
Scheduling Optimization for Soft Real-Time 

Single Processor Systems using Swarm 

Intelligence Techniques 

 

 

A SYNOPSIS 

Submitted in partial fulfillment of the 

requirements for the award of the degree 

of 

DOCTOR OF PHILOSOPHY 

in 

COMPUTER SCIENCE & ENGINEERING 

 

By 

JAY BHIKHALAL TERAIYA 

 

Under Guidance of 

DR. APURVA SHAH 

 

 

 

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING 

FACULTY OF TECHNOLOGY & ENGINEERING 

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA 

VADODARA-390002 (INDIA) 

February 2021 



1 
 

ABSTRACT 

 

The Real-Time System is the system in which the system's accuracy is not only defined by the 

logical accuracy but also with the time it takes to produce the result. Real-Time systems have 

decisive, unchanging time restrictions, i.e., the task must be ended within the specified duration; 

otherwise, the system fails. Scheduling a task in Real-Time System is always a challenging 

problem. Researchers have targeted the Scheduling of Soft Real-Time Single Processor System 

in this research. The scheduler can be divided into static and dynamic, which depend on the 

priority they follow. The static algorithm uses a unique priority to each task during the 

scheduling activity, whereas the dynamic algorithm priority changes during the scheduling 

process. Researchers have done a critical analysis of many Static and Dynamic scheduler and 

represented in this research. Based on critical analysis, researchers have also proposed a hybrid 

scheduler call S_LST. This scheduler overcomes the drawback of the Static and Dynamic 

scheduler. In the recent past, different researchers have proposed a Swarm Intelligence based 

scheduling algorithm. Researchers have studied the ACO based scheduling algorithm and given 

mathematical proof for ACO based scheduling algorithm in this research. Researchers have 

explored more Swarm Technics and identified that Particle Swarm Optimization could 

effectively solve Scheduling in Soft Real-Time System. Researchers have designed and 

developed the PSO based scheduling algorithm for Soft Real-Time Single Processor System. The 

proposed algorithm has been compared with the existing EDF and ACO based scheduler with 

respect to the Effective CPU (ECU) and Success Ratio (SR) parameter. It has been found that the 

proposed PSO based scheduler performs more effective than EDF and ACO based scheduler. To 

validate the correctness of this algorithm, researchers have considered a large dataset of the 

periodic task.  Research has considered 6800 tasks set, which vary in terms of CPU load and the 

number of tasks within the task set. CPU load ranges from 0.5 to 5.0, and the number of task set 

varies from 1 to 9. 

 

  



2 
 

TABLE OF CONTENTS 

 

 
ABSTRACT .................................................................................................................................................. 1 

TABLE OF CONTENTS .............................................................................................................................. 2 

1 INTRODUCTION ................................................................................................................................ 4 

1.1 The Real-Time System.................................................................................................................. 4 

1.2 Type of Real-Time System ........................................................................................................... 5 

1.3 Type of Task in Real-Time System .............................................................................................. 5 

1.4 Type of Scheduling Algorithm ..................................................................................................... 6 

1.5 The motivation for This Work ...................................................................................................... 6 

1.6 Problem Statement, Objectives, and Research Contribution ........................................................ 7 

1.6.1 Problem Statement ................................................................................................................ 7 

1.6.2 Objectives ............................................................................................................................. 7 

1.6.3 Research Contribution ........................................................................................................... 8 

2 LITERATURE STUDY AND RELATED WORK .............................................................................. 9 

2.1 The Dynamic Scheduling Algorithms ........................................................................................... 9 

2.2 The Static Scheduling Algorithms .............................................................................................. 10 

2.3 The Hybrid Scheduling Algorithms ............................................................................................ 10 

2.4 The Swarm based Scheduling Algorithms .................................................................................. 11 

3 The STATIC, DYNAMIC, AND HYBRID SCHEDULING ALGORITHMS .................................. 12 

3.1 The Simulation Environment and Performance Parameters ....................................................... 12 

3.1.1 The Simulation Environment .............................................................................................. 12 

3.1.2 The Performance Parameters .............................................................................................. 12 

3.2 Critical Analysis of the Static and Dynamic Scheduling Algorithms ......................................... 13 

3.2.1 Research Carried Out .......................................................................................................... 13 

3.2.2 Result and Analysis ............................................................................................................. 14 

3.3 Hybrid Scheduler (S_LST) ......................................................................................................... 15 

3.3.1 S_LST Algorithm ................................................................................................................ 15 

3.3.2 Result Analysis and Performance Comparison ................................................................... 16 

4 SWARM INTELLIGENCE AND PROPOSED PSO BASED SCHEDULING ALGORITHM ....... 18 

4.1 Swarm Techniques ...................................................................................................................... 18 

