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Abstract – The Least Slack Time First (LST) algorithm is 
a dynamic scheduling algorithm and also known as Least 
Laxity First. It decides the dynamic priority of the task 
based on slack time; The task having minimum slack 
time will be considered the highest priority. It is the most 
suitable algorithm for scheduling of tasks in soft Real-
Time Operating System (RTOS). The Shortest Job First 
(SJF) algorithm is a static scheduling algorithm and 
decides the priority of the task based on execution time 
required for a given task. Task which has minimum 
execution time considered as the highest priority task in 
SJF. It is not directly used for scheduling Soft Real-Time 
system. In this paper, we have implemented the LST and 
SJF for the soft real-time operating system.These 
algorithms have been executed on periodic task set, and 
observations are gathered. We have observed Success 
Ratio & Effective CPU Utilization and compared both 
the algorithm in the same conditions. It is noted that the 
LST algorithm performs well in underload scenario but 
not well in an overload situation. SJF not able to 
schedule specific task even in underload situation but it 
comparatively performs well in an overload situation. 
Practical experiments have been conducted on a large 
dataset. Data Set contains 7500 task set, and each task 
set includes 1 to 9 processes. CPU load for each process 
set varies from 0.5 to 5. It has been tested on 500-time 
unit to validate the correctness of both algorithms. 

Keywords – LST; SJF; RM; EDF; Scheduling; Real-Time 
Systems 

I. INTRODUCTION OF RTOS AND SCHEDULING 
ALGORITHMS 

Since last few years, Real-Time systems usage has 
been increasing in time critical application. Designing 
systems which are expected to deliver real-time results 
involves an equal emphasis on managing timing constraints 
of various functionalities of the system. Processes in the 
real-time system has defined deadlines and need to complete 
the process within its deadline. Real-time systems need a 
scheduling algorithm that assign the tasks to the processor 
by taking into consideration the deadline constraints as well 
also supporting other requirements of scheduling. 
Depending upon the deadline constraints, real-time systems 
are categorized in hard and soft real-time systems. In a hard 
real-time system, if it is fail when the deadline is missed 
than results will be useless. However in a soft real-time 
system, upon missing the dead line, results wouldn’t become 
useless but performance of the system may be degreded. [1]. 

In a real-time system, the appropriate scheduling 
approach should be selected based on the properties of the 
system and base on the tasks type. Real-Time system 
classified as Hard, Soft and Firm real-time system. Its task 
set classified as a Periodic, Aperiodic and Sporadic task. 
Task Set can also be categorized based on preemptive or 
non-preemptive task.  

The general scheduling algorithm is looking for an 
order according to which the task should be executed such 
that various constraints are satisfied. The task is 
characterized by its execution time, arrival time, deadline, 
and resource requirements. Scheduling algorithm can be 
classified into two general categories based on its 
characteristics, static and dynamic. It depends on the 
approach they use. Static priority schedulers assigned a 
single priority value to each task during initialization throw 
out the scheduling process. Example of static priority 
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scheduling is Shortest Job First(SJF), Rate Monotonic (RM) 
and Deadline Monotonic (DM).The dynamic schedulers 
change the priorities of tasks depending on the current 
situation of a given system. Example of dynamic priority 
scheduling is Earliest Deadline First (EDF) and Least Slack 
Time First (LST). EDF and LST algorithms are most 
effective under the situation that the jobs are preemptable, 
there is a single processor, and the processor is underloaded. 
However, these algorithms performance decreases quickly in 
overloaded condition[2][3]. In this paper, we have compared 
static priority algorithm SJF and dynamic priority algorithm 
LST with a different aspect. We are observing these 
algorithms regarding Effective CPU utilization and Success 
Ration. We observed both algorithms in underload and 
overload situation.  

This paper is organized as follows: The LST and SJF 
algorithm has been discussed in Section II and III 
respectively. Section IV explains related work done on LST 
and SJF. Section V represents System Consideration and 
Task Model. Section VI describes experimental setup and 
performance measuring parameters. Section VII represents 
the results analysis of both algorithms and the paper is 
wrapping up with a brief conclusion in Section VIII. 

II. THE LEAST SLACK TIME FIRST (LST) 
ALGORITHM 

The least slack time first algorithm is a dynamic pre-
emptive scheduling algorithm. The highest priority is 
assigned to the task having the small slack time. The slack 

time 	݈ is defined as per the following equation [4].  ݈ = ݀ − ܿ −  (1)																																ݐ
Where,  
  t = current time 

 d = deadline 
 c = remaining execution time  
 

The scheduling algorithm is necessary to execute 
when a currently running task completes or new task arrives. 
The flowchart of the algorithm has been shown in Figure 
1.When a new task arrives or the currently executing task is 
finished, the scheduling algorithm will run and calculate the 
slack time for each task based on Equation 1. The new task 
selected for execution which has minimum slack time. 

 
III. THE SHORTEST JOB FIRST (SJF) ALGORITHM 

The Shortest Job First algorithm is a static priority 
scheduling algorithm. The highest priority is assigned to the 
task having the small execution time [5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.1- LST 
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The execution time of a task is already known in the Real-
time system and defined as CPU time required for 
completing the task. The scheduling algorithm is necessary 
to execute when a currently running task completes or new 
task arrives. The flowchart of the algorithm has been shown 
in Figure 2: 

As shown in Figure 2, when a new task arrives, or the 
currently executing task is finished, the scheduling 
algorithm will run and identify the task with minimum 
execution time. The new task selected for execution which 
has minimum execution time. 

IV. RELATED WORK ON LST AND SJF 

For any set of the task, we can verify its schedulability 
is feasible or not. In the periodic task model, each task has 
its occurrence period(T), its execution time(C) and its 
deadline(D). The ratio U=C/T is called the utilization factor 
of the task and represents the fraction of processor time used 
by that task. At a given point of time for a set of N task, 
utilization factor can be calculated by the following 
equation.  U୮ =෍ େ౟୘౟௡௜ୀଵ                     (2) 

U୮ is called the total processor utilization factor and 

represents the fraction of processor time used by the periodic 
task set. If U୮ > 1 no feasible schedule exists for the task set 

with an algorithm, and it is overload condition. If U୮ < 1, 

the feasibility of the schedule depends on the task set 
parameters and the scheduling algorithm used in the system 
[6]. 

In LST, tasks priorities are decided as per its slack 
times. The periodic task is pre-empted at the time when 
another task with less slack time arrives. It also take care 
that none of the tasks miss their deadlines. The dynamic 
scheduler LST performes better than the static scheduler in 
under load situation, and it can schedule the entire task set 
when U୮ < 1[1]. 

In SJF, tasks priorities are decided based on its 
execution time required. The scheduler selects the waiting 
task with the shortest execution time. SJF is advantageous 
because of easy to implement and because it maximizes 
process throughput. It also minimizes the average amount of 
time each task has to wait until its execution is complete [7]. 
We did not find any experimental setup which only uses SJF 

algorithm for Real-Time Scheduling. SJF has been used with 
EDF algorithm to decide the group priority in a non-
preemptive scheduling algorithm for soft real-time systems 
[5]. We have applied SJF as a single algorithm in Soft Real-
Time system in this paper. 

V. THE SYSTEM CONSIDERATION AND TASK 
MODEL 

We have assumed that the system knows task 
deadline and necessary information to compute the time 
required to execute the task on when the task is released. 
The task set is considered pre-emptive. We have considered 
that the system is not having resource clash problem. 
Moreover, pre-emption and the scheduling algorithm acquire 
no overhead. 

In soft real-time systems, each task has a positive 
value. The goal of the system is to gain maximum value.  If 
a task meets the deadline, then the system considers its 
value. If a task missed the deadline, then the system gets less 
value from the task [8]. In a particular case of soft real-time 
systems, called a firm real-time system, if task misses its 
deadline, then no value will be considered, but there is no 
disaster as well [9]. In this paper, we have implemented LST 
and SJF algorithm which applies to the soft real-time 
system. The value of the task has been considered the same 
as its computation time required [10]. 

VI. EXPERIMENTAL SETUP AND PERFORMANCE 
MEASURING PARAMETER 

  We have implemented LST and SJF algorithm in C 
programming language. These scheduling algorithms 
schedule the task when a new task arrives or currently 
executing task completes. These algorithms execute periodic 
tasks for validating their performance. For periodic tasks, U୮ 

(processor utilization factor) can be defined as the 
summation of the ratio of executable time and period of each 
task. We considered it as Load of the system and calculated 
as per the Equation 1. To generate the task set we have 
developed one module in C language which produces 
random periodic task set. Using this tool we have built 7500 
task set and each task set containing 1 to 9 tasks. These task 
sets load varies from 0.5 to 5.0. Overall LST and SJF have 
been tested with approx 35,000 task scheduling process on 
500-time unit to get the results. Performance of LST and SJF 
has been measured based on following two parameters. 

708



1. SR (Success Ratio) - In real-time systems, achieve the 
deadline is main key aspect, and we are concerned about 
finding whether the task is meeting the deadline. Therefore 
the most appropriate performance parameter is the Success 
Ratio(SR). SR defined as: 

 ܴܵ = ே௨௠௕௘௥	௢௙	்௔௦௞	௦௨௖௖௘௦௦௙௨௟௟௬	௦௖௛௘ௗ௨௟௘ௗ்௢௧௔௟	ே௨௠௕௘௥	௢௙	்௔௦௞	௔௥௥௜௩௘ௗ 	(3) [11] 

 

2. ECU (Effective CPU Utilization) - It is essential that how 
efficiently the scheduler utilizes the processes, particularly 
during overloaded condition. Therefore, the other 
performance metric is Effective CPU utilization (ECU). 
ECU defined as:   
	ܷܥܧ  = 	∑ ௏೔்௜	∈ோ (4) [12] 

Where,  

• V represents the value of task and,  
o V = Computation time of the task, if the task completes 

within its deadline.  
o V = 0, if the task fails to meet the deadline.  

• R represents a set of tasks, which are scheduled successfully, 
i.e., meets its deadline.  

• T represents the total time of scheduling.  
.  

VII. RESULT AND ANALYSIS 

Table I and Table II show the results gathered by 
executing LST and SJF algorithm on the simulator. Table I 
represents the scenario where task set contains 1 to 9 task 
and Load is less than 1 or equal to 1 (U୮ ≤ 1). Results show 

that ECU values remain nearly the same for LST and SJF, 
but SR is not 100% in case of SJF. When Load is less than 
1, it means that task set is schedulable, and all process can 
meet their deadline, but SJF is not able to schedule all task 
whereas LST is successfully able to schedule these task set. 
It means in under load situation LST gives a guarantee to 
schedule all task, so it is advisable to use LST instead of 
SJF. 

Table II represents the scenario where task set contains 1 
to 9 task and Load is greater than 1 (U୮ > 1). Results show 

waste in ECU and SR values for LST and SJF. When Load 
is greater than 1, it means that the task set is not schedulable  

 

 

Load ECU% SR% 

LST SJF LST SJF 
1.05 16.09 56.63 15.84 73.49 
1.10 8.33 63.60 7.90 75.98 
1.15 5.58 62.66 5.06 73.66 
1.20 4.21 70.08 3.67 73.06 
1.25 3.56 73.20 3.06 77.47 
1.30 3.09 72.24 2.53 75.34 
1.35 2.63 70.99 2.09 71.55 
1.40 2.20 76.57 1.71 73.80 
1.45 2.01 74.45 1.52 68.76 
1.50 1.83 80.07 1.33 69.96 
1.60 1.77 77.26 1.29 67.20 
1.70 1.58 79.16 1.07 64.60 
1.80 1.45 77.28 0.95 63.04 
1.90 1.31 77.53 0.85 62.21 
2.00 1.19 78.10 0.76 61.00 
2.25 1.13 76.95 0.65 55.91 
2.50 0.98 74.97 0.54 49.92 
2.75 0.91 74.42 0.47 46.83 
3.00 0.86 77.23 0.40 41.67 
3.50 0.75 73.37 0.33 36.76 
4.00 0.73 79.57 0.27 34.09 
4.50 0.71 71.58 0.24 27.74 
5.00 0.66 78.22 0.20 25.71 

 Load ECU% SR% 

LST SJF LST SJF 

0.50 49.49 49.49 100 100 

0.55 54.66 54.31 100 100 

0.60 59.39 59.39 100 100 

0.65 64.35 64.35 100 100 

0.70 69.35 69.35 100 100 

0.75 74.31 74.31 100 100 

0.80 79.22 79.22 100 100 

0.85 84.16 84.15 100 99.99 

0.90 89.16 89.00 100 99.84 

0.95 94.17 93.89 99.99 99.78 

1.00 99.10 96.74 100 98.74 

TABLE I 

(LST AND SJF PERFORMANCE IN UNDERLOAD) 

TABLE II 

(LST AND SJF PERFORMANCE IN OVERLOAD) 
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and few tasks will miss their deadline. Table 2 observations 
reflect that in slightly overload situation LST performance 
degrades very poorly whereas SJF able to meet the deadline 
for few of their task set. It means in overload situation SJF 
gives better performance than LST. Figure 3 and 4 provides 
a graphical representation of Table 1 and Table 2 
respectively. 

 

VIII. CONCLUSION 

The LST and SJF are implemented for scheduling of 
soft real-time system with a single processor and pre-
emptive task sets. These algorithms are simulated with 
periodic task sets; results are obtained and compared. 
Observation suggests that dynamic algorithm LST performs 
well in underload situation and able to schedule most of all 
task when Load is 1. In overload (Load is > 1) situation, 
LST performs poorly. So in underload, LST is advisable but 
not with an overload situation. Static algorithm SJF 
performs moderately to underload situation. It has been 
observed that with specific task set even it is possible that all 
tasks meet their deadline but SJF is failed to schedule it. So 
in underload, SJF is not advisable, but in overload, it 
performs well compared to LST. This happens because the 
characteristic of SJF, it is selecting the task which has 
minimum execution time and because of that, it has more 
chance to meet their deadline even in an overload condition. 
Because of that ECU% and SR% is good in comparison with 
LST in an overload situation. LST work on slack time, 

  

 

which does not only depend on execution time. It 
iscalculated based on deadline and remaining execution time 
because of that ECU% and SR% decrease very fast in an 
overload situation.    

In the future, we can propose a new algorithm which 
will use the characteristics of LST and SJF. Therefore it may 
perform well in overload and underload situation. 
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Analysis of Earliest Deadline First and Rate Monotonic Scheduling Algorithm in 

Soft Real-Time System 

 

 

Abstract— The Earliest Deadline First (EDF) is a dynamic scheduling algorithm, and It gives priority 

to the task based on its absolute deadline; the task having the nearest deadline will have the highest priority. 

EDF one of the best suitable for scheduling tasks with Soft Real-Time Operating System (RTOS). The 

Rate Monotonic (RM) algorithm is a static scheduler. It gives priority to the task based on its occurrence 

period, or we can say it gives priority based on the rate of the task. A task which has the lowest rate will 

assign the highest priority in the RM algorithm. In this paper has implemented the EDF and RM for the 

Soft-RTOS. These algorithms have been tested with the periodic task set, and observations are gathered. 

