of dynamic
priority scheduler. The EDF, in which the priority of task
depends on its deadline, a task with the earlier deadline has
the highest priority. The LST, in which the priority of task
depends on its slack time, a task with the shortest slack time
has the most top priority [4, 5].

Different Static (like RM, SJF) and Dynamic (like EDF,
LST) scheduling algorithms have been evaluated and com-
pared by various researchers for Soft Real-Time System. The
performance of Static and Dynamic scheduler varies based
on the CPU Load. It has been observed that EDF and LST

perform well in the underload scenario where CPU load is
less than or equal to one. Even EDF is one of the optimal
scheduling algorithms, and it makes sure that in the under-
load scenario, all task will meet their deadline. Static algo-
rithms like RM and SJF also perform well in the underload
scenario. Still, it has been observed that in some instances
where there is possible to schedule all task by EDF, but static
algorithms fail to schedule those tasks and few tasks missed
their deadline. In a slightly overload situation, when CPU
load is higher than one at that time performance of Dynamic
scheduler degrades very fast. In contrast, static schedulers
are still able to schedule a few tasks and able to meet their
deadline. Thus, Dynamic Priority Scheduler performs well
in the underload scenario, and Static Priority Scheduler per-
forms decently in the overload scenario [6].

The Dynamic Priority schedulers are more responsive
to the average cases, but their worst-case real-time perfor-
mance may be more unsatisfactory than the Static Priority
scheduler. Still, there is no single priority scheduling algo-
rithm exist which perform well in underload and overload
scenario. Researchers have developed few hybrid priorities
driven scheduling algorithms which are using characteristics
of both type of algorithm, like D_EDF and S_LST which
is using features of dynamic scheduling algorithm during
underload scenario and static scheduling algorithm dur-
ing overload scenario [7–9]. The problem with this kind of
hybrid algorithm is scheduler needs to keep checking with
the status of CPU load, and based on that, it will assign the
priority to the task. Researchers have given an entirely new
direction for scheduling tasks using Artificial Intelligence
and Swarm techniques. Swarm intelligence is the study of
computational systems inspired by collective intelligence.
Collective Intelligence emerges through the cooperation
of large numbers of homogeneous agents in the environ-
ment. Examples include schools of fish, flocks of birds, and
colonies of ants. Such intelligence is decentralized, self-
organizing, and distributed throughout an environment.
Using Swarm intelligence, it is possible to find optimal solu-
tions for problems like scheduling of the task [10, 11]. The
researcher has proposed ACO based scheduling algorithm,
and it has been shown that the swarm-based scheduling algo-
rithm performs equally well like Dynamic scheduler. It gives
batter performance in an overload scenario as well [12, 13].

Particle Swarm Optimization has been widely used in
scheduling for the Cloud Computing environment. Researcher
A. S. Ajeena Beegom and M. S. Rajasree proposed the Inte-
ger-PSO algorithm for task scheduling in a cloud computing
system in 2019 [14]. A two-level particle swarm optimization
algorithm created for the flexible job-shop scheduling prob-
lem [15] and PSO based scheduling also applied in workflow
applications in Cloud Computing Environments by researchers
[16]. An Adaptive PSO-Based Real-Time Workflow Schedul-
ing Algorithm has been introduced by researcher for Cloud

Evolutionary Intelligence	

1 3

Systems. Researchers have targeted reducing execution time
and reducing execution cost which are two conflicting objec-
tives and has been address in paper [17]. Medhat Awadalla
and Abdullah Elewi has proposed Enhanced PSO Approach
for energy-aware static partitioning of periodic real time tasks
on heterogeneous multiprocessor platforms [18]. PSO based
approach also used with GA approach to solve Real-Time
Order Acceptance and Scheduling Problems in a Flow Shop
Environment [19]. Although, the PSO is integrated to schedul-
ing in all concerned fields including real time system, there is
still there is sufficient scop for exploration. In this paper, we
are addressing few of such gaps in this area. Particle Swarm
Optimization (PSO) investigates probabilistic algorithms
inspired by the flocking. Swarm intelligence algorithms strat-
egies are considered adaptive strategy and are typically applied
to search and optimization domains. This paper is selecting
PSO because it is the right approach when the problem size
is between 20 and 40 [20, 21]. This paper has considered that
scheduling task problem in a soft real-time system. Static and
Dynamic schedulers have their advantages and disadvantages,
and both are not able to perform well in overload and under-
load scenario. The researcher has developed an ACO based
scheduling algorithm. This paper is proposing a PSO based
scheduling algorithm that will overcome the disadvantages of
the Static and Dynamic scheduling algorithm with retaining
its advantages and trying to introduce scheduler which perfor-
mance is batter then ACO based scheduler as well.