4.2 Ant Colony Optimization ............................................................................................................ 19 



3 
 

4.2.1 ACO based Scheduling Algorithm...................................................................................... 20 

4.2.2 Mathematical Proof for ACO based Scheduling Algorithm ............................................... 21 

4.3 Proposed PSO based Scheduling Algorithm ............................................................................... 21 

4.3.1 Particle Swarm Optimization Technique ............................................................................ 22 

4.3.2 PSO Based Scheduling Algorithm ...................................................................................... 23 

4.3.3 Critical Analysis of PSO Based Scheduling Algorithm ...................................................... 24 

4.3.4 Result and Comparisons ...................................................................................................... 24 

4.3.5 Conclusion and Road Map for Future Work ....................................................................... 26 

5 REFERENCES ................................................................................................................................... 27 

6 PUBLICATIONS ................................................................................................................................ 30 

 

 

 

  



4 
 

1  INTRODUCTION 

 

This chapter briefly introduces the Real-Time System. It briefs about the Type of Real-Time 

System, Type of Task, and Type of Scheduling algorithm to schedule the given task set. It also 

tells about the motive behind this work, the problem statement, and the research contributions.  

 

1.1 The Real-Time System 

 

Real-Time systems have become part of human life to complete their day to day needs. Real-

Time System has many applications surrounding us like digital control systems, flight control, 

vehicle control, healthcare devices, IoT devices, and many more. In the 21st century, usage of 

Real-Time systems has increased widely. Like a conventional operating system, we also use 

Real-Time systems in our day to day life, but when real-time systems work well, they make us 

forget their existence. Real-Time System focuses on completing the task before its deadline, 

whereas the conventional operating system tries to give minimum response time for any given 

time. There is always a specific deadline associated with Real-Time Task, whereas a typical task 

does not have any particular timeframe. Text Editor, Browser, music players are examples of 

such typical applications, whereas Smart Watch, aircraft control, and missile control systems are 

examples of Real-Time applications [1].  

The Real-Time System is the system in which the system's accuracy is not only defined by the 

logical accuracy but also with the time it takes to produce the result. Real-Time systems have 

decisive, unchanging time restrictions, i.e., the task must be ended within the specified duration; 

otherwise, the system fails. Since the last few years, Real-Time systems usage has been 

increasing in time-critical applications. Designing systems that are expected to deliver real-time 

results involves an equal emphasis on managing timing constraints of various functionalities of 

the system. Processes in the real-time system have defined deadlines and need to complete the 

process within its deadline. Real-time systems need a scheduling algorithm that assigns the tasks 

to the processor by considering the deadline constraints and supporting other scheduling 

requirements. 



5 
 

1.2 Type of Real-Time System 

 

Real-Time System is divided into three categories: Hard Real-Time, Soft Real-Time, and Firm 

Real-Time System based on their timing constraints. Real-Time systems will be considered Hard 

Real-Time System if the failure to meet its deadline is a fatal fault. A few examples of Hard 

Real-Time Systems are Metro Train and its signal system, Missile technology, Flight control 

system. In contrast, the Soft Real-Time System with few misses of the deadline does not cause 

serious harm; only the system’s overall performance becomes poorer when more jobs miss their 

deadline. A few examples of Soft Real-Time systems include ATM systems, Mobile 

applications, and telephone switches. If a task misses its deadline in the Firm Real-Time System, 

then the result of the given task will be ignored [2]. 

 

1.3 Type of Task in Real-Time System 

 

The real-time system has three kinds of task models call Periodic, Aperiodic, and Sporadic tasks. 

In the periodic task, each task is generated at regular time intervals. The Real-Time System is 

invariably required to respond to external events and to respond; it executes aperiodic or sporadic 

tasks whose release times are not known to the system in advance. The interarrival times 

between consecutive tasks in such a task may vary widely, and, in particular, it can be arbitrarily 

small. We call the task is aperiodic if the process in it have soft deadlines. Each unit of work is 

scheduled and executed by the system as a task.  

Each task has a different characteristic, like release time, deadline, period, and execution time. 

The release time of a task is the instant of time at which the task becomes available for 

execution. The task can be scheduled and executed at any time after its release. The deadline for 

a task is the instant of time by which its execution needs to be completed. A task's deadline is 

sometimes called an absolute deadline, which is equal to its release time plus its relative 

deadline. The execution time of any task is considered the unit amount of time required to 

execute it on the processor. If the task is periodic, then the task's period indicates the occurrence 

interval of the given task [3]. The task set can also be divided into preemptive and non-

preemptive as well. 