Algorithms are compared based on Success Ratio & Effective CPU Utilization in similar conditions. It 

has been observed that the EDF algorithm performs well in underload conditions, but in an overload 

situation, performance gets degraded. Whereas RM not able to schedule specific tasks set in underload 

condition but it reasonably performs well in an overload condition compare to EDF. Practical experiments 

have been executed with an extensive process set. Process Set contains a 6000-task set, and every task set 

has a different number of tasks between one to nine. Every process set also has different CPU utilization 

factor 0.5 to 5. These algorithms have been evaluated on a 500-time line to validate the performance in all 

scenarios.  

Keywords—RTOS, Real-Time Systems, Scheduling, RM, EDF 

 

1. Introduction  

 The usage of Real-Time based systems is getting increased day by day. Developing a system that is 

expected to generate real-time results need to manage timing constraints of all functionalities. All tasks in 

RTOS have their related deadlines and have to finish the task within the given deadline. Based on RTOS 

type, it is necessary to select a scheduler that assigns a task to the processor by taking into considering the 

timing constraints and supporting all other needs of scheduling. Based on the time criticality, real-time 

systems divided into three significant categories hard, soft, and firm real-time systems. In Hard RTOS, if 

the deadline is missed, the disaster will occur even though the miss is minor. A Soft RTOS if the deadline 

is missed, the disaster will not happen, but the overall performance of the system will degrade. [1].  
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Based on the property of the RTOS and task sequence, the appropriate scheduling method should be 

applied. In RTOS, the task can be categorized as Periodic, Aperiodic, and Sporadic task. It is also classified 

based on the non-preemptive or pre-emptive task. 

The scheduler is organizing the sequence of tasks such a way that it can satisfy its different conditions. 

A task has characteristics like execution and arrival time. It also has a deadline, period, and other 

requirements. The Static and Dynamic algorithms are two types of scheduling algorithm which is used 

depends on the approach. The scheduler, which assigns priority only once at the time of initialization, is 

referred to as a Static scheduling algorithm. Rate Monotonic (RM) is one of the examples of static priority 

scheduler. The scheduler, which keeps changing the priority based on the current situation, is referred to as 

a dynamic scheduling algorithm. The Earliest Deadline First (EDF) is one of the examples of the dynamic 

scheduling algorithm. [2][3]. This paper has evaluated the Earliest Deadline First and Rate Monotonic 

schedulers with a diverse scenario. This paper has evaluated these algorithms based on two different 

parameters called Effective CPU utilization (ECU) and Success Ratio (SR). Paper has evaluated both 

schedulers in underload and overload situations [4].  

Paper has been arranged in the following way: The scheduling method EDF and RM described in Section 

2 and 3. Related work is described in Section 4. Algorithm Evolution Criteria and Practical Setup are 

described in Section 5. Section 6 discussed the analysis and evaluation of both schedulers, and the paper is 

ended with a conclusion in Section 7.  

2. The EDF Algorithm  

The EDF algorithm is a dynamic pre-emptive scheduler. It gives priority to the task based on the absolute 

deadline. Priorities of tasks are allocated dynamically and are inversely proportional to the absolute 

deadlines of the active tasks [6][10]. Figure 1 shows the flow of the EDF algorithm. When the currently 

executing task is completed, or a new task comes, the scheduler will run and check the absolute deadline 

of each active task. The task which has the earliest deadline will be selected for the next execution. 

3. The RM Algorithm  



The RM algorithm is a static pre-emptive scheduler. It gives priority to the task based on its Rate (task 

occurrence period). The task with the smallest Rate will get high priority [5][6]. The period of any task is 

pre-defined in RTOS and defined as the task occur again in a given duration. Figure 2 shows the flow of 

the RM algorithm. When the currently executing task is completed, or a new task comes, the scheduler will 

run and check the lowest rate of each active task. The task which has the lowest rate will be selected for the 

next execution [10].  

4. EDF and RM Related Work  

It is possible to verify the stimulability of any set of the periodic task set. The periodic task set has its 

deadline(D), its occurrence period(T), and its execution time(C). The utilization factor 𝑈 =  
𝐶

𝑇
 gives the 

time used by the assigned task of the processor. For any point in time, the utilization factor can be calculated 

with the following equation.  

 

Up = ∑
Ci

Ti

𝑛

𝑖=1
                    (1) 

 



The total CPU utilization factor Up stats the fraction of processor time used by the periodic task set. The 

given task set is schedulable or not will be decided based on the value of Up. If vale of Upis less than 1, 

then it is possible to schedule the given task set, but if the value of Up is greater than one than there is no 

scheduler exist which can schedule tasks set completely. [6]. 

The EDF assigns priorities based on its absolute deadline. The periodic task can be pre-empted when a 

new task with the smallest absolute deadline arrives. The EDF scheduler performs well compare to any 

other static scheduler in underload scenario, and it is possible to schedule all the task within the task set if 

Up < 1[1]. The RM assigns priorities based on its occurrence period (Rate). The scheduler chose the task 

from the whole ready task with the shortest period to execute next. RM has advantages like easy to 

implement, it has less runtime overhead, simple to evaluate, and it is predictable in overload scenario [6][7]. 

5. Algorithm Evaluation Criteria and Practical Setup  

The Soft-RTOS task set has the required data to calculate the time required to complete the task when 

the task is dispatched. This paper is assuming that the task set is periodic and pre-emptive. During the 

evolution of these algorithms, it has been considered that the task does not have any resource clash issue, 

and it has also been considered that there is no overhead in the pre-emption and scheduling algorithm. 

This paper evaluating EDF and RM method, and these algorithms are implemented using the C 

programming language. These algorithms execute and schedule the task as per Figure 1 and Figure 2. This 

paper has considered a periodic task set for evaluating the performance of the algorithm. The task set has 

been generated using a software module that is developed in C language. This module has generated a large 

amount of task set, which has 1 to 9 tasks in each set. Each task set has a different utilization factor, and it 

varies from 0.5 to 5.0 [11]. At a glance, EDF and RM have been evaluated with more than 30,000+ task to 

prove its performance. Each task set has been scheduled for a 500-time unit to test the effectiveness of the 

algorithm. 

Evaluation of EDF and RM algorithms have been measured based on following two-parameter 



Success Ratio (SR) - Soft RTOS expects to meet all the deadlines of a given task in the task set, and it is a 

crucial parameter for any scheduler to check its performance. This paper is trying to find out that any given 

task can meet their deadline or not. Because of that essential parameter is SR and it defines as below [8][9], 

𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑎𝑟𝑟𝑖𝑣𝑒𝑑
 (2) 

Effective CPU Utilization(ECU) – This parameter will calculate the effective use of CPU. It shows the 

time which is used by the task to schedule the task and the task which can meet their deadline. ECU defined 

as:[8][9] 

𝐸𝐶𝑈 =  ∑
𝑉𝑖

𝑇
𝑖 ∈𝑅

(3) 

Here,  

 V represents task value and,  

• Value of task = Execution time of the task, if it completes its execution before its deadline. 

• Value of task = 0, if the task miss deadline. 

• R is a set of tasks, which are scheduled successfully, i.e., completed within their deadline.  

• T is the total time of scheduling.  

6. Result and Discussion  

 EDF and RM algorithm has been evaluated on the simulator, which is developed in the C programming 

language. Results have been gathered and represented in Table I and Table II. Underload scenario results 

have been displayed in Table I, where task set have utilization factor which is less than or equal to 1. It has 

been observed that EDF can meet all the deadlines, whereas RM is missing a few of them. Based on this 

observation, we can say that the EDF algorithm is advisable in the underload scenario compare to RM. 

Overload scenario results have been displayed in Table II, where task set have utilization factor which is 

greater than 1. Table II reflects a significant performance difference between EDF and RM in the overload 



scenario. If the utilization factor is more than 1 for any given task set than it is not possible to schedule a 

task set, and few of their task will miss their deadline. Table II observation says that EDF performance 

degraded very rapidly in slightly overload situations, whereas RM is still able to meet a few of their 

deadlines. Table I and Table II have been represented in the plotted graph in Figure 3 and Figure 4. 

   Table I: Underload Scenario       Table II : Overload Scenario 

 

 

 

 

 

 

 

 

 

 

 
Load 

ECU% SR% 

EDF RM EDF RM 

0.50 49.49 49.49 100.00 100.00 

0.55 54.66 54.40 100.00 100.00 

0.60 59.39 59.39 100.00 100.00 

0.65 64.35 64.35 100.00 100.00 

0.70 69.35 69.35 100.00 100.00 

0.75 74.31 74.31 100.00 100.00 

0.80 79.22 79.22 100.00 100.00 

0.85 84.16 84.16 100.00 100.00 

0.90 89.16 89.15 100.00 99.99 

0.95 94.17 94.08 100.00 99.93 

1.00 99.10 97.78 100.00 98.92 

Load 
ECU% SR% 

EDF RM EDF RM 

1.05 17.45 70.85 18.27 78.49 

1.10 9.21 75.82 9.31 80.49 

1.15 6.29 73.20 6.19 75.88 

1.20 4.62 83.50 4.22 79.47 

1.25 4.06 79.05 3.67 77.58 

1.30 3.63 75.66 3.19 73.81 

1.35 3.12 74.65 2.65 70.77 

1.40 2.66 83.55 2.24 75.47 

1.45 2.50 79.75 2.00 69.03 

1.50 2.21 85.27 1.71 70.33 

1.60 2.17 85.61 1.61 69.52 

1.70 2.03 86.26 1.42 65.99 

1.80 1.93 86.12 1.30 65.98 

1.90 1.90 85.83 1.29 63.51 

2.00 1.84 85.78 1.20 62.88 

2.25 1.76 84.27 1.04 56.16 

2.50 1.55 87.06 0.89 53.82 

2.75 1.46 89.21 0.78 52.07 

3.00 1.32 94.46 0.63 48.36 

3.50 1.27 93.48 0.57 44.50 

4.00 1.11 95.04 0.43 39.52 

4.50 1.08 96.77 0.38 36.45 

5.00 0.97 98.13 0.31 31.72 



 

 

 

 

 

7. Conclusion  

This paper has assessed the EDF and RM scheduling methods for Soft RTOS by considering the periodic 

task set with a single processor and also believed that the task set is pre-emptive. A comparison of results 

is given in Table I, which suggests that the EDF, which is dynamic scheduling methods, meets a 100% 

deadline in the given task set in the underload scenario. In contrast, it is possible to schedule a given task 

set, but RM failed to schedule it.    



 

In an overload scenario, which results described in Table II, where the EDF scheduling method misses 

most of the deadline in the given task set, whereas the RM scheduling method still able to meet some the 

deadline and performs well compared to EDF. Based on the above practical observation, it is advisable to 

use EDF (dynamic scheduling method) in the underload scenario, whereas RM (static scheduling method) 

in overload scenario so scheduling method will get more effectiveness. 
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Abstract The earliest deadline first (EDF) and least slack time first (LST) are

dynamic schedulers in real-time system. It chooses the priority of the processes

grounded on deadline and slack time correspondingly. The process which has the

shortest deadline and smallest slack time will have more priority in EDF and LST.

EDF and LST are more appropriate for scheduling of process in soft real-time oper-

ating system (RTOS). The rate monotonic (RM) and shortest job first (SJF) are static

schedulers in real-time system. It chooses the priority of the processes grounded on

its occurrence and time required to execute for given process correspondingly. The

process which has the smallest period and smallest time required to execute will be

considered as more priority in RM and SJF. In this paper, we have implemented the

two dynamic scheduling algorithms (EDF and LST) and two static algorithms (RM

and SJF) for the soft RTOS. Algorithms are tested with a periodic task set, and results

are collected. We have observed the success ratio (SR) and effective CPU utilization

(ECU) for all algorithms in a similar environment. It has been observed that the EDF

and LST (dynamic algorithms) perform well in underload condition, but in overload

situation, they are not able to perform well, whereas the RM and SJF (static algo-

rithms) are failed to schedule a specific process in the underload scenario as well.

They perform well in an overload situation compared with static algorithm. Practical

investigations have been led on a huge dataset. Dataset consists of the 7000+ process

set, and each process set has one to nine processes, and load varies between 0.5 and

5. It has been tried on 500-time unit to approve the rightness everything being equal.
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1 Introduction

The use of real-time systems for time-critical applications has been increasing over

the past years. All tasks in RTOS have associated deadlines, and it needs to be

completed within given time. RTOS needs a scheduling algorithm that assigns the

processor to tasks by considering the timing constraints as well as supporting all other

requirements of scheduling. Depending upon the time criticality, RTOS is divided

into hard and soft RTOS. A hard RTOS is one which would fail when the deadline is

missed even though the miss is very small. A soft RTOS is one in which a deadline

miss is acceptable, but it degrades the overall performance of the system [1].

In RTOS, the suitable scheduling algorithm needs to select grounded on the char-

acteristics of the RTOS and the process type. RTOS categorizes as hard, soft, and

firm system. Its process set classifies as a periodic, aperiodic, and sporadic pro-

cess. Process set can be divided into the preemptive and non-preemptive process.

The process has a different characteristic like its execution time, arrival time, dead-

line, and resource requirements. The scheduler can be divided into two categories,

static and dynamic, which depend on the priority they follow. The static algorithm

uses a unique priority to each process to throw out the scheduling. Rate monotonic

(RM) and deadline monotonic (DM) are an example of static priority algorithms.

Dynamic algorithm priority changes during the scheduling process. Earliest deadline

first (EDF) and least slack time first (LST) are an example of dynamic priority algo-

rithms. Dynamic algorithms perform well in underload situation and when processes

are preemptable. However, the limitation of these algorithms is their performance

decreases exponentially if the system becomes slightly overloaded [2, 3].

In the paper, a comparison of dynamic and static algorithms has been compared

with a different aspect. Algorithms have been compared with parameters like ECU

and SR, and the algorithms are observed in overload and underload scenario. This

paper is prepared as: The dynamic and static algorithms have been discussed in

Sects. 2 and 3. Section 4 explains background work. Section 5 represents the process

set and system consideration. Section 6 defines the practical environment and mea-

suring parameters. Section 7 represents the result and analysis of all four algorithms,

and the paper is wrapping up with a brief conclusion in Sect. 8.

2 Dynamic Scheduling Algorithms

Dynamic schedulers make decisions during the runtime of the system. This allows to

not only design a more flexible system, but also associate calculation overhead with

it. The dynamic schedulers decide what task to execute depending on the importance

of the task, called priority. The task priority may change during the runtime [4, 5]. In

this section, we have explained two dynamic scheduling algorithms EDF and LST

as follows.
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Fig. 1 EDF

2.1 Earliest Deadline First (EDF)

The earliest deadline first is a dynamic scheduling algorithm, which gives the highest

priority to the task which has a nearest absolute deadline. Priorities of tasks are

allocated dynamically and are inversely proportional to the absolute deadlines of the

active processes [6]. The algorithm executes when the current process completes or

new process arrives. Figure 1 shows a flowchart for the EDF algorithm.