3 � Proposed algorithm

3.1 � Particle swarm optimization

The particle swarm optimization algorithm is comprised of a
collection of particles that move around the search space influ-
enced by their own best past location and the best past location
of the whole swarm or a close neighbour. Each iteration, a
particle’s velocity is updated using following Eq. 1 [21–24].

where vi,d(t + 1) and vi,d(t) represent the current and previ-
ous velocity in the dth dimension of particle i , respectively.
c1 and c2 are acceleration coefficient for the personal best
and global best positions respectively. pi,d(t + 1) and pi,d(t)
are the current and previous position of particle i . pbest

i,d
 and

pgbest,d are the best position found by particle i so far and the
best position found by the whole swarm so far, respectively.
r1 and r2 are the randomly generated numbers in the range of
[0, 1]. d ∈ D is the dimension d in the search space.

Variants on this update equation consider the best posi-
tions within a particle’s local neighbourhood at time t. A
particle’s position is updated using the Eq. 2 [21].

Figure 1 shows the graphical representation of the par-
ticle swarm optimisation. After each iteration the particle
moves in a new direction and most of the time it is opti-
mal, and that decision will be based on the personal best
position and global best position.

Heuristics for this approach are [20–22]:

•	 The number of particles should be low, around 20–40,
•	 The speed a particle can move should be bounded,
•	 The learning factors should be between 0 and 4, typically

2.0,
•	 Particles may leave the boundary of the problem space

and maybe penalized, be reflected in the domain, or
biased to return toward a position in the problem domain.
Alternatively, a wrapping strategy may be used at the
edge of the domain, creating a loop, or related geometri-
cal structures at the chosen dimensionality.

•	 An inertia or momentum coefficient can be introduced to
limit the change in velocity.

(1)

vi,d(t + 1) =vi,d(t) +
(

c1 × r1 ×
(

pbest
i,d

− pi,d(t)

))

+
(

c2 × r2 ×
(

pgbest,d − pi,d(t)
))

(2)pi,d(t + 1) = pi,d(t) + vi,d(t + 1)

	 Evolutionary Intelligence

1 3

3.2 � PSO based scheduling algorithm The Proposed Scheduling Algorithm Selecting the schedul-
ing algorithm for Soft Real-Time System is a crucial deci-
sion, as discussed in Sect. 2. This paper is introducing the
scheduler, which is based on PSO techniques. The algorithm
considering each given task as a particle, and all tasks which
are eligible for scheduling are viewed as a set of particles.
The ultimate goal of the scheduler is to choose a task at a
given point of time in such a way that the task can meet its
deadline [16]. In the Soft Real-Time system, it is intended
to make sure that all task will meet their deadline in the
underload condition, and the maximum task will meet their
deadline in the overload scenario.

The scheduling algorithm will be executed when a new
task arrives, or the currently performing task is completed.
When there is more than one task is ready to run at that
time scheduler needs to select the task effectively. This paper
proposed the PSO based scheduler (Algorithm 1), which has
the following significant steps.

Step 1: Initialization of Task as a Particle
Step 2: Compute the velocity and position of each task
Step 3: Analyse the position and velocity of each task
Step 4: Selection of Task for execution

Step 1 Initialization of Task as a Particle At given
point of time all schedulable task is considered as a set of
N = {T1, T2, T3,…Tn }. Each task (particle) Ti ∈ N  , needs
to initialize with its initial position and velocity. Each
Periodic task Ti in task set N has essential characteristics
associated with it, like execution time of task ( Ei ), dead-
line of the task ( Di ) and rate (period) of the task ( Ri ).

Fig. 1   Graphical representation of PSO

Evolutionary Intelligence	

1 3

These characteristics are already known in Soft Real-
Time System before the scheduler is going to select the
task for scheduling. Each task (particle)Ti ∈ N  , needs to
initialize with its initial position ( Pi ) and initial velocity
( Vi ). P is the set of the initial position of each task and
P = {P1,P2,P3,…Pn }. V is set of the initial velocity of
each task and V = {V1,V2,V3,…Vn }. Initial value of vi and
pi is going to calculate for each task Ti ∈ N based on the
following Eqs. 3 and 4.

It is also necessary to initialize individual task best position
pbest
i

 and global best position pgbest . Initially for each task
pbest
i

= pi and initial value of pgbest for the whole task set is
chosen from a minimum of the set P. Figure 2 represents the
task set with its parameters like Execution Time, Deadline,
and Rate. For each task, the algorithm initializes its position,
velocity, and best position using Eqs. 3 and 4, as described
above.