6 
 

1.4 Type of Scheduling Algorithm 

 

In Real-Time Systems, selecting the scheduling algorithm is a critical task, and it will be decided 

based on the characteristics of the Real-Time System and the task type [4]. Real-Time 

scheduling methods are widely separated into two categories: Static priority and Dynamic 

priority scheduling methods. Static scheduling methods allocate all priorities at design time, and 

it remains steady for the lifespan of a task. Dynamic scheduling methods keep changing the 

priority at the scheduled time based on any task's design parameters. Dynamic methods can be 

endured with static or dynamic priority. Rate Monotonic (RM) and Deadline Monotonic (DM) 

are examples of the dynamic scheduling method with static priority [5][6]. There are examples of 

dynamic scheduling with dynamic priority, such as the Earliest Deadline First (EDF) and Least 

Slack Time First (LST). These algorithms are most favorable where jobs are preemptable and 

consist of a single processor, which is under-loaded [6]. However, such an algorithm's constraint 

is its performance, which diminishes exponentially if the system becomes somewhat overloaded 

[7]. The scheduling is treated as online if the scheduler forges scheduling outcomes and doesn’t 

know about the task that is to be released in the future. It is stated that, in an overloaded 

situation, no other online scheduling algorithm can attain a competitive factor prominent than 

0.25. Certainly, many researchers have identified that for any system whose loading factor is 

nearly equal to 1, an online scheduling algorithm's competitive factor is nearly equivalent to 

0.385 [8]. 

 

1.5 The motivation for This Work 

 

In Real-Time Operating System, selecting the scheduling algorithm is a critical task, and it will 

be decided based on the characteristics of the system and the process type. The scheduler can be 

divided into static and dynamic, which depends on the priority they follow in selecting the 

process for execution. The static algorithm uses a unique priority to each process throughout the 

scheduling, and the dynamic algorithm priority changes during the scheduling process. Many 

researchers have proposed different static and dynamic scheduling algorithm. It has been 

observed that static schedulers perform well during overload scenarios, and dynamic algorithms 



7 
 

perform better than static schedulers in the underload scenario. The Ant Colony Optimization 

(ACO) based scheduling algorithm was proposed for Soft Real-Time System in 2009.  

 

Researchers have given an entirely new direction for scheduling tasks using Artificial 

Intelligence and Swarm techniques. Swarm intelligence is the study of computational systems 

inspired by collective intelligence. Collective Intelligence emerges through the cooperation of 

large numbers of homogeneous agents in the environment. Examples include schools of fish, 

flocks of birds, and colonies of ants. Such intelligence is decentralized, self-organizing, and 

distributed throughout an environment. Using Swarm intelligence, it is possible to find optimal 

solutions for scheduling the task [9][10]. The researcher has proposed ACO based scheduling 

algorithm, and it has been shown that the swarm-based scheduling algorithm performs equally 

well as the Dynamic scheduler. It gives better performance in an overload scenario as well. The 

ACO based scheduling method for the soft real-time operating system (RTOS) has been 

profound with practical proof [11]. 

Many swarm intelligence techniques like the Bees Algorithm, Particle Swarm Optimization, 

Intelligent water drop, Gravitational Search Algorithm, and many more. They are still not 

explored with Soft Real-Time System, specifically in scheduling task problem. Researchers have 

studied all swarm techniques and focused on the Particle Swarm Optimization technique to 

develop the Soft Real-Time System's new scheduling algorithm.  

 

1.6 Problem Statement, Objectives, and Research Contribution 

 

1.6.1 Problem Statement 
 

To design and develop the scheduling algorithm for Soft Real-Time Single Processor System 

using Swarm Intelligence Techniques.  

 

1.6.2 Objectives 
 



8 
 

In order to achieve our goal, we planned:  

1) Analyze the existing Static and Dynamic scheduling algorithm and observe their 

performance in overload and underload scenario.  

2) Design of a hybrid scheduling algorithm using the characteristics of Static and Dynamic 

scheduling algorithm.  

3) Give mathematical proof of ACO based scheduling algorithm.  

4) Explore different Swarm Intelligence Techniques for Scheduling in Soft Real-Time 

System.  

5) Identify the Swarm Technique and develop a scheduling algorithm for Soft Real-Time 

Single Processor System.  

 

1.6.3 Research Contribution 
 

For designing and developing of Swarm Based Scheduling algorithm, the following are our 

research contributions through this work  

1) Critical analysis has been done for many Static and Dynamic scheduling algorithms for 

the Soft Real-Time Single processor system. These analyses have been published in 

paper publication no. 1, 2, and 3. 