2.2 Least Slack Time First (LST)

The LST is a dynamic scheduling algorithm, which gives maximum priority to the

process which has the smallest slack time. The slack time (l) can be calculated at

time t with the deadline interval d and remaining execution time c [7].

l = d − c − t (1)
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Fig. 2 LST

The algorithm executes when the current process completes or new process arrives.

Figure 2 shows a flowchart for the LST algorithm. The new process selected for

execution has the smallest slack time.

3 Static Scheduling Algorithms

The static scheduler can calculate the order of execution before runtime as well. The

static scheduler also decides the sequence of task based on priority, but the priority

value will not change during runtime [8]. In this section, we have explained two

static scheduling algorithms RM and SJF as follows.
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Fig. 3 RM

3.1 The Rate Monotonic (RM)

The rate monotonic is a static scheduling algorithm, which gives maximum priority

to the process which has the smallest period or smallest rate [6, 9]. The rate of a

process is already known in RTOS and defined as the task occurs again in a given

duration. The algorithm executes when the current process completes or new process

arrives. Figure 3 shows a flowchart for the RM algorithm.

3.2 The Shortest Job First (SJF)

The shortest job first algorithm is a static scheduling algorithm, which gives maxi-

mum priority to the process which has the smallest execution time [9]. The execution

time of a process is already known in RTOS and defined as the process that needs CPU

time to complete the given task. The algorithm executes when the current process

completes or new process arrives. Figure 4 shows a flowchart for the SJF algorithm.
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Fig. 4 SJF

4 Background Work

For specific periodic process set, it is possible to identify that can we schedule process

set or not. Periodic process has specific parameters like period (T ), execution time

(C), and deadline (D). The relation U = C/T is named as utilization factor of process

set and characterizes processor time required by the process set to complete all

process. At a given time, for a set of N processes, utilization factor can be considered

by the following equation.

Up =

n∑

i=1

Ci

Ti

(2)

Up is named utilization factor and signifies the CPU time required by the periodic

process set. If Up > 1, no feasible algorithm exists for the process set and it is

overload situation. If Up < 1, then feasible algorithm exists which can schedule the

process set [6]. The dynamic scheduling algorithms like EDF and LST are better
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compared with the static scheduling algorithm in under load situation, and it can

schedule the whole process set when Up < 1 [1]. The static scheduling algorithm like

RM and SJF decides priority grounded on its rate and required CPU time to complete

the task, respectively. The scheduler selects the waiting task with the smallest period

and the smallest execution time to execute the next task, respectively [10]. SJF as

a single algorithm for RTOS is not observed in any experimental setup. A hybrid

approach of SJF and EDF has been followed to decide the group priority of process

set [9]. In this paper, it has also been experimented by considering SJF as a single

scheduling algorithm with soft real-time system.

5 The Process Set and System Consideration

We considered that process deadline, its rate, and other necessary information are

available with the system when the process is released. The process set is preemptive

and considered that all the required resources for execution of the process are avail-

able. In soft RTOS, each task has a positive value. The system aims to gain maximum

benefit. If the process meets its deadline, then the system will get its value. If the

process misses its deadline, then the system will gain less value. [11]. Firm RTOS is

a kind of real-time system where if the process missed the deadline, then value gain

for the given process is zero. But, it is also not considered as a complete failure of the

system. This paper includes the implementation of dynamic and static scheduling

algorithms which is considered for soft RTOS [12].

6 Practical Environment and Measuring Parameter

Dynamic and static scheduling algorithms have been implemented using C program-

ming language. The algorithm will be executed when a new process is generated or

current process completes its execution. Algorithms are tested with the periodic pro-

cess set for authenticating their performance. Load of the system is calculated based

on Eq. (1). If the load is less than one system, it is considered as underload, and if

it is more than one system, it is considered as overload scenario. Processes set have

been generated with all possible combination. The software module has generated

the 7000+ process set, and each process set has one to nine processes. A load of

process set varies between 0.5 and 5. It has been tried on 500-time unit to approve

the rightness everything being equal. Performance of these (EDF, LST, RM, and SJF)

algorithms has been measured based on SR and ECU.
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1. SR—Success ratio with real-time systems is defined as the ratio of a set of the

process which meets their deadline and a total number of process. Success ratio

is determined with the following Eq. (3) [13].

SR =
Number of Task successfully scheduled

Total Number of Task arrived
(3)

2. ECU—Effective CPU utilization is defined as how much CPU time has been

utilized for the processes which can meet their deadline. ECU is determined with

the following Eq. (4) [13].

ECU =

∑

i∈R

Vi

T
(4)

where

• V represents process value and

– process value = time required to complete the process, if the process meets its

deadline.

– Process value = 0 if the process does not meet the deadline.

• R is a set of process, which is scheduled successfully, i.e., completed within their

deadline.

• T is the total time of scheduling.

7 Result and Analysis

In this paper, EDF, LST, RM, and SJF algorithms are implemented and evaluated

with SR and ECU parameters, and the results are given in Tables 1 and 2. Table 1

contains the underload scenario, and Table 2 includes the result of an overload sit-

uation where in underload it is Up ≤ 1 and in overload it is Up > 1. Observation

with these results indicates that ECU values persist nearly the same for dynamic and

static algorithms, but SR values are not 100% with the static scheduling algorithms.

When Up ≤ 1, it indicates that scheduling of given task set is possible, but static

scheduling algorithms are failing to schedule all process, whereas dynamic schedul-

ing algorithm can schedule this process set. Dynamic scheduling algorithms give

optimum result in underload scenario, and it is advisable to use the dynamic sched-

ulers with underload condition. Table 2 contains the results of overload situation,
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Table 1 Dynamic and static algorithms performance in underload

Load ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

0.50 49.49 49.49 49.49 49.49 100.00 100.00 100.00 100.00

0.55 54.66 54.40 54.40 54.31 100.00 100.00 100.00 100.00

0.60 59.39 59.39 59.39 59.39 100.00 100.00 100.00 100.00

0.65 64.35 64.35 64.35 64.35 100.00 100.00 100.00 100.00

0.70 69.35 69.35 69.35 69.35 100.00 100.00 100.00 100.00

0.75 74.31 74.31 74.31 74.31 100.00 100.00 100.00 100.00

0.80 79.22 79.22 79.22 79.22 100.00 100.00 100.00 100.00

0.85 84.16 84.16 84.16 84.15 100.00 100.00 100.00 99.99

0.90 89.16 89.16 89.15 89.00 100.00 100.00 99.99 99.84

0.95 94.17 94.17 94.08 93.89 100.00 99.99 99.93 99.78

1.00 99.10 99.10 97.78 96.74 100.00 100.00 98.92 98.74

and the observation indicates that dynamic algorithms performance reduces quickly,

whereas static algorithms like RM and SJF are still able to meet few of their deadlines

for given process set. This observation can conclude that in underload scenario, EDF

and LST give optimal results, whereas in overload scenario, RM and SJF performed

well (Figs. 5 and 6).

8 Conclusion

The dynamic and static algorithms are evaluated in this paper for soft RTOS and

considering it for a single processor and preemptive process sets. It is also believed

that process set is periodic. All four algorithms are evaluated in a similar environ-

ment, and the results have been observed and equated. EDF and LST are dynamic

algorithms, and they do well in underload scenario and schedule all process in a given

process set. LST and SJF are static algorithms, and they do well in overload scenario

and try to schedule maximum process in given process set. The ideal algorithm can

be designed which uses the features of dynamic and static algorithm, and it performs

well in underload as well as overload scenario.
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Table 2 Dynamic and static algorithms performance in overload

Load ECU% SR%

Dynamic Static Dynamic Static

EDF LST RM SJF EDF LST RM SJF

1.05 17.45 16.09 70.85 56.63 18.27 15.84 78.49 73.49

1.10 9.21 8.33 75.82 63.60 9.31 7.90 80.49 75.98

1.15 6.29 5.58 73.20 62.66 6.19 5.06 75.88 73.66

1.20 4.62 4.21 83.50 70.08 4.22 3.67 79.47 73.06

1.25 4.06 3.56 79.05 73.20 3.67 3.06 77.58 77.47

1.30 3.63 3.09 75.66 72.24 3.19 2.53 73.81 75.34

1.35 3.12 2.63 74.65 70.99 2.65 2.09 70.77 71.55

1.40 2.66 2.20 83.55 76.57 2.24 1.71 75.47 73.80

1.45 2.50 2.01 79.75 74.45 2.00 1.52 69.03 68.76

1.50 2.21 1.83 85.27 80.07 1.71 1.33 70.33 69.96

1.60 2.17 1.77 85.61 77.26 1.61 1.29 69.52 67.20

1.70 2.03 1.58 86.26 79.16 1.42 1.07 65.99 64.60

1.80 1.93 1.45 86.12 77.28 1.30 0.95 65.98 63.04

1.90 1.90 1.31 85.83 77.53 1.29 0.85 63.51 62.21

2.00 1.84 1.19 85.78 78.10 1.20 0.76 62.88 61.00

2.25 1.76 1.13 84.27 76.95 1.04 0.65 56.16 55.91

2.50 1.55 0.98 87.06 74.97 0.89 0.54 53.82 49.92

2.75 1.46 0.91 89.21 74.42 0.78 0.47 52.07 46.83

3.00 1.32 0.86 94.46 77.23 0.63 0.40 48.36 41.67

3.50 1.27 0.75 93.48 73.37 0.57 0.33 44.50 36.76

4.00 1.11 0.73 95.04 79.57 0.43 0.27 39.52 34.09

4.50 1.08 0.71 96.77 71.58 0.38 0.24 36.45 27.74

5.00 0.97 0.66 98.13 78.22 0.31 0.20 31.72 25.71
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Abstract: In the Soft Real-Time System scheduling process with 

the processor is a critical task. The system schedules the processes 

on a processor in a time interval, and hence the processes get 

chance to executes on the processor. Priority-driven scheduling 

algorithms are sub-categorized into mainly two categories called 

Static Priority and Dynamic Priority Scheduler. Critical Analysis 

of more static and dynamic priority scheduling algorithms have 

been discussed in this paper. This paper has covered the static 

priority algorithms like Rate Monotonic (RM) and Shortest Job 

First (SJF) and the dynamic priority algorithms like Earliest 

Deadline First (EDF) and Least Slack Time First (LST). These all 

algorithms have been analyzed with preemptive process set and 

this paper has considered all the process set are periodic. This 

paper has also proposed a hybrid approach for efficient 

scheduling. In a critical analysis, it has been observed that while 

scheduling in underload situation dynamic priority algorithms 

perform well and even EDF also make sure that all process will 

meet their deadline. However, in an overload situation, the 

performance of dynamic priority algorithms reduce quickly, and 

most of the task will miss its deadline, whereas static priority 

scheduling algorithms miss a few deadlines, even it is possible to 

schedule all processes in underload situation, whereas in an 

overload situation, the static algorithms perform well compared to 

the dynamic scheduler. This paper is proposing one Hybrid 

algorithm call S_LST which uses the concept of LST and SJF 

scheduling algorithm. This algorithm has been applied to the 

periodic task set, and observations are registered. We have 

observed the Success Ratio (SR) & Effective CPU Utilization 

(ECU) and compared all algorithms in the same conditions. It is 

noted that instead of using LST and SJF as an independent 

algorithm, Hybrid algorithm S_LST performs well in underload 

and overload scenario.  Practical investigations have been led on a 

huge dataset. Data Set consists of the 7000+ process set, and each 

process set has one to nine processes and load varies between 0.5 

to 5. It has been tried on 500-time unit to approve the rightness 

everything being equal. 

Keywords: Soft Real-Time System, RTOS, RM, SJF, LST, 

EDF, S_LST  

I. INTRODUCTION 

Real-Time Systems has to complete its work and deliver its 

services on a timely basis. It makes sure that its task will be 

completed before its deadline. Example of a Real-Time 

system is vehicle control, flight control, healthcare 

 
Revised Manuscript Received on December 15, 2019.  
* Correspondence Author 

Jay Teraiya*, Department of Computer Engineering, Marwadi 

University, Rajkot, India. Email: jay.teraiya@gamil.com  

Apurva Shah, Department of Computer Science and Engineering The 

Maharaja Sayajirao University of Baroda, Baroda, India. Email: 

apurva.shah-cse@msubaroda.ac.in  

 

equipment, and many more. Typical PC run nonreal-time 

applications such as a browser, editor, different user 

applications. When the real-time system works correctly, and 

well, they make us forget their existence [1].  

The real-time system is sub-categorized into mainly two 

types: hard and soft. There are many definitions of hard and 

soft real-time systems. Real-Time system is considered as 

Hard if the process fails to meet its deadline, then it will be a 

fatal fault. In Hard Real-Time, if the process missed its 

deadline, then result produced by the job after the deadline 

may have disastrous consequences. A few examples of Hard 

Real-Time Systems are Metro Train and its signal system, 

Missile technology, Flight control system. The real-time 

system is considered as Soft if the late completion of the 

process is undesirable. However, a few misses of soft 

deadlines do no serious harm; only the system’s performance 

becomes poor. A few examples of Soft Real-Time systems 

include ATM System, Mobile application and telephone 

switches [7].  

The real-time system has three kinds of task model call 

Periodic, Aperiodic and Sporadic tasks. In the periodic task, 

each task generated at regular time intervals. The Real-Time 

system is invariably required to respond to external events 

and to respond; it executes aperiodic or sporadic tasks whose 

release times are not known to the system in advance. We call 

the task is aperiodic if the process in it have soft deadlines. 

Each unit of work is scheduled and executed by the system as 

a process. Each process has a different characteristic like 

release time, deadline, period and execution time. The release 

time of a process is the instant of time at which the job become 

available for execution. The process can be scheduled and 

executed at any time after its release. The deadline for a 

process is the instant of time by which its execution needs to 

be completed. The deadline for a process sometimes called 

absolute deadline, which is equal to its release time plus its 

relative deadline. The execution time of any process is 

considered as the unit amount of time required for the process 

to execute it on the processor. If the process is periodic, then 

the period of the process indicates the occurrence interval of 

the given process. 

In RTOS, selecting the scheduling algorithm is a critical 

task, and it will be decided based on the characteristics of the 

RTOS and the process type [2]. The scheduler can be divided 

into two categories, static and dynamic, which depends on the 

priority they follow in selecting the process for execution.  
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The static algorithm uses a unique priority to each process 

throughout the scheduling. Rate Monotonic (RM) and 

Deadline Monotonic (DM) are an example of static priority 

algorithms. Dynamic algorithm priority changes during the 

scheduling process. Earliest Deadline First (EDF) and Least 

Slack Time First (LST) are an example of dynamic priority 

algorithms [10][11].  