Step 2 Compute PSO values for each task Algorithm
calculates the velocity ( v ) for each task which is ready to
execute and part of task set N. To calculate the velocity ( v )
value for each task this algorithm has considered Eq. 1 as a
base equation and proposed Eq. 5 and it is an optimal equa-
tion for scheduling problem of Soft Real-Time System.

where vi,d(t + 1) is the new velocity of task Ti in the dth
dimension, vi,d(t) is the current velocity of task Ti in the d th
dimension, c1 = (Ti(Execution Time))

−1 , where Ti(Execution Time) is
the execution time of the task Ti , which is required on the
processor to complete the task, c2 = (Ti(Deadline))

−1 , where
Ti(Deadline) is the deadline of the task Ti , r1 and r2 are generated
uniformly between 0 and 1, pi,d(t) is the Ti task’s position at
time t in the dth dimension, pbest

i,d
 is the Ti task’s best-known

position in the dthth dimension, pgbest,d is the best position
known to the entire task set in the dth dimension, d ∈ D is
the dimension d in the search space.

The algorithm also needs to calculate the new position
( p ) for each task and to calculate it; it is using Eq. 2, men-
tion in Sect. 3.1.

Step 3 Analyse the position and velocity of each task
The goal of the algorithm is to have all the tasks locate the
optima in a multi-dimensional hypervolume. This can be
achieved by assigning initial velocity and position to each
task as per step 1. The algorithm is executed and, in each
iteration, it is calculating the new position of each task based
on Eq. 2 and updating its velocity based on Eq. 5. The evolu-
tion of velocity and position is carried out for the specified

(3)vi = Ti(Deadline)

(4)pi = Ti(Execution Time) + Ti(Period) − Ti(Elapsed Time)

(5)
vi,d(t + 1) = vi,d(t) +

(

c1r1

(

pbest
i,d

− pi,d(t)

))

+
(

c2r2
(

pgbest,d − pi,d(t)
))

number of iterations, and the number of iterations depends
on the problem size. Over the period, through a combination
of exploration and exploitation of known right positions in
the search space, the task set cluster or converge together
around an optimal task. If any task leaves the boundary of
the problem space, then it will be penalized and reflected in
the domain by changing its velocity [25].

Step 4 Selection of task for execution The algorithm cal-
culates new velocity and the new position of the task in each
iteration. The algorithm also changes the value of pgbest in
every iteration. pgbest value will be set as the smallest pbest

i

value. The task which has pgbest = pbest
i

 will be considered
and will get the chance to execute on the processor.

3.3 � Case study for instance of task set

The proposed algorithm in Sect. 3.2 has been tested with
a set of the periodic task set. In this section, the paper has
demonstrated how it operates with one case study shown in
Table 1. Table 1 shows one task set with its arrival time, its
deadline, and its required execution time.

As described in Sect. 3.2, each task will be initialized
with its initial position ( pi ) using Eqs. 3 and 4, and its ini-
tial value has been shown in Table 2. To get an optimal
position for each task pi will be calculated for N number of
times. After that task set will be evaluated and identify the
most important task which we need to execute. In the above
task set (shown in Table 1), T5 is the most crucial task, and
the scheduler will select it for execution, so it will meet the
deadline, as shown in Table 2.

4 � Simulation environment for proposed
algorithm

4.1 � Simulation scenario and dataset

The entire simulator for the proposed algorithm has been
developed in C programming language, and the compiler
is GNU GCC. The simulator has been executed on hard-
ware configuration—Core i5 processor with 8 GB of RAM.
Simulation of the proposed algorithm has been carried out
on a 64-bit Windows 10 Enterprise operating system. The
Real-Time System has three types of tasks like Periodic task,
Aperiodic task, and Sporadic task. The proposed algorithm
has been evaluated with a periodic task set. This paper has
considered an extensive data set of periodic tasks. İt has
found the 6800 tasks set, which vary in terms of CPU load
and the number of tasks within the task set. CPU load ranges
from 0.5 to 5.0, and the number of task set varies from 1 to 9.
CPU load of task set is referred to total processor utilization

	 Evolutionary Intelligence

1 3

factor ( Up ) and represent the fraction of processor time used
by the periodic task set and calculated based on Eq. 6.

where Ci is execution time required by each task in task set
and Ti is the occurrence period of each task in the task set.
It has considered the underload scenario, overload scenario,
and highly overload scenario. This 6800-task set contains
total 28,600 processes, and it has been tested on the 500-
time unit to validate the correctness of the algorithm. To
confirm the above task set researcher has published the
given task set on the website (http://​www.​proce​ssdat​aset.​
in/). Table 3 represents task set detail, and several different
tasks have been considered for simulation for the proposed
algorithm [26].

4.2 � Performance parameter

The performance of the proposed algorithm has been tested
with two primary parameters call Success Ratio (SR) and
Effective CPU Utilization (ECU). These parameters have
been described as follows.

SR (Success Ratio) Success Ratio with real-time systems
defined as the ratio of a set of the process which meets their
deadline and a total number of process. Success Ration
determined with the following Eq. 7 [27].

ECU (Effective CPU utilization) Effective CPU Utiliza-
tion defined as how much CPU time has been utilizing for
the processes which can meet their deadline. ECU deter-
mined with the following Eq. 8 [27].