2) Based on the analysis of the Static and Dynamic scheduling algorithm, researchers have 

proposed Hybrid Scheduler (S_LST) for Soft Real-Time System. This work has been 

published in paper publication no. 4.  

3) Researchers have studied the existing ACO based scheduling algorithm design and 

developed by Dr. Apurva Shah and derived the mathematical proof for the same. This 

work has been published in paper publication no. 5. 

4) Researchers have done a comprehensive study on Swarm Intelligence to identify suitable 

swarm techniques for scheduling purposes in the Soft Real-Time Single Processor 

system.      

5) Researchers have designed and developed the Optimized Scheduling Algorithm for Soft 

Real-Time Single Processor System using Particle Swarm Optimization Technique. This 

work has been published in paper publication no. 6.  



9 
 

2  LITERATURE STUDY AND RELATED WORK 

 

In Soft Real-Time Single Processor System, typically, schedulers are divided into two major 

categories like static and dynamic schedulers, which depend on the priority they follow. The 

static algorithm uses a unique priority to each process throw out the scheduling, whereas the 

dynamic algorithm priority changes during the scheduling process [12][13]. Researchers have 

also proposed hybrid scheduling algorithms which use the characteristic of the static and 

dynamic scheduling algorithm. In the recent past, genetic algorithms for scheduling has been 

proposed by researchers.  ACO based scheduling algorithm for Soft Real-Time System has 

changed the complete direction of solving the scheduling problem. [11].  

 

2.1 The Dynamic Scheduling Algorithms 

 

Dynamic schedulers make decisions during the runtime of the system. This allows not only to 

design a more flexible system but also to associate calculation overhead with it. The dynamic 

schedulers decide what task to execute depending on the importance of the task, called priority. 

The task priority may change during the runtime[14][15]. The dynamic schedulers widely used 

with the Soft Real-Time single processor system are the earliest deadline first (EDF) and Least 

Slack Time First (LST). These algorithms are described as follows. 

1) EDF - The earliest deadline first is a dynamic scheduling algorithm, which gives the 

highest priority to the task, which has the nearest absolute deadline. Priorities of tasks are 

allocated dynamically and inversely proportional to the active processes' absolute 

deadlines [16]. The algorithm executes when the current process completes or the new 

process arrives.  

2) LST - The LST is a dynamic scheduling algorithm that gives maximum priority to the 

process, which has the shortest slack time. The slack time (𝑙) can be calculated at time 𝑡 

with the deadline interval 𝑑 and remaining execution time 𝑐 [17]. The algorithm executes 

when the current process completes or the new process arrives. 

 



10 
 

2.2 The Static Scheduling Algorithms 

 

The static scheduler can calculate the order of execution before runtime as well. The static 

scheduler also decides the sequence of tasks based on priority, but the priority value will not 

change during runtime [18]. The static schedulers widely used with the Soft Real-Time Single 

processor are Rate Monotonic (RM) and Shortest Job First (SJF). These algorithms are described 

as follows.  

1) RM - The rate monotonic is a static scheduling algorithm that gives maximum priority to 

the process, which has the smallest period or lowest rate [16][19]. The rate of a process is 

already known in RTOS and is defined as the task occurs again in a given duration. The 

algorithm executes when the current process completes or the new process arrives.  

2) SJF - The shortest job first algorithm is a static scheduling algorithm that gives maximum 

priority to the process, which has the shortest execution time [19]. The execution time of 

a process is already known in RTOS and is defined as the process requiring CPU time to 

complete the given task. The algorithm executes when the current process completes or 

the new process arrives. 

 

2.3 The Hybrid Scheduling Algorithms 

 

The Dynamic algorithms perform well in the underload scenario and schedule all processes in a 

given process set. The static algorithms perform well in overload scenarios and try to schedule 

the maximum process in a given process set. The ideal algorithm can be designed, which uses 

dynamic and static algorithms, and it performs well in underload and overload scenarios. Based 

on this concept, many Hybrid Scheduler has been introduced by researchers. A few of them have 

been explained below.  

1) O_EDF and R_EDF - EDF algorithm performs well when the system is not overloaded, 

but its performance decreases exponentially when it becomes slightly overloaded. The 

researcher has applied certain modifications in the conventional EDF algorithm to 

overcome this limitation and proposed two algorithms named O_EDF and R_EDF [20].  



11 
 

2) D_EDF - This scheduling algorithm overcomes the limitations of the dynamic algorithm 

during overloaded conditions. The proposed algorithm D_EDF, simulated and tested for 

independent, preemptive, periodic tasks on tightly coupled real-time multiprocessor 

systems under global scheduling. The experiments and result analysis concludes that the 

proposed algorithm is efficient in both underloaded and overloaded conditions. It always 

performs better than the conventional EDF algorithm [13]. 