In this paper, we have compared all dominant dynamic and 

static scheduling algorithms and did their critical analysis. All 

algorithm has been compared based on Success Ratio (SR) 

and Effective CPU Utilization (ECU) parameters. This paper 

also proposed an effective scheduling algorithm call S_LST, 

which is using characteristics of LST and SJF. The new 

algorithm also compared with the rest of all algorithms based 

on SR and ECU parameters. This paper explains the Static 

and Dynamic Scheduling algorithm in section II. Their critical 

analysis based on SR and ECU has been described in section 

III, and a new efficient algorithm call S_LST has been 

proposed in section IV, and performance of a new algorithm 

has been compared and discussed in section V, and paper is 

ended with a brief conclusion in section VI.  

II.  THE STATIC AND DYNAMIC SCHEDULING 

ALGORITHMS 

Priority-driven scheduling algorithms are online schedulers 

that schedule the process according to some priority. It does 

not pre-decide the process; instead of that, it assigns priorities 

to process when it is ready to execute. The scheduling 

algorithm will be executed whenever a new process is 

released, or currently, running process completes its 

execution. Priority-driven schedulers categorize based on 

how priority assigned to each process. Priority-driven 

algorithms are classified in to two categories: Static Priority 

and Dynamic Priority. A Static Priority algorithm assigns the 

same priority to all the periodic processes, and it will remain 

fixed relative to other processes. Whereas dynamic-priority 

algorithm changes the priority of the process based on the new 

process arrives or currently running process completes 

[12][22]. 

A. Static Scheduling Algorithms  

The Rate Monotonic (RM) and the Shortest Job First (SJF) 

are well known static priority algorithms. The RM assigns the 

priority to the process based on their period (the frequency of 

the task when it occurs). The Rate of the process is already 

known in RTOS for the periodic task. The rate of a process is 

the inverse of its period, so higher the rate, the priority of the 

process will be high [6][13][14]. The Shortest Job First (SJF) 

assigns the priority to the process based on their required 

execution time. The required execution time of the process is 

also known in RTOS and process with the shortest execution 

time will have the highest priority in SJF [13]. By looking at 

the approach of both algorithms, its ultimate aim is to gain 

maximum profit or try to meet the maximum deadline of the 

given processes. 

B. Dynamic Scheduling Algorithms 

The Earliest Deadline First (EDF) and the Least Slack 

Time First (LST) are well known dynamic priority 

algorithms. The EDF assigns the priority to the process based 

on the absolute deadline. The absolute deadline for each 

process is already known in RTOS, and the process which has 

the smallest absolute deadline will consider as highest priority 

process [8][14]. The LST is another well-known dynamic 

priority algorithm, and it assigns priority based on the slack 

time of the given process. The slack value of the process is 

equal to absolute deadline minus given time t minus 

remaining execution time x (slack=d-t-x). The algorithm 

checks the slacks of all the ready process each time a new 

process is released, or the existing process completes. The 

process with the smallest slack value will have the highest 

priority [9][15][16][17].  By looking at the approach of both 

algorithms, its ultimate aim is to meet the deadline of the 

given process. 

For any set of periodic processes, we can verify its 

stimulability is possible or not using its occurrence period(T), 

its execution time(C), and its deadline(D). This ratio  is 

called the utilization factor of the task set as shown in 

equation 1.  

   (1) 

 

is called the total processor utilization factor and 

represents the fraction of processor time used by the periodic 

task set. If >1 no feasible schedule exists for the task set 

with an algorithm, and it is overload condition.  

III. CRITICAL ANALYSIS OF STATIC AND 

DYNAMIC SCHEDULING ALGORITHM 

A. System Consideration and Task Model  

In Soft Real Time System, system is already aware with 

task deadline, its period and the other required data to 

compute the required time by the task when task is dispatch. 

The process set is considered pre-emptive. This paper has 

believed that the system is not having a resource clash 

problem. Each task in soft real-time systems has a positive 

value and ultimate goal is to gain maximum value. If a process 

succeeds, then the system considers its value. If a process 

fails, then the system gets less benefit from it [18] [19].  In this 

paper, we have implemented Dynamic and Static scheduling 

algorithms that apply to the soft real-time system. The value 

of the task has been considered the same as its computation 

time required [20]. 

B. Experimental Environment and Evaluating 

Parameters  

1) Success Ratio (SR):  

Success Ratio with real-time systems defined as the ratio of a 

set of the process which meets their deadline and a total 

number of process. Success Ration determined with the 

following equation 2 [21]. 

 

            (2) 
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2) Effective CPU Utilization (ECU):  

Effective CPU Utilization defined as how much CPU time has 

been utilizing for the processes which can meet their deadline. 

ECU determined with the following equation 3 [21]. 

 

  (3) 

 

Where,  

• V represents process value and,  

Process Value = time required to complete the process if the 

process meets its deadline.  

Process Value = 0 if the process does not meet the deadline. 

• R is a set of processes, which are scheduled successfully, 

i.e., completed within their deadline.  

• T is the total time of scheduling. 

C. Analysis and Observation   

RM, SJF, EDF, and LST algorithms are implemented and 

evaluated with SR and ECU parameters (explained in section 

3), and results have been observed. Observation with these 

results indicates that ECU values persist nearly the same for 

Dynamic and Static algorithms, but SR values are not 100% 

with the Static scheduling algorithms. When U_p≤1, it 

indicates that scheduling of a given task set is possible, but 

Static scheduling algorithms are failing to schedule all 

processes, whereas Dynamic scheduling algorithm can 

schedule this process set. Dynamic scheduling algorithms 

give optimum results in underload scenario, and it is advisable 

to use the Dynamic schedulers with underload conditions. In 

overload situation when U_p>1, observation indicates that 

Dynamic algorithms performance reduce quickly whereas 

Static algorithms like RM and SJF are still able to meet a few 

of their deadline for a given process set. This observation can 

conclude that in underload EDF and LST give optimal results 

whereas in overload RM and SJF performed well. Fig. 1 and 

Fig. 2 provides a graphical representation of results. 

The Static and Dynamic algorithms are evaluated here for 

Soft – RTOS and considering it for a single processor, and 

pre-emptive process sets and all process set is periodic. All 

algorithms are evaluated in a similar environment and results 

have been observed and equated. EDF and LST are dynamic 

algorithms, and they do well in underload scenario and 

schedule all processes in a given process set. LST and SJF are 

static algorithms, and they do well in an overload scenario and 

try to schedule the maximum process in a given process set. 

The ideal algorithm can be designed, which uses the features 

of Dynamic and Static algorithm, and it performs well in 

underload as well as overload scenario [3][4][5]. 

 

 
Fig. 1 Load Vs. ECU% 

 
Fig. 2 Load Vs. SR% 

IV. THE HYBRID APPROACH FOR EFFICIENT 

SCHEDULING – S_LST ALGORITHM 

S_LST algorithm uses the characteristics of LST and SJF. In 

underload, situation task priority will be given based on slack 

time, and in an overload situation, task priority will be 

assigned based on the shortest execution time. We are 

considering that the execution time of the task, its arrival time, 

its period and total CPU load is available with Soft Real-Time 

System. The scheduling algorithm executes when a currently 

running task completes or a new task arrives. The algorithm 

has been described as follows. 

________________________________________________
_ 

S_LST Algorithm for Scheduling 

________________________________________________
_ 

Input: Process Set 

Output: MIProcess 

1:  if (Underload Scenario) 

2:  for each process in process set 

3:  Calculate Slack time for each Process 
in Process Set 

4:  Select MIProcess with lowest slack 
time 

5:  end for  

6:  else 

7:  for each process in process set 

8:  Calculate Shortest Execution Time for 
each process  

9:  Select MIProcess with lowest 
Execution time 

10:   end for 

11:  end if 

12: return MIProcess   

________________________________________________
_ 

As shown in Algorithm, when scheduling algorithm invokes; 

first it observed the CPU load, based on the current process 

set and available processes are 

ready for scheduling.  
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If it will assign the task priority based on slack time 

(Dynamic scheduling algorithm) and if  it will assign 

the task priority based on shortest execution time (Static 

Scheduling algorithm). The static scheduler aim is to gain 

maximum profit from the given process set. So, in overload 

situation where dynamic scheduler performs poorly, SJF 

algorithm gets more processes meets their deadline. 

V. S_LST ALGORITHM RESULTS AND 

DISCUSSION 

Table 1 represents the results of LST, SJF and the S_LST 

algorithm on the simulator. To evaluate S_LST, we are using 

a similar environment which we have used to evaluate all 

Static and Dynamic priority algorithm as per section 3. Table 

1 first eleven rows represent the scenario where task set 

contains 1 to 9 task and Load is less than 1 or equal to 1 

( ). Results show that S_LST performs equally well in 

underload scenarios like LST algorithm in terms of ECU and 

SR parameter. S_LST uses slack time value of task to assign 

dynamic priority in underload situation. 

Table 1 rest of rows represents the scenario where process 

set contains 1 to 9 process and Load is greater than 1 

( ). Results show a waste difference in ECU and SR 

values compare to a simple LST algorithm. When Load is 

greater than 1, it means that task set is not schedulable, and 

most of the process misses their deadline with LST algorithm. 

Table 1 observations reflect that in slightly overload 

situations LST performance degrades very poorly, whereas 

SJF able to meet the deadline for few of their process sets. It 

means in overload situation, SJF gives better performance 

than LST. That is why S_LST uses static priority in an 

overload situation. Fig. 3 and Fig. 4 provides a graphical 

representation of Table 1. 

 

 
Fig. 3 Load Vs. ECU% 

 

 
Fig. 2 Load Vs. SR% 

Table- I: Comparison of LST, SJF and S_LST 

  ECU SR 

Load LST SJF S_LST LST SJF S_LST 

0.5 49.49 49.49 49.49 100.00 100.00 100.00 

0.55 54.40 54.31 54.40 100.00 100.00 100.00 

0.6 59.39 59.39 59.39 100.00 100.00 100.00 

0.65 64.35 64.35 64.35 100.00 100.00 100.00 

0.7 69.35 69.35 69.35 100.00 100.00 100.00 

0.75 74.31 74.31 74.31 100.00 100.00 100.00 

0.8 79.22 79.22 79.22 100.00 100.00 100.00 

0.85 84.16 84.15 84.16 100.00 99.99 100.00 

0.9 89.16 89.00 89.16 100.00 99.84 100.00 

0.95 94.17 93.89 94.17 99.99 99.78 99.99 

1 99.10 96.74 99.10 100.00 98.74 100.00 

1.05 16.09 56.63 56.63 15.84 73.49 73.49 

1.1 8.33 63.60 63.60 7.90 75.98 75.98 

1.15 5.58 62.66 62.66 5.06 73.66 73.66 

1.2 4.21 70.08 70.08 3.67 73.06 73.06 

1.25 3.56 73.20 73.20 3.06 77.47 77.47 

1.3 3.09 72.24 72.24 2.53 75.34 75.34 

1.35 2.63 70.99 70.99 2.09 71.55 71.55 

1.4 2.20 76.57 76.57 1.71 73.80 73.80 

1.45 2.01 74.45 74.45 1.52 68.76 68.76 

1.5 1.83 80.07 80.07 1.33 69.96 69.96 

1.6 1.77 77.26 77.26 1.29 67.20 67.20 

1.7 1.58 79.16 79.16 1.07 64.60 64.60 

1.8 1.45 77.28 77.28 0.95 63.04 63.04 

1.9 1.31 77.53 77.53 0.85 62.21 62.21 

2 1.19 78.10 78.10 0.76 61.00 61.00 

2.25 1.13 76.95 76.95 0.65 55.91 55.91 

2.5 0.98 74.97 74.97 0.54 49.92 49.92 

2.75 0.91 74.42 74.42 0.47 46.83 46.83 

3 0.86 77.23 77.23 0.40 41.67 41.67 

3.5 0.75 73.37 73.37 0.33 36.76 36.76 

4 0.73 79.57 79.57 0.27 34.09 34.09 

4.5 0.71 71.58 71.58 0.24 27.74 27.74 

5 0.66 78.22 78.22 0.20 25.71 25.71 

VI. CONCLUSION 

The Static Algorithms (RM and SJF) and Dynamic 

Algorithms (EDF and LST) are implemented for scheduling 

of soft real-time system with a single processor and 

pre-emptive task sets and done a critical analysis of these 

algorithms with ECU and SR parameter in this paper. These 

algorithms are simulated with periodic task sets; results are 

obtained and compared. Observation says that dynamic 

algorithms perform well in underload situations and gives a 

guarantee to meet all the deadlines of a given process set. In 

overload (Load is > 1) situation, dynamic algorithms 

performance degrades very poorly. So, in underload, dynamic 

algorithms are advisable but not with an overload situation.  
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Static algorithms miss few process deadlines even in 

underload situations. It has been observed that with the 

specific process set, even it is possible that all processes can 

meet their deadline, but static algorithms are failed to 

schedule it. So, in underload, static schedulers are not 

advisable, but in overload, they perform well compared to 

dynamic algorithms. Based on this observation we have 

proposed a hybrid approach for efficient scheduling in Soft 

Real-Time system call S_LST.  S_LST algorithm assigns the 

static priority in overload situations will perform better in all 

situations compare to a single approach. Developing a 

scheduling algorithm using swarm (ACO) has been done for 

the Soft Real-Time system [21]. There is still multiple 

research possibility where we can use swarm intelligence 

techniques like Gravitational Search Algorithm (GSA) or 

Particle Swarm Optimization (PSO) and can design an 

efficient scheduling algorithm which can perform well in 

underload and overload situation. 
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 

Abstract: The Ant Colony Optimization (ACO) algorithm is a 

mathematical model enlivened by the system searching conduct of 

ants. By taking a gander at the qualities of ACO, it is most suitable 

for scheduling of tasks in soft real-time systems. In this paper, the 

ACO based scheduling method for the soft real-time operating 

system (RTOS) has been profound with mathematical and 

practical proof. In Mathematical proof, three different 

Propositions and two Theorems have been given, which prove the 

correctness of the proposed algorithm. Practical experiments also 

support mathematical proofs. During the investigation, 

observations are gathered with different periodic task set. 

Algorithms have been observed regarding Success Ratio (SR) and 

Effective CPU utilization (ECU). ACO based scheduling 

algorithm has been compared with the Earliest Deadline First 

(EDF) algorithm with parameter SR and ECU. The EDF is 

dynamic scheduling algorithm and it is most suitable in RTOS 

when task set is preemptable. It is noted that the new algorithm is 

equally efficient during under loaded conditions when CPU load 

is less than one. ACO based scheduling algorithm performs 

superior during the overloaded conditions when CPU load is more 

than one where as EDF algorithm performance degraded in 

overload condition. Empirical study has been executed with a 

hefty Dataset consist of more than 7500 task set, and a set contains 

different one to nine processes where CPU load is dynamic for 

each process set and differ from 0.5 to 5. Algorithms have been 

executed on five-hundred-time unit for each process set to 

authenticate the accuracy of both algorithms. 