(6)Up =

n
∑

i=1

Ci

Ti

(7)SR =
Number of Task successfully scheduled

Total Number of Task arrived
.

where V represents process value and, Process Value = time
required to complete the process if the process meets its
deadline. Process Value = 0 if the process does not meet the
deadline. R is a set of processes, which are scheduled suc-
cessfully, i.e., completed within their deadline. T is the total
time of scheduling.

5 � Critical analysis of proposed algorithm

5.1 � Results and comparison with different existing
algorithm

The proposed algorithm has been compared with Earliest
Deadline First (EDF) and Ant Colony Optimization (ACO)
based algorithm [26]. The correctness of all three algo-
rithms has been tested under similar hardware and dataset,
as described in Sect. 4.1. These algorithms have been imple-
mented in the simulator using the C language. These algo-
rithms have been compared with parameter SR and ECU, as
described in Sect. 4.2.

Underload scenario In this scenario paper has considered
all dataset where the utilization factor of the task set is less
than or equal to one ( Up ≤ 1 ). Table 4 shows the results and
comparison of these algorithms during the underload sce-
nario. Table 4 compares these three algorithms for SR and
ECU parameters. Figures 3 and 4 represents the graphical
representation of Table 4. Observation of these algorithm
says that EDF and ACO can meet all the deadlines for the
given task set, whereas the PSO based scheduling algorithm
missed a few deadlines when the load is near to one.

Overload scenario In this scenario paper has consid-
ered all dataset where the utilization factor of the task set is

(8)ECU =
∑

i∈R

Vi

T

Fig. 2   Task Set for PSO Algorithm with its parameters and initial values

http://www.processdataset.in/
http://www.processdataset.in/

Evolutionary Intelligence	

1 3

greater than 1 and less than 1.50 ( 1.00 ≤ Up ≤ 1.5 ). Table 5
shows the results and comparison of these algorithms during
an overload scenario. Table 5 compares these three algo-
rithms for SR and ECU parameters. Figures 5 and 6 repre-
sents the graphical representation of Table 5. Observation
of these algorithms says that EDF performance degrades
rapidly in slightly overload situations. Whereas ACO and
PSO based scheduling algorithms are still able to meet most
of the deadlines of the given task set. Even the PSO based
scheduling algorithm performs more batter than the ACO
based scheduling algorithm.

Highly Overload Scenario In this scenario, the paper
has considered all dataset where the utilization fac-
tor of the task set is higher than 1.50 and less than 5.00
( 1.50 ≤ Up ≤ 5.00 ). Table 6 shows results and compari-
son of these algorithms during highly overload scenarios.
Table 6 compares these three algorithms for SR and ECU
parameters. Figures 7 and 8 represents the graphical repre-
sentation of Table 6. Observation of these algorithms says
that EDF performance is abysmal during highly overload
scenarios, and even ACO performance is also degraded. PSO
based scheduling algorithm is still able to meet many of the
deadlines for the given task set. Overall PSO based schedul-
ing algorithm performs far batter compare to EDF and ACO
based scheduling algorithm.

5.2 � Complexity comparison with different existing
algorithm

This section compares the time complexity of EDF, ACO,
and PSO based scheduling algorithm. Critical analysis of
these algorithms has been done in Sect. 5.1 by implement-
ing these algorithms on the simulator. The experiment set up
has been prepared for the periodic task set so, the researcher
is giving time complexity comparison for a periodic task
only. At a given point of time, all schedulable task is con-
sidered as a set of N = {T1, T2, T3,…Tn }. EDF is a dynamic
scheduling algorithm and identifies the most crucial task to
execute based on the absolute deadline. When the scheduler
is executed to select the most critical task, EDF will have
O(N) time complexity [28, 29]. ACO based scheduling algo-
rithm use concept of traversing the different path to identify
the optimal route and then select the most crucial task for
execution. Due to its traversing techniques, when scheduler
will be executed to select the most crucial task ACO based
scheduler will have O(N2) time complexity to select the
most crucial task. The algorithm which proposed with this
paper also calculate Velocity and Position of each task for N
iteration to identify optimal positions in given task set and
because of the time complexity of PSO based scheduling
algorithm is also O(N2) to select the most crucial task. It is
true that PSO based scheduling algorithm time complexity
is higher than EDF but as discuss in Sect. 5.1 it gives an
excellent performance in overload scenario and even in the
modern evolution of electronics devices Real-Time system
able to perform faster and able to schedule a task using any
algorithm by ignoring its overhead.