 

2.4 The Swarm based Scheduling Algorithms 

 

Any problem solving is a search for the optimal solution from a vast solution space. Artificial 

Intelligence (AI) solves the problem efficiently by heuristic search, embedding the domain 

knowledge, which guides the search intelligently. AI has successfully demonstrated its 

capabilities in almost every field of engineering. Swarm Intelligence (SI) is a computational and 

behavioral metaphor for problem-solving that originally took its inspiration from nature’s 

examples of collective behaviors like Social Insects: Nest building, Foraging, Assembly, Sorting, 

and Vertebrates: Swarming, Flocking, Herding, Schooling. SI provides a basis, making it 

possible to explore collective (or distributed) problem-solving methodology without centralized 

control [21]. Based on SI, the following scheduling algorithm has been proposed for Soft Real-

Time System.  

1) ACO Based Scheduling Algorithm - The Ant Colony Optimization (ACO) algorithm is a 

mathematical model enlivened by the system searching conduct of ants. By taking a 

gander at the qualities of ACO, it is most suitable for scheduling tasks in soft real-time 

systems. ACO based scheduling algorithm has been compared with the Earliest Deadline 

First (EDF) algorithm. It is noted that the new algorithm is equally efficient under loaded 

conditions when CPU load is less than one. ACO based scheduling algorithm performs 

superior during the overloaded conditions when CPU load is more than one, whereas the 

EDF algorithm performance is degraded in overload condition [11]. 



12 
 

3  The STATIC, DYNAMIC, AND HYBRID SCHEDULING 

ALGORITHMS 
 

This section describes the Researchers contribution to the Static and Dynamic Scheduling 

Algorithms. It is also explaining the proposed hybrid scheduler, which is using characteristics of 

Static and Dynamic scheduler. These all schedulers are implemented in a common simulator and 

environment and compared with Success Ratio (SR) and Effective CPU Utilization Parameter, 

which is also explained in this section.  

3.1 The Simulation Environment and Performance Parameters 

 

3.1.1 The Simulation Environment 
 

The entire simulator for all algorithms has been developed in C programming language, and the 

compiler is GNU GCC. The simulator has been executed on hardware configuration – Core i5 

processor with 8 GB of RAM. Simulation has been carried out on a 64-bit Windows 10 

Enterprise operating system. All algorithm has been evaluated with a periodic task set. This 

simulator is using an extensive data set of periodic tasks [22]. 

 

3.1.2  The Performance Parameters 
 

All algorithms' performance has been tested with two primary parameters called SR (Success 

Ratio) and ECU (Effective CPU Utilization) in this research. These parameters have been 

described as follows. 

1) Success Ratio (SR) - Success Ratio with real-time systems defined as the ratio of a set of 

processes that meet their deadline and a total number of processes. Success Ration 

determined with the following equation 1 [23],  

 

𝑆𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘 𝑎𝑟𝑟𝑖𝑣𝑒𝑑
        (1) 

 



13 
 

2) Effective CPU Utilization (ECU) - Effective CPU Utilization is defined as how much 

CPU time has been utilizing for the processes which can meet their deadline. ECU 

determined with the following equation 2 [23], 

 𝐸𝐶𝑈 =  ∑
𝑉𝑖

𝑇𝑖 ∈𝑅                     (2) 

 Where,  

• V represents process value and,  

o Process Value = time required to complete the process if the process meets its 

deadline. 

o Process Value = 0 if the process does not meet the deadline. 

• R is a set of processes, which are scheduled successfully, i.e., completed within their 

deadline.  

• T is the total time of scheduling. 

 

3.2 Critical Analysis of the Static and Dynamic Scheduling Algorithms 

 

3.2.1 Research Carried Out 
 

Researchers have implemented the two dynamic scheduling algorithms (EDF and LST) and two 

static algorithms (RM and SJF) for the soft RTOS. Algorithms are tested with a periodic task set 

(describe in section 3), and results are collected. It has observed the success ratio (SR) and 

effective CPU utilization (ECU) for all algorithms in a similar environment (describe in section 

3). It has been observed that the EDF and LST (dynamic algorithms) perform well in underload 

conditions, but in an overload situation, they cannot perform well. In contrast, the RM and SJF 

(static algorithms) fail to schedule a specific process in the underload scenario. They perform 

well in an overload situation compared with the dynamic algorithm [23][24][25][26].  