 
Keywords:  ACO, EDF, ACO, Real-Time Systems, RTOS   

I. INTRODUCTION 

Real-time system is the systems in which the accuracy of 

the system not only defined by the logical accuracy but also 

with the time it takes to produce the result. Real-Time systems 

have decisive, unchanging time restrictions, i.e., the task must 

be ended within the specified duration; otherwise, the system 

fails. One can find the existence of two types of real-time 

systems: Hard and Soft Real-Time System. Hard Real-Time 

System needs that task deadlines must be met; otherwise, the 

disastrous situation will arise whereas in Soft Real-Time 

System, lost an occasional deadline is unwanted but 

reasonable. Real-time task manager aims to make sure that it 

meets the deadline for scheduled tasks in the system when we 

consider the soft real-time system. Vast re-searches are going 

on real-time task scheduling in order get this desired target. In 

general, all the real-time systems that exist use preemption 
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and multitasking. Real-Time scheduling methods are widely 

separated into two methods: Static and Dynamic Methods. 

Static methods allocate all priorities at design time, and it 

remains steady for the lifespan of a task. Dynamic methods 

keep changing the priority at the scheduled time, based on 

design parameters of any job. Dynamic methods can be 

endured with static or dynamic priority. Rate Monotonic 

(RM) and Deadline Monotonic (DM) are the examples of the 

dynamic scheduling method with static priority [1][2]. There 

are examples of dynamic scheduling with dynamic priority 

such as- Earliest Deadline First (EDF) and Least Slack Time 

First (LST). These algorithms are most the favorable where 

jobs are preemptable, consist of a single processor, which in 

turn is under-loaded [3],[4]. However, the constraint of such 

algorithm is its performance, which diminishes exponentially 

if the system becomes somewhat overloaded [5].The 

scheduling is treated as online if the scheduler forges 

scheduling outcome and doesn’t know about the task that is to 

be released in the future. It is stated that, in an overloaded 

situation, no other online scheduling algorithm can attain a 

competitive factor prominent than 0.25. Certainly, many 

researchers have identified that for any system whose loading 

factor is nearly equal to 1, the competitive factor of an online 

scheduling algorithm is nearly equivalent to 0.385 [6],[7]. 

Certain features make ACO based algorithm an exclusive 

method: it is effective, population-based metaheuristic that 

feeds an indirect form of memory of an earlier performance 

[8][9].  That is one reason why we have considered the same 

approach for RTOS scheduling.This paper has aimed to 

formulate as follows: In Section II, the projected algorithm is 

described and explained. Section III contains mathematical 

proofs for this algorithm, which includes three Propositions 

and two Theorems. Section IV illustrates the Simulation 

method, System and Task Model. Section V represents 

Results and Discussion and the paper ends with a concise 

decision in Section VI. 

II.  THE PROPOUND METHOD 

The scheduling method is required to plan when a directly 

running task completes or any new task gets generated. The 

main steps of the method are shown in subsequent sections, 

and the consecutive algorithm has been described.  

1. Design a journey of distinct ants to yield the better 

execution sequence of the task. 

2. Evaluate the sequences of the task for the given 

processor.  

3. Modify pheromone value. 

4. Calculate the probability of all tasks and chose the best 

task for execution. 
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A. Creation of Tour 

One is required to find the probability of each task using 

equation in the initial phase. (1) In addition to that, all 

schedulable tasks are considered as a node and using 

pheromone τ, and heuristic value η, the probability of all 

nodes are selected for execution, 

 

                    (1) 

 

Where,  

is the probability of i
th

 fork at time t; where i ∈  N1 and 

N1 is a set of the node (schedulable tasks) at time t. 

 

  is the value of pheromone of i
th

 node at time t. 

 is the value of heuristic of i
th

 node at time t, which 

can be regulated as, 

 

                           (2) 

 

Here, t is the current time, K is constant (scale 5 - 10) and  
is the absolute deadline of i

th
 fork.  

 α and β are the constants that decide the significance 

of τ and η. 

Ants form their journey based on value p for each fork, as per 

the following,  

 Ant-1:  1
st
 maximum p(t) →  2

nd
 maximum p(t) →  3

rd
 

maximum p(t) →   

 Ant-2:  2
nd

 maximum p(t) →  1
st
 maximum p(t) →  3

rd
 

maximum p(t) →   

 Ant-3: 3rd maximum p(t) →  1
st
 maximum p(t) →  2

nd
 

maximum p(t) →  

Consider on-time t; there are four tasks schedulable shown 

in Algorithm 1. Each task will be served as a fork, and from 

another fork, an ant will start its tour. Let’s assume the 

preference of all the forks is in descending order such as T1, 

T2, T3, T4; ants will pass over different forks as per the 

following paths. 

 Ant-1:  T1→  T2→  T3→  T4  

 Ant-2:  T2→  T1→  T3→  T4  

 Ant-3:  T3→  T1→  T2→  T4 

 Ant-4:  T4→  T1→  T2→  T3 

 

Fig. 1. Ants Journey. 

B. ACO Based Algorithm 

Once ants have finished their respective journeys, calculate 

the progress of all ant’s journey is calculated. We studied this 

foundation based on relative number of successful tasks and 

missed tasks. After that, consider the two leading trips of ants 

and modify the pheromone cost consequently. 

Algorithm 1: ACO Based Scheduling  

 

Input: A set of Processes, Pheromone (τ), Heuristic Value 

(ɳ), (α, β, ρ) are constants. 

 

Output: Executes the Most Important Process. 

 

for each New Process Arrives or Currently running process 

complete do 

if Is Ready Queue is Empty then, 

     Wait; 

/* this step identifies the most suitable process for 

execution */ 

Compute Most_important_Process() ; 

 

Analyze the Ant’s Journey using two tasks: 

Success Task = {Successfully Scheduled: 

Total Task Arrived}; 

Missed Task = {Unsuccessfully Scheduled: 

Total Task Arrived}; 

/* Update of Pheromone is needed to forget wicked 

journey of ants */ 

Compute Pheromone_update() to satisfy the 

Most_Important_Process() 

 

Determine the Probability of each process using 

Most_Important_Process and execute the process 

having the highest probability. 

end  

 

Most_Important_Process (Pi(t)) (Set of Process P) for the 

i
th

 node at time t. 

 

/* Probebility of each task will be calculated based on 

following equation 1. */ 

Calculate Pi(t) =    
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Pheromone_Update (τ)  

 

Calculate Evaporation (τi) = (1- ρ) τi to ignore the 

lousy path and support new paths. 

Calculate Best of two paths to get the Best Path 

 

 

C. Update Pheromone Value 

Pheromone update on every node will be done via two 

different operations: 

1. Evaporation Value of Pheromone: Pheromone 

evaporation is needed to for-get the lousy journey of ants 

and to support new paths. Value of τ is updated using, 

 

                (3) 

Here,  

 ρ is constant (suitable value is 0.2 to 0.4).  

 i∈  N1; N1 is set of all (schedulable and 

non-schedulable) task. 

2. Value of Pheromone Laying: Pheromone will be 

adjoined only for two ultimate journeys of ants. Select the 

most favorable journey and add pheromone to it, based on 

their order of travelling node. The quantity of pheromone 

(∆τ) added will be different and vary from node to node, 

i.e., the possible nearby node will get the highest quantity 

of pheromone, and the farthest node will get the smallest 

quantity. 

 

           (4) 

Where,  

 i∈  N2, N2 is set of nodes travel by the ants. 

            (5) 

Here,  

  (6) 

 S is the sequence number of any fork that is 

 hit by the ant during its leading journey. 

 C is a constant (near to 0.1). 

 

D. Selection of Execution Task 

 

After modifying the pheromone value, one needs to 

compute the possibility of every node bye Eq. 1, then chose 

the new task for further enactment that has the outrageous 

value of probability. 

E. Algorithm Key Points 

 All schedulable tasks are considered as a node, they store τ 

values, and it is pheromone. The pheromone τ is 

initialized with value 1 for each node. 

 α and β values are decided for the weightage of τ and η. In 

the experiment, both constants have given equivale 

weightage which is 1. 

 A number of ants which construct the tour is essential in 

design criteria. During the test, the system is having the 

same time, and the number of ants decided based on the 

number of executable tasks. 

III. MATHEMATICAL PROOF FOR THE 

PROJECTED ALGORITHM 

The probability of each node will be calculated based on 

Eq. 1. It will decide which task one should execute to get an 

optimal result in the proposed algorithm. Following 

mathematical propositions and theorems have been given 

with its proof. 

Proposition 1: After analyzing journey pheromone will be 

increased at the rate of  (Eq. 4), where , i∈ , 

 is a set of nodes travel by the ants. 

Proof - Possible amount of pheromone added to any node 

after analyzing the journey is , Where  (Eq. 5) , s 

is the sequence number of nodes visited by ant during the tour 

and  value will be identified based on Eq. 6. Clearly, at first 

node maximum, possible pheromone is  , for the second 

node it is  and so on. It means the nearest node will get the 

highest amount of pheromone and far most will get least.  

Proposition 2: Pheromone will be decreased at the rate of 

 (Eq. 3) , where ρ is constant and  is the 

set of schedule and non-schedule task at that time. 

Proof - Pheromone evaporation is required to forget the lousy 

journey of ant and to encourage new paths. Possible amount 

of pheromone decreases to any node after analyzing the 

journey is .  

Theorem 1: Let P be the probability that the algorithm finds 

an optimal solution within the first analyzing journey, then for 

an arbitrary small ,  . By 

definition . 

Proof - For best two journeys, , where i is the 

task which is part of both ant journey then pheromone lying 

will be done on i is  as per proposition-1 and according to 

Eq. 1, the probability  will increase. 

If  and  then pheromone value  will 

continuously decreasing and it will help us to forget a bad 

journey. Due to pheromone trail limits  and  one 

can guarantee that any feasible choice in Eq. 1, for any 

solution is made with a probability  [15]. At trivial 

lower bound for 

             (7) 

 

Proposition 3: Once an optimal solution has been found for 

any task such that  , it holds that .  

Proof - After the execution of the task, the task will not 

belong to the optimal solution and do not receive pheromone 

anymore.  

 

Theorem 2: The probabilistic decision taken by ant will be 

biased when incorporating heuristic information into an ACO 

based solution. 

Proof - Prior available information on the schedulable task 

can be used to derive heuristic information that biases the 

probabilistic decision taken by the ant (Eq.2). When 

assimilating such heuristic information into ACO solution, the 

favorable choice is  . Based on Eq. 1 

and Eq. 2  measures the heuristic desirability of choosing a 

solution as a task i. Infect, 

Theorem-1 are not going to 
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affected by the heuristic information, η is limited to some 

(instant specific) interval  with   and 

 . Then the heuristic information only affected of 

changing the lower bound of the probability of making a 

specific decision. 

IV. SIMULATION METHOD, SYSTEM AND TASK 

MODEL 

When the task is released, we pretend that the system 

already knows about the task deadline and imperative data to 

figure out the required time to complete the task. The task set 

is considered to be preemptive and pretending that the system 

doesn’t have any constraint of resource clash. Furthermore, it 

also considered that scheduling and preemption do not have 

any other overhead. In Soft RTOS, each task possesses a 

positive value. The simple ideology is to yield as much benefit 

as possible.  If a particular task succeeds, then the system 

contemplates its benefits; otherwise, the system attains less 

benefit from the task [10]. In a distinct case of firm real-time 

system, that suggest if any task missed its deadline, then no 

value will be mediated, but there is no collapse as well [11]. 

With this work, we propound an algorithm which affixes to 

the firm real-time system, and the value of the task has been 

treated very similar to that of its required computation 

time.[12]. 

This paper analyses proposed algorithm with the EDF 

algorithm and execute the simulations to gather the 

experimental outcomes; also, we considered periodic tasks in 

order to get effective results. For that, a system load can be 

described as the aggregate of the ratio of executable time and 

the time of each task. In order to achieve effective results, at 

every load value we have produced 7500 task sets and every 

load contains utmost 1 to 9 tasks. The outcomes from this 

experiment contain different values of load (ranges from 0.5 - 

5), and it examined on 35,000+ task. Moreover, the results of 

this phenomena are revealed in Table 3 and Figure 3 [16]. 

Higher the amount of work is scheduled, the better and 

competent the algorithm is. For this reason, we have measured 

the two of our main performance metrics: 

1. In RTOS, meeting the deadline is utmost significant and 

crucial, and therefore, we are more concerned towards result, 

whether the task is meeting the deadline or not. Based on that, 

the most reliable metric that we get is Success Ratio (SR), and 

is defined as [13], 

 

          (8) 

2. It is potentially important to know how effectively the 

scheduler exploits the processes, peculiarly during heavy load 

condition. Therefore, we also considered other performance 

metrics such as Effective CPU utilization (ECU) and is 

defined in [16], 

 

                 (9) 

 

Where,  

• V is the task value and,  

o Task Value = Estimated time of the task if the 

task accomplishes its work within its 

deadline.  

o Task Value = 0 if the task fails in order to meet 

its deadline.  

• R is a task set, which is scheduled profitably, i.e., 

executed within its deadline.  

• T is the scheduling total time. 

Table- I: Result Obtained with Load <= 1 

Load 

%ECU %SR 

EDF 

Algorithm 

ACO Based 

Algorithm 

EDF 

Algorithm 

ACO Based 

Algorithm 

0.50 49.96 49.97 100 100 

0.55 55.04 55.04 100 100 

0.60 59.88 59.88 100 100 

0.65 64.99 64.99 100 100 

0.70 69.92 69.92 100 100 

0.75 74.87 74.87 100 100 

0.80 79.87 79.87 100 100 

0.85 84.71 84.72 100 100 

0.90 89.61 89.61 100 100 

0.95 94.54 94.54 100 100 

1.00 99.36 99.36 100 100 

An online scheduler has a competitive factor  that exist if 

and only if the value of the schedule of any finite sequence of 

tasks formed by the algorithm is at least  times the value of 

the schedule of the tasks formed by an optimal clairvoyant 

algorithm [7]. Since maximum value, seized by a clairvoyant 

scheduling algorithm is a hard problem, therefore we have 

instead used a rather condensed upper bound on this 

maximum value, which can be obtained by summation of the 

value of all tasks [14]. Hence, for the clairvoyant scheduler, 

we have considered the value of ECU as 100%. 

 

 
 

 

V. RESULTS AND DISCUSSION 

From the empirical study, it is perceived that when the 

system is not heavily loaded, our projected algorithm gives an 

ideal result for a unified processor and the preemptive 

conditions. Table 1 displays the outcomes achieved by our 

algorithm and the EDF algorithm under loaded conditions. In 

addition to that, Fig. 2. specifies the results of an overloaded 

condition. Furthermore, presumed %SR and %ECU of EDF 

drop quickly; however, our 

algorithm works prominently 

Fig. 2. CPU Load Vs. %ECU and CPU Load Vs. 