6 � Conclusion

The proposed PSO based scheduling algorithm has been
compared with EDF and ACO based scheduling algorithm
under the Soft Real-Time periodic task set. The performance
parameters SR and ECU has been calculated for each algo-
rithm for large dataset and comparison has been done. It
has been observed that during the underload scenario
( Up ≤ 1 ) proposed scheduling algorithm performs similar
to the EDF and ACO based algorithm. In slightly overload
situation when 1.00 ≤ Up ≤ 1.5 , EDF performance gets
degraded sharply. The proposed algorithm and ACO based
scheduling algorithm perform batter compare to EDF, and
even the proposed approach delivers batter than the ACO
based scheduling algorithm. During highly overload sce-
nario ( 1.50 ≤ Up ≤ 5.00 ) EDF and ACO based algorithms

Table 1   An instance of task set for case study

Task Arrival time Absolute dead-
line

Required
execution
time

T1 0 12 1
T2 0 12 2
T3 0 3 1
T4 0 12 2
T5 0 2 1

Table 2   PSO algorithm calculation for instance of task set

Task Initial val-
ues of pi

After N iteration
values of pi

Selection for execution of
task by PSO algorithm at
t = 0 is

T1 13.00 28.25 T5
T2 14.00 32.70
T3 04.00 07.24
T4 14.00 32.70
T5 03.00 05.25

	 Evolutionary Intelligence

1 3

perform poorly, whereas the PSO based scheduling algo-
rithm is still able to meet a specific deadline. So, instead
of static or dynamic priority, the proposed approach works
well during underload, overload, and highly overload sce-
narios. The proposed method is tested with uniprocessor and
periodic task set for Soft Real-Time System. In future work,

this algorithm can be examined with Hard and Firm Real-
Time System as well. By making a few changes, the modi-
fied PSO based scheduling algorithm can be implemented
for the multi-processor system as well.

Table 3   Dataset detail for
periodic Task Set

Load Number of Task in each Task Set Task Set load wise

1 2 3 4 5 6 7 8 9

0.50 50 50 50 50 00 00 00 00 00 2200
0.55 50 50 50 50 00 00 00 00 00
0.60 50 50 50 50 00 00 00 00 00
0.65 00 50 50 50 50 00 00 00 00
0.70 00 50 50 50 50 00 00 00 00
0.75 00 50 50 50 50 00 00 00 00
0.80 00 50 50 50 50 00 00 00 00
0.85 00 50 50 50 50 00 00 00 00
0.90 00 50 50 50 50 00 00 00 00
0.95 00 50 50 50 50 00 00 00 00
1.00 00 50 50 50 50 00 00 00 00
1.05 00 50 50 50 50 00 00 00 00 2000
1.10 00 50 50 50 50 00 00 00 00
1.15 00 50 50 50 50 00 00 00 00
1.20 00 50 50 50 50 00 00 00 00
1.25 00 50 50 50 50 00 00 00 00
1.30 00 50 50 50 50 00 00 00 00
1.35 00 50 50 50 50 00 00 00 00
1.40 00 50 50 50 50 00 00 00 00
1.45 00 50 50 50 50 00 00 00 00
1.50 00 50 50 50 50 00 00 00 00
1.60 00 00 50 50 50 50 00 00 00 2600
1.70 00 00 50 50 50 50 00 00 00
1.80 00 00 50 50 50 50 00 00 00
1.90 00 00 50 50 50 50 00 00 00
2.00 00 00 50 50 50 50 00 00 00
2.25 00 00 00 50 50 50 50 00 00
2.50 00 00 00 50 50 50 50 00 00
2.75 00 00 00 50 50 50 50 00 00
3.00 00 00 00 50 50 50 50 00 00
3.50 00 00 00 00 50 50 50 50 00
4.00 00 00 00 00 50 50 50 50 00
4.50 00 00 00 00 00 50 50 50 50
5.00 00 00 00 00 00 50 50 50 50
Total task Set 150 1050 1300 1500 1450 650 400 200 100 6800
Total task 150 2100 3900 6000 7250 3900 2800 1600 900 28,600

Evolutionary Intelligence	

1 3

Table 4   Results comparison
during underload scenario

Load ECU% SR%

EDF ACO PSO EDF ACO PSO

0.50 49.49 49.98 49.49 100.00 100.00 100.00
0.55 54.66 55.04 54.40 100.00 100.00 100.00
0.60 59.39 59.88 59.39 100.00 100.00 100.00
0.65 64.35 65.00 64.35 100.00 100.00 100.00
0.70 69.35 69.93 69.35 100.00 100.00 100.00
0.75 74.31 74.88 74.31 100.00 100.00 100.00
0.80 79.22 79.83 79.22 100.00 100.00 100.00
0.85 84.16 84.72 84.16 100.00 100.00 100.00
0.90 89.16 89.62 89.15 100.00 100.00 99.99
0.95 94.17 94.54 94.08 100.00 100.00 99.94
1.00 99.10 99.37 97.99 100.00 100.00 99.26

Fig. 3   ECU% comparison of EDF versus ACO versus PSO Algo-
rithm during Underload Scenario

Fig. 4   SR% comparison of EDF versus ACO versus PSO Algorithm
during Underload Scenario

Fig. 5   ECU% comparison of EDF versus ACO versus PSO Algo-
rithm during Overload Scenario