 

 



14 
 

 

3.2.2 Result and Analysis 
 

EDF, LST, RM, and SJF algorithms are implemented and evaluated with SR and ECU 

parameters, and results have been gathered.  All algorithms have been assessed in underload and 

overload situation wherein underload  Up ≤ 1 and in overload Up > 1. Observation with these 

results indicates that ECU values persist nearly the same for Dynamic and Static algorithms, but 

SR values are not 100% with the Static scheduling algorithms. When Up ≤ 1, it indicates that 

scheduling a given task set is possible, but Static scheduling algorithms fail to schedule all 

processes, whereas the dynamic scheduling algorithm can schedule this process set. Dynamic 

scheduling algorithms give optimum results in the underload scenario, and it is advisable to use 

the Dynamic schedulers with underload conditions. The results of the overload situation and 

observation indicate that Dynamic algorithms performance reduces quickly. In contrast, Static 

algorithms like RM and SJF can still meet a few of their deadline for a given process set. This 

observation can conclude that EDF and LST in underload give optimal results, whereas, in 

overload, RM and SJF performed well. Figure 1 and Figure 2 represent the all algorithm 

performance comparison with respect to ECU% and SR%.   

 

 

Fig. 1 – ECU% Vs. Load 

0

10

20

30

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.25 2.75 3.5 4.5

ECU% EDF ECU% LST ECU% RM ECU% SJF



15 
 

 

 

Fig. 2 – SR% Vs. Load 

 

3.3 Hybrid Scheduler (S_LST) 
 

3.3.1 S_LST Algorithm 
 

S_LST algorithm uses the characteristics of LST and SJF. In underload, task priority will be 

given based on slack time, and in an overload situation, task priority will be assigned based on 

the shortest execution time. It has been considered that the execution time of the task, its arrival 

time, its period, and total CPU load is available with Soft Real-Time System. The scheduling 

algorithm executes when a currently running task completes or a new task arrives. When the 

scheduling algorithm invokes; first, it observed the CPU load, based on the current process set, 

and available processes are ready for scheduling. If Up < 1 it will assign the task priority based 

on slack time (Dynamic scheduling algorithm), and if Up > 1 , it will assign the task priority 

based on the shortest execution time (Static Scheduling algorithm). The static scheduler aims to 

gain maximum profit from the given process set. So, in an overload situation where the dynamic 

scheduler performs poorly, the SJF algorithm gets more processes that meet their deadline [27]. 

 

0

10

20

30

40

50

60

70

80

90

100

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.7 1.9 2.25 2.75 3.5 4.5

SR% EDF SR% LST SR% RM SR% SJF



16 
 

3.3.2 Result Analysis and Performance Comparison 
 

S_LST, LST, and SJF algorithms have been implemented on the simulator and evaluated with 

the dataset mention in section 3. When the CPU load is less than one or equal to one (Up ≤ 1), 

results show that S_LST performs equally well in underload scenarios like the LST algorithm in 

terms of ECU and SR parameters. S_LST uses the slack time value of the task to assign dynamic 

priority in the underload situation. When the CPU load is greater than 1 (Up > 1). Results show 

a waste difference in ECU and SR values compare to a simple LST algorithm. When Load is 

greater than 1, it means that the task set is not schedulable, and most of the process misses their 

deadline with the LST algorithm. It has been noted that in slightly overload situations, LST 

performance degrades very poorly, whereas SJF can meet the deadline for a few of their process 

sets. It means in an overload situation, SJF gives better performance than LST. That is why 

S_LST uses static priority in an overload situation. Fig. 3 and Fig. 4 provide a graphical 

representation of the performance of the S_LST algorithm compare to LST and SJF.  

 

 

Fig.3 – S_LST, LST and SJF performance (Load Vs. ECU%) 

 



17 
 

 

Fig.4 – S_LST, LST and SJF performance (Load Vs. SR%) 

 

  



18 
 

4  SWARM INTELLIGENCE AND PROPOSED PSO BASED 

SCHEDULING ALGORITHM 
 

Swarm intelligence is the study of computational systems inspired by collective intelligence. 

Collective Intelligence emerges through the cooperation of large numbers of homogeneous 

agents in the environment. Examples include schools of fish, flocks of birds, and colonies of 

ants. Such intelligence is decentralized, self-organizing, and distributed throughout an 

environment. In nature, such systems are commonly used to solve problems such as effective 

foraging for food, prey evading, or colony re-location. The information is typically stored 

throughout the participating homogeneous agents or is stored or communicated in the 

environment itself, such as through the use of pheromones in ants, dancing in bees, and 

proximity in fish and birds. Particle Swarm Optimization investigates probabilistic algorithms 

inspired by the flocking, schooling, and herding. Like evolutionary computation, swarm 

intelligence algorithms or strategies are considered adaptive strategy and are typically applied to 

search and optimization domains [28].  