%SR when Load > 1 
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and gives efficient progress. The values of %ECU and the 

maximum value of the clairvoyant scheduler, we notice that 

the competitive factor of our algorithm is greater than 0.595 

and 0.425 when loads are 1.25 and 1.50. Furthermore, in 

under loaded conditions, the competitive factor of our 

scheduling has been found to 1.00 and up to load ≤ 1. 

VI. CONCLUSION 

In this work, an algorithm specifically for the scheduling of 

a soft real-time system with a unified processor and the 

preemptive task have been introduced. In addition to that, for 

scheduling, ACO has been motivated and introduced. The 

projected method is implemented with a periodic task, and 

cumulative outcomes are gathered and collate it with EDF. 

From the mathematical proof, shown in this work and the 

results of the experiment, this paper concluded that the 

projected method accomplishes equally best for a single 

processor, preemptive conditions when the system is heavily 

load-ed. This paper has also monitor and analyze the 

performance of EDF that significantly diminished, during 

maximum loaded conditions; however, the profound 

algorithm works in a much better way. So, for real time 

scheduling it is possible to use swarm techniques for batter  

performance in underload as well as in overload scenario. In 

future more Swarm Intelligence methods like PSO, GA etc... 

can be explored to implement Soft Real Time Schedulers. 
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Abstract
Scheduling of tasks in Real-Time Systems is based on static or dynamic priority like earliest deadline first (EDF) and rate 
monotonic, respectively. The static scheduler does not give assurance of scheduling all tasks during the underload scenario, 
whereas dynamic scheduler performs poorly during an overload scenario. This paper has proposed a swarm intelligence-
based scheduling algorithm that can overcome both the situations. This paper has used particle swarm optimization (PSO) 
based swarm technique to design the new scheduling approach. It considers each task as a particle and applied modified 
PSO technique to identify the most critical task to execute. The efficiency of the newly proposed method has been compared 
with existing EDF and ACO based scheduling algorithms considering two significant parameters, the success ratio and the 
effective CPU utilization. All three algorithms have been tested on the simulator with a Soft Real-time periodic task set on 
500 timelines. It has been observed that during the underload scenario, the proposed algorithm performs equally to EDF and 
ACO based algorithms. During overload and highly overload situations, the proposed algorithm performs batter compared 
to EDF and ACO based algorithms.

Keywords  PSO · ACO · EDF · Real-Time System · Scheduling

1  Introduction

Real-Time Systems have become part of human life to 
complete their day to day needs. Real-Time System has 
lots of applications surrounding us like digital control sys-
tems, flight control, vehicle control, healthcare devices, 
IoT devices, and many more. In the twenty-first century, 
usage of Real-Time Systems has increased widely. Like a 
conventional operating system, we also use Real-Time Sys-
tems in our day to day life, but when Real-Time Systems 
work well, and they make us forget their existence. Real-
Time System focuses on completion of the task before its 
deadline, whereas the conventional operating system tries 
to give minimum response time for any given time. There is 

always a specific deadline associated with Real-Time Task, 
whereas typical task does not have any particular timeframe. 
Text Editor, Browser, music players are examples of such 
typical application, whereas Smart Watch, aircraft control, 
and missile control systems are the example of Real-Time 
applications [1].

Real-Time System is divided into mainly three categories 
like Hard Real-Time, Soft Real-Time, and Firm Real-Time 
System based on their timing constraints. Real-Time Sys-
tems will be considered as Hard Real-Time System if the 
failure to meet its deadline is deemed to be a fatal fault. 
In Contrast, the Soft Real-Time System with few misses of 
the deadline does not cause serious harm; only the system’s 
overall performance becomes poorer when such more jobs 
miss their deadline. In Firm Real-Time System if a task 
misses its deadline, then the result of the given task will be 
ignored. In Real-Time Systems, considering that each unit 
of work is scheduled and executed by the system, a job and 
a set of related jobs which provide some system function a 
task. Tasks again are divided into three different categories, 
like Periodic, Aperiodic, and Sporadic Tasks. The periodic 
task model, each computation that is executed repeatedly 
at regular time intervals to provide a functionality of the 
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system regularly [2]. Aperiodic and Sporadic task is a set 
of aperiodic or sporadic jobs, respectively. The interarrival 
times between consecutive jobs in such a task may vary 
widely, and, in particular, it can be arbitrarily small.

This paper is organized as follows. Section 2 represents 
related work carried out till now. The proposed algorithm 
has been described in Sect. 3, where it shows fundamental 
of PSO, proposed scheduling algorithm with its detail steps, 
and parameter selection and one case study for instance of 
the task set. Section 4 describes the simulation scenario, 
dataset, and performance parameter. Critical analysis of the 
proposed scheduling algorithm has been done with EDF and 
ACO based scheduling algorithm in Sect. 5. Finally, Sect. 6 
states the conclusion of this paper.

2 � Related work

Deciding the scheduling algorithm for Real-Time System 
is a crucial task. The decision is taken based on the type of 
Real-Time System; task type and task are pre-empted or not. 
Scheduling of tasks is the process of identifying which task 
should be executed at each instant of time. Priority driven 
scheduling algorithms are implemented based on specific 
priority parameters. At runtime, the scheduling algorithm 
assigns priority to each active task and allocates the proces-
sor based on the highest-priority task. Based on the way 
priority assign to the task, Priority driven schedulers are 
divided into two significant categories call Static Priority 
and Dynamic Priority Scheduler. A static priority scheduler 
also referred to as a fixed priority scheduler where each peri-
odic task is assigned a unique priority [3]. The Rate Mono-
tonic (RM) and Shortest Job First (SJF) are examples of the 
Static priority scheduler. RM assigned priority to the task 
based on its period parameter, and the task with the small-
est period assigned the highest priority. The SJF assigned 
priority to the task based on its execution time, and the task 
with the shortest execution time assigned the most top prior-
ity. The dynamic priority scheduler does not put restrictions 
upon how priorities are attached to the task. The priority of 
a task may change arbitrarily often between its release time 
and its completion time. The Earliest Deadline First (EDF) 
and Least Slack Time First (LST) are examples of dynamic 
priority scheduler. The EDF, in which the priority of task 
depends on its deadline, a task with the earlier deadline has 
the highest priority. The LST, in which the priority of task 
depends on its slack time, a task with the shortest slack time 
has the most top priority [4, 5].

Different Static (like RM, SJF) and Dynamic (like EDF, 
LST) scheduling algorithms have been evaluated and com-
pared by various researchers for Soft Real-Time System. The 
performance of Static and Dynamic scheduler varies based 
on the CPU Load. It has been observed that EDF and LST 

perform well in the underload scenario where CPU load is 
less than or equal to one. Even EDF is one of the optimal 
scheduling algorithms, and it makes sure that in the under-
load scenario, all task will meet their deadline. Static algo-
rithms like RM and SJF also perform well in the underload 
scenario. Still, it has been observed that in some instances 
where there is possible to schedule all task by EDF, but static 
algorithms fail to schedule those tasks and few tasks missed 
their deadline. In a slightly overload situation, when CPU 
load is higher than one at that time performance of Dynamic 
scheduler degrades very fast. In contrast, static schedulers 
are still able to schedule a few tasks and able to meet their 
deadline. Thus, Dynamic Priority Scheduler performs well 
in the underload scenario, and Static Priority Scheduler per-
forms decently in the overload scenario [6].

The Dynamic Priority schedulers are more responsive 
to the average cases, but their worst-case real-time perfor-
mance may be more unsatisfactory than the Static Priority 
scheduler. Still, there is no single priority scheduling algo-
rithm exist which perform well in underload and overload 
scenario. Researchers have developed few hybrid priorities 
driven scheduling algorithms which are using characteristics 
of both type of algorithm, like D_EDF and S_LST which 
is using features of dynamic scheduling algorithm during 
underload scenario and static scheduling algorithm dur-
ing overload scenario [7–9]. The problem with this kind of 
hybrid algorithm is scheduler needs to keep checking with 
the status of CPU load, and based on that, it will assign the 
priority to the task. Researchers have given an entirely new 
direction for scheduling tasks using Artificial Intelligence 
and Swarm techniques. Swarm intelligence is the study of 
computational systems inspired by collective intelligence. 
Collective Intelligence emerges through the cooperation 
of large numbers of homogeneous agents in the environ-
ment. Examples include schools of fish, flocks of birds, and 
colonies of ants. Such intelligence is decentralized, self-
organizing, and distributed throughout an environment. 
Using Swarm intelligence, it is possible to find optimal solu-
tions for problems like scheduling of the task [10, 11]. The 
researcher has proposed ACO based scheduling algorithm, 
and it has been shown that the swarm-based scheduling algo-
rithm performs equally well like Dynamic scheduler. It gives 
batter performance in an overload scenario as well [12, 13].

Particle Swarm Optimization has been widely used in 
scheduling for the Cloud Computing environment. Researcher 
A. S. Ajeena Beegom and M. S. Rajasree proposed the Inte-
ger-PSO algorithm for task scheduling in a cloud computing 
system in 2019 [14]. A two-level particle swarm optimization 
algorithm created for the flexible job-shop scheduling prob-
lem [15] and PSO based scheduling also applied in workflow 
applications in Cloud Computing Environments by researchers 
[16]. An Adaptive PSO-Based Real-Time Workflow Schedul-
ing Algorithm has been introduced by researcher for Cloud 
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Systems. Researchers have targeted reducing execution time 
and reducing execution cost which are two conflicting objec-
tives and has been address in paper [17]. Medhat Awadalla 
and Abdullah Elewi has proposed Enhanced PSO Approach 
for energy-aware static partitioning of periodic real time tasks 
on heterogeneous multiprocessor platforms [18]. PSO based 
approach also used with GA approach to solve Real-Time 
Order Acceptance and Scheduling Problems in a Flow Shop 
Environment [19]. Although, the PSO is integrated to schedul-
ing in all concerned fields including real time system, there is 
still there is sufficient scop for exploration. In this paper, we 
are addressing few of such gaps in this area. Particle Swarm 
Optimization (PSO) investigates probabilistic algorithms 
inspired by the flocking. Swarm intelligence algorithms strat-
egies are considered adaptive strategy and are typically applied 
to search and optimization domains. This paper is selecting 
PSO because it is the right approach when the problem size 
is between 20 and 40 [20, 21]. This paper has considered that 
scheduling task problem in a soft real-time system. Static and 
Dynamic schedulers have their advantages and disadvantages, 
and both are not able to perform well in overload and under-
load scenario. The researcher has developed an ACO based 
scheduling algorithm. This paper is proposing a PSO based 
scheduling algorithm that will overcome the disadvantages of 
the Static and Dynamic scheduling algorithm with retaining 
its advantages and trying to introduce scheduler which perfor-
mance is batter then ACO based scheduler as well.

3 � Proposed algorithm

3.1 � Particle swarm optimization

The particle swarm optimization algorithm is comprised of a 
collection of particles that move around the search space influ-
enced by their own best past location and the best past location 
of the whole swarm or a close neighbour. Each iteration, a 
particle’s velocity is updated using following Eq. 1 [21–24].

where vi,d(t + 1) and vi,d(t) represent the current and previ-
ous velocity in the dth dimension of particle i , respectively. 
c1 and c2 are acceleration coefficient for the personal best 
and global best positions respectively. pi,d(t + 1) and pi,d(t) 
are the current and previous position of particle i . pbest

i,d
 and 

pgbest,d are the best position found by particle i  so far and the 
best position found by the whole swarm so far, respectively. 
r1 and r2 are the randomly generated numbers in the range of 
[0, 1]. d ∈ D is the dimension d in the search space.

Variants on this update equation consider the best posi-
tions within a particle’s local neighbourhood at time t. A 
particle’s position is updated using the Eq. 2 [21].

Figure 1 shows the graphical representation of the par-
ticle swarm optimisation. After each iteration the particle 
moves in a new direction and most of the time it is opti-
mal, and that decision will be based on the personal best 
position and global best position.

Heuristics for this approach are [20–22]:

•	 The number of particles should be low, around 20–40,
•	 The speed a particle can move should be bounded,
•	 The learning factors should be between 0 and 4, typically 

2.0,
•	 Particles may leave the boundary of the problem space 

and maybe penalized, be reflected in the domain, or 
biased to return toward a position in the problem domain. 
Alternatively, a wrapping strategy may be used at the 
edge of the domain, creating a loop, or related geometri-
cal structures at the chosen dimensionality.

•	 An inertia or momentum coefficient can be introduced to 
limit the change in velocity.

(1)

vi,d(t + 1) =vi,d(t) +
(

c1 × r1 ×
(

pbest
i,d

− pi,d(t)

))

+
(

c2 × r2 ×
(

pgbest,d − pi,d(t)
))

(2)pi,d(t + 1) = pi,d(t) + vi,d(t + 1)
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3.2 � PSO based scheduling algorithm The Proposed Scheduling Algorithm Selecting the schedul-
ing algorithm for Soft Real-Time System is a crucial deci-
sion, as discussed in Sect. 2. This paper is introducing the 
scheduler, which is based on PSO techniques. The algorithm 
considering each given task as a particle, and all tasks which 
are eligible for scheduling are viewed as a set of particles. 
The ultimate goal of the scheduler is to choose a task at a 
given point of time in such a way that the task can meet its 
deadline [16]. In the Soft Real-Time system, it is intended 
to make sure that all task will meet their deadline in the 
underload condition, and the maximum task will meet their 
deadline in the overload scenario.

The scheduling algorithm will be executed when a new 
task arrives, or the currently performing task is completed. 
When there is more than one task is ready to run at that 
time scheduler needs to select the task effectively. This paper 
proposed the PSO based scheduler (Algorithm 1), which has 
the following significant steps.

Step 1: Initialization of Task as a Particle
Step 2: Compute the velocity and position of each task
Step 3: Analyse the position and velocity of each task
Step 4: Selection of Task for execution

Step 1 Initialization of Task as a Particle At given 
point of time all schedulable task is considered as a set of 
N = {T1, T2, T3,…Tn }. Each task (particle) Ti ∈ N  , needs 
to initialize with its initial position and velocity. Each 
Periodic task Ti in task set N  has essential characteristics 
associated with it, like execution time of task ( Ei ), dead-
line of the task ( Di ) and rate (period) of the task ( Ri ). 

Fig. 1   Graphical representation of PSO
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These characteristics are already known in Soft Real-
Time System before the scheduler is going to select the 
task for scheduling. Each task (particle)Ti ∈ N  , needs to 
initialize with its initial position ( Pi ) and initial velocity 
( Vi ). P is the set of the initial position of each task and 
P = {P1,P2,P3,…Pn }. V is set of the initial velocity of 
each task and V = {V1,V2,V3,…Vn }. Initial value of vi and 
pi is going to calculate for each task Ti ∈ N  based on the 
following Eqs. 3 and 4.