Fig. 6   SR% comparison of EDF versus ACO versus PSO Algorithm
during Overload Scenario

	 Evolutionary Intelligence

1 3

Table 5   Results comparison
during overload scenario

Load ECU% SR%

EDF ACO PSO EDF ACO PSO

1.05 17.45 63.69 65.91 18.27 67.01 78.24
1.10 09.21 54.22 70.60 09.31 55.01 80.53
1.15 06.29 51.86 67.90 06.19 50.87 75.91
1.20 04.62 46.61 80.39 04.22 45.33 80.03
1.25 04.06 45.15 77.35 03.67 36.23 78.97
1.30 03.63 38.78 74.73 03.19 35.90 76.02
1.35 03.12 39.03 74.06 02.65 37.14 72.65
1.40 02.66 38.05 81.39 02.24 33.91 76.49
1.45 02.50 34.11 78.15 02.00 30.65 70.66
1.50 02.21 33.08 86.15 01.71 27.91 73.35

Table 6   Results comparison
during highly overload scenario

Load ECU% SR%

EDF ACO PSO EDF ACO PSO

1.60 2.17 45.98 85.02 1.61 37.25 71.25
1.70 2.03 40.45 86.52 1.42 30.24 68.70
1.80 1.93 35.52 86.34 1.30 26.39 68.27
1.90 1.90 33.56 85.17 1.29 25.35 65.52
2.00 1.84 29.56 86.90 1.20 21.45 65.23
2.25 1.76 32.51 85.89 1.04 21.24 59.81
2.50 1.55 25.54 87.86 0.89 15.39 56.23
2.75 1.46 18.31 88.82 0.78 10.16 53.75
3.00 1.32 14.66 94.25 0.63 07.11 49.21
3.50 1.27 15.80 94.46 0.57 07.69 45.52
4.00 1.11 09.67 96.20 0.43 03.79 40.47
4.50 1.08 09.86 97.69 0.38 03.37 36.99
5.00 0.97 08.74 97.88 0.31 02.41 32.15

Fig. 7   ECU% comparison of EDF versus ACO versus PSO Algo-
rithm during Highly Overload Scenario

Fig. 8   SR% comparison of EDF versus ACO versus PSO Algorithm
during Highly Overload Scenario

Evolutionary Intelligence	

1 3

References

	 1.	 Ahmad S, Malik S, Kim DH (2018) Comparative analysis of
simulation tools with visualization based on real-time task
scheduling algorithms for IoT embedded applications. Int J Grid
Distrib Comput. https://​doi.​org/​10.​14257/​ijgdc.​2018.​11.2.​01

	 2.	 Chatterjee K, Pavlogiannis A, Kößler A, Schmid U (2018) Auto-
mated competitive analysis of real-time scheduling with graph
games. Real-Time Syst 54(1):166–207. https://​doi.​org/​10.​1007/​
s11241-​017-​9293-4

	 3.	 Wang X, Li Z, Wonham WM (2017) Optimal priority-free
conditionally-preemptive real-time scheduling of periodic
tasks based on des supervisory control. IEEE Trans Syst Man
Cybern Syst 47(7):1082–1098. https://​doi.​org/​10.​1109/​TSMC.​
2016.​25316​81

	 4.	 Teraiya J, Shah A (2018) Comparative study of LST and SJF
scheduling algorithm in soft real-time system with its implementa-
tion and analysis. In: 2018 international conference on advances
in computing, communications and informatics, ICACCI 2018,
pp 706–711. https://​doi.​org/​10.​1109/​ICACCI.​2018.​85544​83

	 5.	 Kohutka L, Stopjakova V (2016) Improved task scheduler for
dual-core real-time systems. In: Proceedings—19th Euromicro
conference on digital system design, DSD 2016. Institute of Elec-
trical and Electronics Engineers Inc., pp 471–478. https://​doi.​org/​
10.​1109/​DSD.​2016.​44

	 6.	 Teraiya J, Shah A (2020) Analysis of dynamic and static schedul-
ing algorithms in soft real-time system with its implementation.
Adv Intell Syst Comput 1053:757–768. https://​doi.​org/​10.​1007/​
978-​981-​15-​0751-9_​69

	 7.	 Thakor D, Shah A (2011) D_EDF: an efficient scheduling algo-
rithm for real-time multiprocessor system. In: Information and
communication technologies (WICT), 2011 World Congress on,
pp 1044–1049. https://​doi.​org/​10.​1109/​WICT.​2011.​61413​92

	 8.	 Teraiya J, Shah A (2019) Hybrid Scheduler (S_LST) for soft real-
time system based on static and dynamic algorithm. Int J Eng Adv
Technol 9(2):2885–2889. https://​doi.​org/​10.​35940/​ijeat.​b3837.​
129219