 

4.1 Swarm Techniques  

 

Researchers have studied may Swarm Intelligence Techniques to identify the best fitted for 

problem statement. It is an emerging field of biologically-inspired artificial intelligence based on 

the behavioral models of social insects such as ants, bees, wasps, termites, etc. The following are 

the few well-applied Swarm Techniques [29].  

 

1) PSO - Particle Swarm Optimization belongs to Swarm Intelligence and Collective 

Intelligence and is a Computational Intelligence sub-field. PSO is inspired by the social 

foraging behavior of some animals, such as birds' flocking behavior and the schooling 

behavior of fish. Particles in the Swarm fly through an environment following the Swarm 

fitter members and generally biasing their movement toward historically good areas of 

their environment. The algorithm's goal is to have all the particles locate the optima in a 

multi-dimensional hyper-volume [30].  

 



19 
 

2) ACO - It is inspired by the pheromone communication of the blind ants regarding the 

right path between the colony and the food source in an environment. The probability of 

the ant following a particular route is a function of pheromone intensity and a function of 

distance to that city, the function known as visibility. The strategy's objective is to exploit 

historical, i.e., pheromone-based and heuristic information to construct candidate 

solutions each in a probabilistic step-wise manner and fold the information learned from 

constructing solutions into the history. The probability of selecting a component is 

determined by the heuristic contribution of the component to the solution's overall cost. 

The quality of the solution and history is updated proportionally to the quality of the best-

known solution [31]. 

 

3) Bees - It is inspired by the foraging behavior of the honey bees. The hive sends out the 

Scout bees when locating nectar (a sugary fluid secreted within flowers), return to the 

hive, and communicate the other bees the fitness, quality, distance, and direction of the 

food source via waggle dance. The objective of the algorithm is to locate and explore 

good sites within a problem search space. Many scout bees are sent out; each iteration is 

always searching for additional good sites that are continually exploited in the local 

search application [32]. 

 

4) GSA - Gravitational search algorithm (GSA) is a newly developed stochastic search 

algorithm based on the Newtonian gravity- “Every particle in the universe attracts every 

other particle with a force that is directly proportional to the product of their masses and 

inversely proportional to the square of the distance between them” and the mass 

interactions. In this approach, the search agents are a collection of masses that interact 

with each other based on the Newtonian gravity and the laws of motion in which all of 

the objects attract each other by the gravity force. In contrast, this force causes a global 

movement of all objects towards the objects with heavier masses. The heavy masses 

correspond to good solutions to the problem [33]. 

4.2 Ant Colony Optimization 

 



20 
 

The Ant Colony Optimization (ACO) algorithm is a mathematical model enlivened by the 

system searching conduct of ants. By taking a gander at the qualities of ACO, it is most suitable 

for scheduling tasks in soft real-time systems. Researchers have proposed this algorithm for Soft 

Real-Time System and practically prove this algorithm's efficiency [11]. Based on mathematical 

proof, Researchers have again demonstrated the ACO-based scheduling algorithm [34].    

 

4.2.1 ACO based Scheduling Algorithm 
 

The scheduling method must execute when a directly running task completes or any new task 

gets generated. The method's main steps are shown in subsequent sections, and the consecutive 

algorithm has been described.  

 

1) Design a journey of distinct ants to yield a better execution sequence of the task. 

2) Evaluate the sequences of the task for the given processor. 

3) Modify pheromone value. 

4) Calculate the probability of all tasks and choosing the best task for execution. 

Once ants have finished their respective journeys, calculate the progress of all ant’s journey is 

calculated. We studied this foundation based on the relative number of successful tasks and 

missed tasks. After that, consider the two leading trips of ants and modify the pheromone cost 

consequently. 

 

Algorithm Key Points 

1) All schedulable tasks are considered as a node, they store τ values, and it is pheromone. 

The pheromone τ is initialized with the value 1 for each node. 

2) α and β values are decided for the weightage of τ and η. In the experiment, both constants 

have given equivale weightage, which is 1. 

3) The number of ants which construct the tour is essential in design criteria. During the 

test, the system is having the same time, and the number of ants decided based on the 

number of executable tasks. 

 

 



21 
 

 

4.2.2 Mathematical Proof for ACO based Scheduling Algorithm 
 

The probability of each node will be calculated, and it will decide which task should execute to 

get an optimal result in the proposed algorithm. The following mathematical propositions and 

theorems have been given. 

 

Proposition 1: After analyzing the journey, pheromone will be increased at the rate of ∆𝜏𝑖, 

where ∆𝜏𝑖 > ∆𝜏𝑖+1, i∈𝑁2, 𝑁2 is a set of nodes travel by the ants. 