It is also necessary to initialize individual task best position 
pbest
i

 and global best position pgbest . Initially for each task 
pbest
i

= pi and initial value of pgbest for the whole task set is 
chosen from a minimum of the set P. Figure 2 represents the 
task set with its parameters like Execution Time, Deadline, 
and Rate. For each task, the algorithm initializes its position, 
velocity, and best position using Eqs. 3 and 4, as described 
above.

Step 2 Compute PSO values for each task Algorithm 
calculates the velocity ( v ) for each task which is ready to 
execute and part of task set N. To calculate the velocity ( v ) 
value for each task this algorithm has considered Eq. 1 as a 
base equation and proposed Eq. 5 and it is an optimal equa-
tion for scheduling problem of Soft Real-Time System.

where vi,d(t + 1) is the new velocity of task Ti in the dth 
dimension, vi,d(t) is the current velocity of task Ti in the d th  
dimension, c1 = (Ti(Execution Time))

−1 , where Ti(Execution Time) is 
the execution time of the task Ti , which is required on the 
processor to complete the task, c2 = (Ti(Deadline))

−1 , where 
Ti(Deadline) is the deadline of the task Ti , r1 and r2 are generated 
uniformly between 0 and 1, pi,d(t) is the Ti task’s position at 
time t in the dth dimension, pbest

i,d
 is the Ti task’s best-known 

position in the dthth  dimension, pgbest,d is the best position 
known to the entire task set in the dth dimension, d ∈ D is 
the dimension d in the search space.

The algorithm also needs to calculate the new position 
( p ) for each task and to calculate it; it is using Eq. 2, men-
tion in Sect. 3.1.

Step 3 Analyse the position and velocity of each task 
The goal of the algorithm is to have all the tasks locate the 
optima in a multi-dimensional hypervolume. This can be 
achieved by assigning initial velocity and position to each 
task as per step 1. The algorithm is executed and, in each 
iteration, it is calculating the new position of each task based 
on Eq. 2 and updating its velocity based on Eq. 5. The evolu-
tion of velocity and position is carried out for the specified 

(3)vi = Ti(Deadline)

(4)pi = Ti(Execution Time) + Ti(Period) − Ti(Elapsed Time)

(5)
vi,d(t + 1) = vi,d(t) +

(

c1r1

(

pbest
i,d

− pi,d(t)

))

+
(

c2r2
(

pgbest,d − pi,d(t)
))

number of iterations, and the number of iterations depends 
on the problem size. Over the period, through a combination 
of exploration and exploitation of known right positions in 
the search space, the task set cluster or converge together 
around an optimal task. If any task leaves the boundary of 
the problem space, then it will be penalized and reflected in 
the domain by changing its velocity [25].

Step 4 Selection of task for execution The algorithm cal-
culates new velocity and the new position of the task in each 
iteration. The algorithm also changes the value of pgbest in 
every iteration. pgbest value will be set as the smallest pbest

i
 

value. The task which has pgbest = pbest
i

 will be considered 
and will get the chance to execute on the processor.

3.3 � Case study for instance of task set

The proposed algorithm in Sect. 3.2 has been tested with 
a set of the periodic task set. In this section, the paper has 
demonstrated how it operates with one case study shown in 
Table 1. Table 1 shows one task set with its arrival time, its 
deadline, and its required execution time.

As described in Sect. 3.2, each task will be initialized 
with its initial position ( pi ) using Eqs. 3 and 4, and its ini-
tial value has been shown in Table 2. To get an optimal 
position for each task pi will be calculated for N number of 
times. After that task set will be evaluated and identify the 
most important task which we need to execute. In the above 
task set (shown in Table 1), T5 is the most crucial task, and 
the scheduler will select it for execution, so it will meet the 
deadline, as shown in Table 2.

4 � Simulation environment for proposed 
algorithm

4.1 � Simulation scenario and dataset

The entire simulator for the proposed algorithm has been 
developed in C programming language, and the compiler 
is GNU GCC. The simulator has been executed on hard-
ware configuration—Core i5 processor with 8 GB of RAM. 
Simulation of the proposed algorithm has been carried out 
on a 64-bit Windows 10 Enterprise operating system. The 
Real-Time System has three types of tasks like Periodic task, 
Aperiodic task, and Sporadic task. The proposed algorithm 
has been evaluated with a periodic task set. This paper has 
considered an extensive data set of periodic tasks. İt has 
found the 6800 tasks set, which vary in terms of CPU load 
and the number of tasks within the task set. CPU load ranges 
from 0.5 to 5.0, and the number of task set varies from 1 to 9. 
CPU load of task set is referred to total processor utilization 
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factor ( Up ) and represent the fraction of processor time used 
by the periodic task set and calculated based on Eq. 6.

where Ci is execution time required by each task in task set 
and Ti is the occurrence period of each task in the task set. 
It has considered the underload scenario, overload scenario, 
and highly overload scenario. This 6800-task set contains 
total 28,600 processes, and it has been tested on the 500-
time unit to validate the correctness of the algorithm. To 
confirm the above task set researcher has published the 
given task set on the website (http://​www.​proce​ssdat​aset.​
in/). Table 3 represents task set detail, and several different 
tasks have been considered for simulation for the proposed 
algorithm [26].

4.2 � Performance parameter

The performance of the proposed algorithm has been tested 
with two primary parameters call Success Ratio (SR) and 
Effective CPU Utilization (ECU). These parameters have 
been described as follows.

SR (Success Ratio) Success Ratio with real-time systems 
defined as the ratio of a set of the process which meets their 
deadline and a total number of process. Success Ration 
determined with the following Eq. 7 [27].

ECU (Effective CPU utilization) Effective CPU Utiliza-
tion defined as how much CPU time has been utilizing for 
the processes which can meet their deadline. ECU deter-
mined with the following Eq. 8 [27].

(6)Up =

n
∑

i=1

Ci

Ti

(7)SR =
Number of Task successfully scheduled

Total Number of Task arrived
.

where V represents process value and, Process Value = time 
required to complete the process if the process meets its 
deadline. Process Value = 0 if the process does not meet the 
deadline. R is a set of processes, which are scheduled suc-
cessfully, i.e., completed within their deadline. T is the total 
time of scheduling.

5 � Critical analysis of proposed algorithm

5.1 � Results and comparison with different existing 
algorithm

The proposed algorithm has been compared with Earliest 
Deadline First (EDF) and Ant Colony Optimization (ACO) 
based algorithm [26]. The correctness of all three algo-
rithms has been tested under similar hardware and dataset, 
as described in Sect. 4.1. These algorithms have been imple-
mented in the simulator using the C language. These algo-
rithms have been compared with parameter SR and ECU, as 
described in Sect. 4.2.

Underload scenario In this scenario paper has considered 
all dataset where the utilization factor of the task set is less 
than or equal to one ( Up ≤ 1 ). Table 4 shows the results and 
comparison of these algorithms during the underload sce-
nario. Table 4 compares these three algorithms for SR and 
ECU parameters. Figures 3 and 4 represents the graphical 
representation of Table 4. Observation of these algorithm 
says that EDF and ACO can meet all the deadlines for the 
given task set, whereas the PSO based scheduling algorithm 
missed a few deadlines when the load is near to one.

Overload scenario In this scenario paper has consid-
ered all dataset where the utilization factor of the task set is 

(8)ECU =
∑

i∈R

Vi

T

Fig. 2   Task Set for PSO Algorithm with its parameters and initial values

http://www.processdataset.in/
http://www.processdataset.in/
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greater than 1 and less than 1.50 ( 1.00 ≤ Up ≤ 1.5 ). Table 5 
shows the results and comparison of these algorithms during 
an overload scenario. Table 5 compares these three algo-
rithms for SR and ECU parameters. Figures 5 and 6 repre-
sents the graphical representation of Table 5. Observation 
of these algorithms says that EDF performance degrades 
rapidly in slightly overload situations. Whereas ACO and 
PSO based scheduling algorithms are still able to meet most 
of the deadlines of the given task set. Even the PSO based 
scheduling algorithm performs more batter than the ACO 
based scheduling algorithm.

Highly Overload Scenario In this scenario, the paper 
has considered all dataset where the utilization fac-
tor of the task set is higher than 1.50 and less than 5.00 
( 1.50 ≤ Up ≤ 5.00 ). Table 6 shows results and compari-
son of these algorithms during highly overload scenarios. 
Table 6 compares these three algorithms for SR and ECU 
parameters. Figures 7 and 8 represents the graphical repre-
sentation of Table 6. Observation of these algorithms says 
that EDF performance is abysmal during highly overload 
scenarios, and even ACO performance is also degraded. PSO 
based scheduling algorithm is still able to meet many of the 
deadlines for the given task set. Overall PSO based schedul-
ing algorithm performs far batter compare to EDF and ACO 
based scheduling algorithm.

5.2 � Complexity comparison with different existing 
algorithm

This section compares the time complexity of EDF, ACO, 
and PSO based scheduling algorithm. Critical analysis of 
these algorithms has been done in Sect. 5.1 by implement-
ing these algorithms on the simulator. The experiment set up 
has been prepared for the periodic task set so, the researcher 
is giving time complexity comparison for a periodic task 
only. At a given point of time, all schedulable task is con-
sidered as a set of N = {T1, T2, T3,…Tn }. EDF is a dynamic 
scheduling algorithm and identifies the most crucial task to 
execute based on the absolute deadline. When the scheduler 
is executed to select the most critical task, EDF will have 
O(N) time complexity [28, 29]. ACO based scheduling algo-
rithm use concept of traversing the different path to identify 
the optimal route and then select the most crucial task for 
execution. Due to its traversing techniques, when scheduler 
will be executed to select the most crucial task ACO based 
scheduler will have O(N2) time complexity to select the 
most crucial task. The algorithm which proposed with this 
paper also calculate Velocity and Position of each task for N 
iteration to identify optimal positions in given task set and 
because of the time complexity of PSO based scheduling 
algorithm is also O(N2) to select the most crucial task. It is 
true that PSO based scheduling algorithm time complexity 
is higher than EDF but as discuss in Sect. 5.1 it gives an 
excellent performance in overload scenario and even in the 
modern evolution of electronics devices Real-Time system 
able to perform faster and able to schedule a task using any 
algorithm by ignoring its overhead.

6 � Conclusion

The proposed PSO based scheduling algorithm has been 
compared with EDF and ACO based scheduling algorithm 
under the Soft Real-Time periodic task set. The performance 
parameters SR and ECU has been calculated for each algo-
rithm for large dataset and comparison has been done. It 
has been observed that during the underload scenario 
( Up ≤ 1 ) proposed scheduling algorithm performs similar 
to the EDF and ACO based algorithm. In slightly overload 
situation when 1.00 ≤ Up ≤ 1.5 , EDF performance gets 
degraded sharply. The proposed algorithm and ACO based 
scheduling algorithm perform batter compare to EDF, and 
even the proposed approach delivers batter than the ACO 
based scheduling algorithm. During highly overload sce-
nario ( 1.50 ≤ Up ≤ 5.00 ) EDF and ACO based algorithms 

Table 1   An instance of task set for case study

Task Arrival time Absolute dead-
line

Required 
execution 
time

T1 0 12 1
T2 0 12 2
T3 0 3 1
T4 0 12 2
T5 0 2 1

Table 2   PSO algorithm calculation for instance of task set

Task Initial val-
ues of pi

After N iteration 
values of pi

Selection for execution of 
task by PSO algorithm at 
t = 0 is

T1 13.00 28.25 T5
T2 14.00 32.70
T3 04.00 07.24
T4 14.00 32.70
T5 03.00 05.25
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perform poorly, whereas the PSO based scheduling algo-
rithm is still able to meet a specific deadline. So, instead 
of static or dynamic priority, the proposed approach works 
well during underload, overload, and highly overload sce-
narios. The proposed method is tested with uniprocessor and 
periodic task set for Soft Real-Time System. In future work, 

this algorithm can be examined with Hard and Firm Real-
Time System as well. By making a few changes, the modi-
fied PSO based scheduling algorithm can be implemented 
for the multi-processor system as well.

Table 3   Dataset detail for 
periodic Task Set

Load Number of Task in each Task Set Task Set load wise

1 2 3 4 5 6 7 8 9

0.50 50 50 50 50 00 00 00 00 00 2200
0.55 50 50 50 50 00 00 00 00 00
0.60 50 50 50 50 00 00 00 00 00
0.65 00 50 50 50 50 00 00 00 00
0.70 00 50 50 50 50 00 00 00 00
0.75 00 50 50 50 50 00 00 00 00
0.80 00 50 50 50 50 00 00 00 00
0.85 00 50 50 50 50 00 00 00 00
0.90 00 50 50 50 50 00 00 00 00
0.95 00 50 50 50 50 00 00 00 00
1.00 00 50 50 50 50 00 00 00 00
1.05 00 50 50 50 50 00 00 00 00 2000
1.10 00 50 50 50 50 00 00 00 00
1.15 00 50 50 50 50 00 00 00 00
1.20 00 50 50 50 50 00 00 00 00
1.25 00 50 50 50 50 00 00 00 00
1.30 00 50 50 50 50 00 00 00 00
1.35 00 50 50 50 50 00 00 00 00
1.40 00 50 50 50 50 00 00 00 00
1.45 00 50 50 50 50 00 00 00 00
1.50 00 50 50 50 50 00 00 00 00
1.60 00 00 50 50 50 50 00 00 00 2600
1.70 00 00 50 50 50 50 00 00 00
1.80 00 00 50 50 50 50 00 00 00
1.90 00 00 50 50 50 50 00 00 00
2.00 00 00 50 50 50 50 00 00 00
2.25 00 00 00 50 50 50 50 00 00
2.50 00 00 00 50 50 50 50 00 00
2.75 00 00 00 50 50 50 50 00 00
3.00 00 00 00 50 50 50 50 00 00
3.50 00 00 00 00 50 50 50 50 00
4.00 00 00 00 00 50 50 50 50 00
4.50 00 00 00 00 00 50 50 50 50
5.00 00 00 00 00 00 50 50 50 50
Total task Set 150 1050 1300 1500 1450 650 400 200 100 6800
Total task 150 2100 3900 6000 7250 3900 2800 1600 900 28,600
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Table 4   Results comparison 
during underload scenario

Load ECU% SR%

EDF ACO PSO EDF ACO PSO

0.50 49.49 49.98 49.49 100.00 100.00 100.00
0.55 54.66 55.04 54.40 100.00 100.00 100.00
0.60 59.39 59.88 59.39 100.00 100.00 100.00
0.65 64.35 65.00 64.35 100.00 100.00 100.00
0.70 69.35 69.93 69.35 100.00 100.00 100.00
0.75 74.31 74.88 74.31 100.00 100.00 100.00
0.80 79.22 79.83 79.22 100.00 100.00 100.00
0.85 84.16 84.72 84.16 100.00 100.00 100.00
0.90 89.16 89.62 89.15 100.00 100.00 99.99
0.95 94.17 94.54 94.08 100.00 100.00 99.94
1.00 99.10 99.37 97.99 100.00 100.00 99.26