	 9.	 Alsheikhy A, Ammar R, Elfouly R, Alharthi M, Alshegaifi A
(2016) An efficient dynamic scheduling algorithm for periodic
tasks in real-time systems using dynamic average estimation. In:
Proceedings—IEEE symposium on computers and communica-
tions (Vol. 2016-August). https://​doi.​org/​10.​1109/​ISCC.​2016.​
75438​30

	10.	 Yu SC (2014) Elucidating multiprocessors flow shop scheduling
with dependent setup times using a twin particle swarm optimiza-
tion. Appl Soft Comput J 21:578–589. https://​doi.​org/​10.​1016/j.​
asoc.​2014.​04.​016

	11.	 Kazemi H, Zahedi ZM, Shokouhifar M (2016) Swarm intelligence
scheduling of soft real-time tasks in heterogeneous multiprocessor
systems. Electr Comput Eng Int J. https://​doi.​org/​10.​14810/​ecij.​
2016.​5101

	12.	 Shah A (2014) Adaptive scheduling for real-time distributed sys-
tems. In: Biologically-inspired techniques for knowledge discov-
ery and data mining, pp 236–248. https://​doi.​org/​10.​4018/​978-1-​
4666-​6078-6.​ch011

	13.	 Konar D, Bhattacharyya S, Sharma K, Sharma S, Pradhan SR
(2017) An improved Hybrid Quantum-Inspired Genetic Algorithm
(HQIGA) for scheduling of real-time task in multiprocessor sys-
tem. Appl Soft Comput J. https://​doi.​org/​10.​1016/j.​asoc.​2016.​12.​
051

	14.	 Beegom ASA, Rajasree MS (2019) Integer-PSO: a discrete
PSO algorithm for task scheduling in cloud computing sys-
tems. Evol Intel 12(2):227–239. https://​doi.​org/​10.​1007/​
s12065-​019-​00216-7

	15.	 Zarrouk R, Bennour IE, Jemai A (2019) A two-level particle
swarm optimization algorithm for the flexible job shop sched-
uling problem. Swarm Intell 13(2):145–168. https://​doi.​org/​10.​
1007/​s11721-​019-​00167-w

	16.	 Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarm
optimization-based heuristic for scheduling workflow applications
in cloud computing environments. In: Proceedings—international
conference on advanced information networking and applications,
AINA, pp 400–407. https://​doi.​org/​10.​1109/​AINA.​2010.​31

	17.	 Guo P, Xue Z (2018) An adaptive PSO-based real-time work-
flow scheduling algorithm in cloud systems. In: International
conference on communication technology proceedings, ICCT,
2017-October, pp 1932–1936. https://​doi.​org/​10.​1109/​ICCT.​2017.​
83599​66

	18.	 Awadalla M, Elewi A (2016) Enhanced PSO approach for real
time systems scheduling. Int J Comput Theory Eng 8(4):285–289.
https://​doi.​org/​10.​7763/​ijcte.​2016.​v8.​1059

	19.	 Rahman HF, Janardhanan MN, Nielsen IE (2019) Real-time order
acceptance and scheduling problems in a flow shop environment
using hybrid Ga-PSO algorithm. IEEE Access 7:112742–112755.
https://​doi.​org/​10.​1109/​ACCESS.​2019.​29353​75

	20.	 Eberhart R, Kennedy J (1995) New optimizer using particle
swarm theory. In: Proceedings of the international symposium
on micro machine and human science. https://​doi.​org/​10.​1109/​
mhs.​1995.​494215

	21.	 Brownlee J (2011) Clever algorithms. Search. https://​doi.​org/​10.​
1017/​CBO97​81107​415324.​004

	22.	 Elbes M, Alzubi S, Kanan T, Al-Fuqaha A, Hawashin B (2019) A
survey on particle swarm optimization with emphasis on engineer-
ing and network applications. Evol Intell 12(2):113–129. https://​
doi.​org/​10.​1007/​s12065-​019-​00210-z

	23.	 Dixit A, Mani A, Bansal R (2021) An adaptive mutation strategy
for differential evolution algorithm based on particle swarm opti-
mization. Evol Intell. https://​doi.​org/​10.​1007/​s12065-​021-​00568-z

	24.	 Li YL, Shao W, You L, Wang BZ (2013) An improved PSO algo-
rithm and its application to UWB antenna design. IEEE Anten-
nas Wirel Propag Lett 12(3):1236–1239. https://​doi.​org/​10.​1109/​
LAWP.​2013.​22833​75

	25.	 Erskine A, Joyce T, Herrmann JM (2017) Stochastic stability
of particle swarm optimisation. Swarm Intell 11(3–4):295–315.
https://​doi.​org/​10.​1007/​s11721-​017-​0144-7

	26.	 Teraiya J, Shah A, Kotecha K (2019) ACO based scheduling
method for soft RTOS with simulation and mathematical proofs.
Int J Innov Technol Explor Eng 8(12):4736–4740. https://​doi.​org/​
10.​35940/​ijitee.​L3606.​10812​19

	27.	 Shah A, Kotecha K (2010) Scheduling algorithm for real-time
operating systems using ACO. In: Proceedings—2010 interna-
tional conference on computational intelligence and communica-
tion networks, CICN 2010. https://​doi.​org/​10.​1109/​CICN.​2010.​
122

	28.	 Lindh F, Otnes T, Wennerström J (2010) Scheduling algorithms
for real-time systems. Department of Computer Engineering,
Malardalens University, Sweden. Retrieved from http://​schol​
ar.​google.​com/​schol​ar?​hl=​en&​btnG=​Searc​h&q=​intit​le:​Sched​
uling+​algor​ithms+​for+​real-​time+​syste​ms#0

	29.	 Yang K, Anderson JH (2015) On the soft real-time optimality of
global EDF on multiprocessors: from identical to uniform het-
erogeneous. In: Proceedings—IEEE 21st international conference
on embedded and real-time computing systems and applications,
RTCSA 2015, pp 1–10. https://​doi.​org/​10.​1109/​RTCSA.​2015.​14

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.14257/ijgdc.2018.11.2.01
https://doi.org/10.1007/s11241-017-9293-4
https://doi.org/10.1007/s11241-017-9293-4
https://doi.org/10.1109/TSMC.2016.2531681
https://doi.org/10.1109/TSMC.2016.2531681
https://doi.org/10.1109/ICACCI.2018.8554483
https://doi.org/10.1109/DSD.2016.44
https://doi.org/10.1109/DSD.2016.44
https://doi.org/10.1007/978-981-15-0751-9_69
https://doi.org/10.1007/978-981-15-0751-9_69
https://doi.org/10.1109/WICT.2011.6141392
https://doi.org/10.35940/ijeat.b3837.129219
https://doi.org/10.35940/ijeat.b3837.129219
https://doi.org/10.1109/ISCC.2016.7543830
https://doi.org/10.1109/ISCC.2016.7543830
https://doi.org/10.1016/j.asoc.2014.04.016
https://doi.org/10.1016/j.asoc.2014.04.016
https://doi.org/10.14810/ecij.2016.5101
https://doi.org/10.14810/ecij.2016.5101
https://doi.org/10.4018/978-1-4666-6078-6.ch011
https://doi.org/10.4018/978-1-4666-6078-6.ch011
https://doi.org/10.1016/j.asoc.2016.12.051
https://doi.org/10.1016/j.asoc.2016.12.051
https://doi.org/10.1007/s12065-019-00216-7
https://doi.org/10.1007/s12065-019-00216-7
https://doi.org/10.1007/s11721-019-00167-w
https://doi.org/10.1007/s11721-019-00167-w
https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.1109/ICCT.2017.8359966
https://doi.org/10.1109/ICCT.2017.8359966
https://doi.org/10.7763/ijcte.2016.v8.1059
https://doi.org/10.1109/ACCESS.2019.2935375
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1007/s12065-019-00210-z
https://doi.org/10.1007/s12065-019-00210-z
https://doi.org/10.1007/s12065-021-00568-z
https://doi.org/10.1109/LAWP.2013.2283375
https://doi.org/10.1109/LAWP.2013.2283375
https://doi.org/10.1007/s11721-017-0144-7
https://doi.org/10.35940/ijitee.L3606.1081219
https://doi.org/10.35940/ijitee.L3606.1081219
https://doi.org/10.1109/CICN.2010.122
https://doi.org/10.1109/CICN.2010.122
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scheduling+algorithms+for+real-time+systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scheduling+algorithms+for+real-time+systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scheduling+algorithms+for+real-time+systems#0
https://doi.org/10.1109/RTCSA.2015.14

	 Analysis of Dynamic and Static Scheduling Algorithms in Soft Real-Time System with Its Implementation
	1 Introduction
	2 Dynamic Scheduling Algorithms
	2.1 Earliest Deadline First (EDF)
	2.2 Least Slack Time First (LST)

	3 Static Scheduling Algorithms
	3.1 The Rate Monotonic (RM)
	3.2 The Shortest Job First (SJF)

	4 Background Work
	5 The Process Set and System Consideration
	6 Practical Environment and Measuring Parameter
	7 Result and Analysis
	8 Conclusion
	References

	Optimized scheduling algorithm for soft Real-Time System using particle swarm optimization technique
	Abstract
	1 Introduction
	2 Related work
	3 Proposed algorithm
	3.1 Particle swarm optimization
	3.2 PSO based scheduling algorithm
	3.3 Case study for instance of task set

	4 Simulation environment for proposed algorithm
	4.1 Simulation scenario and dataset
	4.2 Performance parameter

	5 Critical analysis of proposed algorithm
	5.1 Results and comparison with different existing algorithm
	5.2 Complexity comparison with different existing algorithm

	6 Conclusion
	References