Fig. 3   ECU% comparison of EDF versus ACO versus PSO Algo-
rithm during Underload Scenario

Fig. 4   SR% comparison of EDF versus ACO versus PSO Algorithm 
during Underload Scenario

Fig. 5   ECU% comparison of EDF versus ACO versus PSO Algo-
rithm during Overload Scenario

Fig. 6   SR% comparison of EDF versus ACO versus PSO Algorithm 
during Overload Scenario
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Table 5   Results comparison 
during overload scenario

Load ECU% SR%

EDF ACO PSO EDF ACO PSO

1.05 17.45 63.69 65.91 18.27 67.01 78.24
1.10 09.21 54.22 70.60 09.31 55.01 80.53
1.15 06.29 51.86 67.90 06.19 50.87 75.91
1.20 04.62 46.61 80.39 04.22 45.33 80.03
1.25 04.06 45.15 77.35 03.67 36.23 78.97
1.30 03.63 38.78 74.73 03.19 35.90 76.02
1.35 03.12 39.03 74.06 02.65 37.14 72.65
1.40 02.66 38.05 81.39 02.24 33.91 76.49
1.45 02.50 34.11 78.15 02.00 30.65 70.66
1.50 02.21 33.08 86.15 01.71 27.91 73.35

Table 6   Results comparison 
during highly overload scenario

Load ECU% SR%

EDF ACO PSO EDF ACO PSO

1.60 2.17 45.98 85.02 1.61 37.25 71.25
1.70 2.03 40.45 86.52 1.42 30.24 68.70
1.80 1.93 35.52 86.34 1.30 26.39 68.27
1.90 1.90 33.56 85.17 1.29 25.35 65.52
2.00 1.84 29.56 86.90 1.20 21.45 65.23
2.25 1.76 32.51 85.89 1.04 21.24 59.81
2.50 1.55 25.54 87.86 0.89 15.39 56.23
2.75 1.46 18.31 88.82 0.78 10.16 53.75
3.00 1.32 14.66 94.25 0.63 07.11 49.21
3.50 1.27 15.80 94.46 0.57 07.69 45.52
4.00 1.11 09.67 96.20 0.43 03.79 40.47
4.50 1.08 09.86 97.69 0.38 03.37 36.99
5.00 0.97 08.74 97.88 0.31 02.41 32.15

Fig. 7   ECU% comparison of EDF versus ACO versus PSO Algo-
rithm during Highly Overload Scenario

Fig. 8   SR% comparison of EDF versus ACO versus PSO Algorithm 
during Highly Overload Scenario



Evolutionary Intelligence	

1 3

References

	 1.	 Ahmad S, Malik S, Kim DH (2018) Comparative analysis of 
simulation tools with visualization based on real-time task 
scheduling algorithms for IoT embedded applications. Int J Grid 
Distrib Comput. https://​doi.​org/​10.​14257/​ijgdc.​2018.​11.2.​01

	 2.	 Chatterjee K, Pavlogiannis A, Kößler A, Schmid U (2018) Auto-
mated competitive analysis of real-time scheduling with graph 
games. Real-Time Syst 54(1):166–207. https://​doi.​org/​10.​1007/​
s11241-​017-​9293-4

	 3.	 Wang X, Li Z, Wonham WM (2017) Optimal priority-free 
conditionally-preemptive real-time scheduling of periodic 
tasks based on des supervisory control. IEEE Trans Syst Man 
Cybern Syst 47(7):1082–1098. https://​doi.​org/​10.​1109/​TSMC.​
2016.​25316​81

	 4.	 Teraiya J, Shah A (2018) Comparative study of LST and SJF 
scheduling algorithm in soft real-time system with its implementa-
tion and analysis. In: 2018 international conference on advances 
in computing, communications and informatics, ICACCI 2018, 
pp 706–711. https://​doi.​org/​10.​1109/​ICACCI.​2018.​85544​83

	 5.	 Kohutka L, Stopjakova V (2016) Improved task scheduler for 
dual-core real-time systems. In: Proceedings—19th Euromicro 
conference on digital system design, DSD 2016. Institute of Elec-
trical and Electronics Engineers Inc., pp 471–478. https://​doi.​org/​
10.​1109/​DSD.​2016.​44

	 6.	 Teraiya J, Shah A (2020) Analysis of dynamic and static schedul-
ing algorithms in soft real-time system with its implementation. 
Adv Intell Syst Comput 1053:757–768. https://​doi.​org/​10.​1007/​
978-​981-​15-​0751-9_​69

	 7.	 Thakor D, Shah A (2011) D_EDF: an efficient scheduling algo-
rithm for real-time multiprocessor system. In: Information and 
communication technologies (WICT), 2011 World Congress on, 
pp 1044–1049. https://​doi.​org/​10.​1109/​WICT.​2011.​61413​92

	 8.	 Teraiya J, Shah A (2019) Hybrid Scheduler (S_LST) for soft real-
time system based on static and dynamic algorithm. Int J Eng Adv 
Technol 9(2):2885–2889. https://​doi.​org/​10.​35940/​ijeat.​b3837.​
129219

	 9.	 Alsheikhy A, Ammar R, Elfouly R, Alharthi M, Alshegaifi A 
(2016) An efficient dynamic scheduling algorithm for periodic 
tasks in real-time systems using dynamic average estimation. In: 
Proceedings—IEEE symposium on computers and communica-
tions (Vol. 2016-August). https://​doi.​org/​10.​1109/​ISCC.​2016.​
75438​30

	10.	 Yu SC (2014) Elucidating multiprocessors flow shop scheduling 
with dependent setup times using a twin particle swarm optimiza-
tion. Appl Soft Comput J 21:578–589. https://​doi.​org/​10.​1016/j.​
asoc.​2014.​04.​016

	11.	 Kazemi H, Zahedi ZM, Shokouhifar M (2016) Swarm intelligence 
scheduling of soft real-time tasks in heterogeneous multiprocessor 
systems. Electr Comput Eng Int J. https://​doi.​org/​10.​14810/​ecij.​
2016.​5101

	12.	 Shah A (2014) Adaptive scheduling for real-time distributed sys-
tems. In: Biologically-inspired techniques for knowledge discov-
ery and data mining, pp 236–248. https://​doi.​org/​10.​4018/​978-1-​
4666-​6078-6.​ch011

	13.	 Konar D, Bhattacharyya S, Sharma K, Sharma S, Pradhan SR 
(2017) An improved Hybrid Quantum-Inspired Genetic Algorithm 
(HQIGA) for scheduling of real-time task in multiprocessor sys-
tem. Appl Soft Comput J. https://​doi.​org/​10.​1016/j.​asoc.​2016.​12.​
051

	14.	 Beegom ASA, Rajasree MS (2019) Integer-PSO: a discrete 
PSO algorithm for task scheduling in cloud computing sys-
tems. Evol Intel 12(2):227–239. https://​doi.​org/​10.​1007/​
s12065-​019-​00216-7

	15.	 Zarrouk R, Bennour IE, Jemai A (2019) A two-level particle 
swarm optimization algorithm for the flexible job shop sched-
uling problem. Swarm Intell 13(2):145–168. https://​doi.​org/​10.​
1007/​s11721-​019-​00167-w

	16.	 Pandey S, Wu L, Guru SM, Buyya R (2010) A particle swarm 
optimization-based heuristic for scheduling workflow applications 
in cloud computing environments. In: Proceedings—international 
conference on advanced information networking and applications, 
AINA, pp 400–407. https://​doi.​org/​10.​1109/​AINA.​2010.​31

	17.	 Guo P, Xue Z (2018) An adaptive PSO-based real-time work-
flow scheduling algorithm in cloud systems. In: International 
conference on communication technology proceedings, ICCT, 
2017-October, pp 1932–1936. https://​doi.​org/​10.​1109/​ICCT.​2017.​
83599​66

	18.	 Awadalla M, Elewi A (2016) Enhanced PSO approach for real 
time systems scheduling. Int J Comput Theory Eng 8(4):285–289. 
https://​doi.​org/​10.​7763/​ijcte.​2016.​v8.​1059

	19.	 Rahman HF, Janardhanan MN, Nielsen IE (2019) Real-time order 
acceptance and scheduling problems in a flow shop environment 
using hybrid Ga-PSO algorithm. IEEE Access 7:112742–112755. 
https://​doi.​org/​10.​1109/​ACCESS.​2019.​29353​75

	20.	 Eberhart R, Kennedy J (1995) New optimizer using particle 
swarm theory. In: Proceedings of the international symposium 
on micro machine and human science. https://​doi.​org/​10.​1109/​
mhs.​1995.​494215

	21.	 Brownlee J (2011) Clever algorithms. Search. https://​doi.​org/​10.​
1017/​CBO97​81107​415324.​004

	22.	 Elbes M, Alzubi S, Kanan T, Al-Fuqaha A, Hawashin B (2019) A 
survey on particle swarm optimization with emphasis on engineer-
ing and network applications. Evol Intell 12(2):113–129. https://​
doi.​org/​10.​1007/​s12065-​019-​00210-z

	23.	 Dixit A, Mani A, Bansal R (2021) An adaptive mutation strategy 
for differential evolution algorithm based on particle swarm opti-
mization. Evol Intell. https://​doi.​org/​10.​1007/​s12065-​021-​00568-z

	24.	 Li YL, Shao W, You L, Wang BZ (2013) An improved PSO algo-
rithm and its application to UWB antenna design. IEEE Anten-
nas Wirel Propag Lett 12(3):1236–1239. https://​doi.​org/​10.​1109/​
LAWP.​2013.​22833​75

	25.	 Erskine A, Joyce T, Herrmann JM (2017) Stochastic stability 
of particle swarm optimisation. Swarm Intell 11(3–4):295–315. 
https://​doi.​org/​10.​1007/​s11721-​017-​0144-7

	26.	 Teraiya J, Shah A, Kotecha K (2019) ACO based scheduling 
method for soft RTOS with simulation and mathematical proofs. 
Int J Innov Technol Explor Eng 8(12):4736–4740. https://​doi.​org/​
10.​35940/​ijitee.​L3606.​10812​19

	27.	 Shah A, Kotecha K (2010) Scheduling algorithm for real-time 
operating systems using ACO. In: Proceedings—2010 interna-
tional conference on computational intelligence and communica-
tion networks, CICN 2010. https://​doi.​org/​10.​1109/​CICN.​2010.​
122

	28.	 Lindh F, Otnes T, Wennerström J (2010) Scheduling algorithms 
for real-time systems. Department of Computer Engineering, 
Malardalens University, Sweden. Retrieved from http://​schol​
ar.​google.​com/​schol​ar?​hl=​en&​btnG=​Searc​h&q=​intit​le:​Sched​
uling+​algor​ithms+​for+​real-​time+​syste​ms#0

	29.	 Yang K, Anderson JH (2015) On the soft real-time optimality of 
global EDF on multiprocessors: from identical to uniform het-
erogeneous. In: Proceedings—IEEE 21st international conference 
on embedded and real-time computing systems and applications, 
RTCSA 2015, pp 1–10. https://​doi.​org/​10.​1109/​RTCSA.​2015.​14

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.14257/ijgdc.2018.11.2.01
https://doi.org/10.1007/s11241-017-9293-4
https://doi.org/10.1007/s11241-017-9293-4
https://doi.org/10.1109/TSMC.2016.2531681
https://doi.org/10.1109/TSMC.2016.2531681
https://doi.org/10.1109/ICACCI.2018.8554483
https://doi.org/10.1109/DSD.2016.44
https://doi.org/10.1109/DSD.2016.44
https://doi.org/10.1007/978-981-15-0751-9_69
https://doi.org/10.1007/978-981-15-0751-9_69
https://doi.org/10.1109/WICT.2011.6141392
https://doi.org/10.35940/ijeat.b3837.129219
https://doi.org/10.35940/ijeat.b3837.129219
https://doi.org/10.1109/ISCC.2016.7543830
https://doi.org/10.1109/ISCC.2016.7543830
https://doi.org/10.1016/j.asoc.2014.04.016
https://doi.org/10.1016/j.asoc.2014.04.016
https://doi.org/10.14810/ecij.2016.5101
https://doi.org/10.14810/ecij.2016.5101
https://doi.org/10.4018/978-1-4666-6078-6.ch011
https://doi.org/10.4018/978-1-4666-6078-6.ch011
https://doi.org/10.1016/j.asoc.2016.12.051
https://doi.org/10.1016/j.asoc.2016.12.051
https://doi.org/10.1007/s12065-019-00216-7
https://doi.org/10.1007/s12065-019-00216-7
https://doi.org/10.1007/s11721-019-00167-w
https://doi.org/10.1007/s11721-019-00167-w
https://doi.org/10.1109/AINA.2010.31
https://doi.org/10.1109/ICCT.2017.8359966
https://doi.org/10.1109/ICCT.2017.8359966
https://doi.org/10.7763/ijcte.2016.v8.1059
https://doi.org/10.1109/ACCESS.2019.2935375
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1109/mhs.1995.494215
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1007/s12065-019-00210-z
https://doi.org/10.1007/s12065-019-00210-z
https://doi.org/10.1007/s12065-021-00568-z
https://doi.org/10.1109/LAWP.2013.2283375
https://doi.org/10.1109/LAWP.2013.2283375
https://doi.org/10.1007/s11721-017-0144-7
https://doi.org/10.35940/ijitee.L3606.1081219
https://doi.org/10.35940/ijitee.L3606.1081219
https://doi.org/10.1109/CICN.2010.122
https://doi.org/10.1109/CICN.2010.122
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scheduling+algorithms+for+real-time+systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scheduling+algorithms+for+real-time+systems#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scheduling+algorithms+for+real-time+systems#0
https://doi.org/10.1109/RTCSA.2015.14

	 Analysis of Dynamic and Static Scheduling Algorithms in Soft Real-Time System with Its Implementation
	1 Introduction
	2 Dynamic Scheduling Algorithms
	2.1 Earliest Deadline First (EDF)
	2.2 Least Slack Time First (LST)

	3 Static Scheduling Algorithms
	3.1 The Rate Monotonic (RM)
	3.2 The Shortest Job First (SJF)

	4 Background Work
	5 The Process Set and System Consideration
	6 Practical Environment and Measuring Parameter
	7 Result and Analysis
	8 Conclusion
	References

	Optimized scheduling algorithm for soft Real-Time System using particle swarm optimization technique
	Abstract
	1 Introduction
	2 Related work
	3 Proposed algorithm
	3.1 Particle swarm optimization
	3.2 PSO based scheduling algorithm
	3.3 Case study for instance of task set

	4 Simulation environment for proposed algorithm
	4.1 Simulation scenario and dataset
	4.2 Performance parameter

	5 Critical analysis of proposed algorithm
	5.1 Results and comparison with different existing algorithm
	5.2 Complexity comparison with different existing algorithm

	6 Conclusion
	References