Proposition 2: Pheromone will be decreased at the rate of (1 − 𝜌)𝜏𝑖  ∀𝑖 ∈  𝑁1, where ρ is 

constant and 𝑁1 is the set of schedule and non-schedule task at that time. 

Theorem 1: Let P be the probability that the algorithm finds an optimal solution within the first 

analyzing journey, then for an arbitrary small 𝜖 > 0,  𝑃 ≥ 1 − 𝜖. By definition 𝑃𝑚𝑎𝑥 = 1. 

Proposition 3: Once an optimal solution has been found for any task such that ∉  𝑁1 , it holds 

that 𝜏𝑖  = 0.  

Theorem 2: The probabilistic decision taken by ant will be biased when incorporating heuristic 

information into an ACO based solution. 

4.3 Proposed PSO based Scheduling Algorithm  

 

During the literature study, it has been observed that Particle Swarm Optimization has been 

widely used in scheduling for the Cloud Computing environment. Researcher A. S. Ajeena 

Beegom and M. S. Rajasree proposed the Integer-PSO algorithm for task scheduling in a cloud 

computing system in 2019 [35]. A two-level particle swarm optimization algorithm was created 

for the flexible job-shop scheduling problem [36]. PSO-based scheduling also applied in 

workflow applications in Cloud Computing Environments by researchers [37]. The PSO-based 

scheduling approach has not been explored with the Real-Time Operating system, and 

researchers in this research have targeted PSO based Swarm Intelligence Techniques to resolve 

the problem statement. Researchers have selected this approach because it is highly 

recommended for scheduling problems and it is the right approach when the problem size is 

between 20 to 40 [38][28]. 



22 
 

4.3.1 Particle Swarm Optimization Technique 
 

The Particle Swarm Optimization algorithm is comprised of a collection of particles that move 

around the search space influenced by their own best past location and the best past location of 

the whole Swarm or a close neighbour. Each iteration, a particle’s velocity is updated using 

equation 3 [28][39]. 

𝑣𝑖(𝑡 + 1) =  𝑣𝑖(𝑡) + (𝑐1  × 𝑟𝑎𝑛𝑑() × (𝑝𝑖
𝑏𝑒𝑠𝑡 −  𝑝𝑖(𝑡))) + (𝑐2  × 𝑟𝑎𝑛𝑑() × (𝑝𝑔𝑏𝑒𝑠𝑡 −  𝑝𝑖(𝑡)))             (3) 

Where,  

• 𝑣𝑖(𝑡 + 1) is the new velocity of 𝑖𝑡ℎparticle, 

• 𝑐1 and 𝑐2 are coefficients for the personal best and global best positions respectively,  

• 𝑝𝑖(𝑡) is the 𝑖𝑡ℎ particle’s position at time t, 

• 𝑝𝑖
𝑏𝑒𝑠𝑡 is the 𝑖𝑡ℎ particle’s best-known position, 

• 𝑝𝑔𝑏𝑒𝑠𝑡is the best position known to the Swarm, 

• 𝑟𝑎𝑛𝑑()function generate a uniformly random variable ∈ [0, 1] 

 

Variants on this update equation consider the best positions within a particle’s local 

neighborhood at time t. A particle’s position is updated using the following equation 4 [28]. 

𝑝𝑖(𝑡 + 1) =  𝑝𝑖(𝑡) +  𝑣𝑖(𝑡 + 1)          (4) 

 

 

 

Fig. 5. Graphical representation of PSO 

 



23 
 

Figure 5 shows the graphical representation of the Particle Swarm Optimisation. After each 

iteration particle moves in a new direction, which is optimal, and that decision will be based on 

the personal best position and global best position. 

 

Heuristics for this approach are [38][28][39]: 

• The number of particles should be low, around 20-40, 

• The speed a particle can move should be bounded, 

• The learning factors should be between 0 and 4, typically 2, 

• Particles may leave the boundary of the problem space and be penalized, reflected in the 

domain, or biased to return toward a position in the problem domain. Alternatively, a 

wrapping strategy may be used at the edge of the domain, creating a loop, torrid, or 

related geometrical structures at the chosen dimensionality. 

 

An inertia or momentum coefficient can be introduced to limit the change in velocity. 

 

4.3.2 PSO Based Scheduling Algorithm  
 

The algorithm considering each given task as a particle, and all tasks which are eligible for 

scheduling are viewed as a set of particles. The scheduler's ultimate goal is to choose a task at a 

given point in time in such a way that the task can meet its deadline. The Soft Real-Time system 

is intended to make sure that all tasks meet their deadline in the underload condition, and the 

maximum task will meet their deadline in the overload scenario. 

  

The scheduling algorithm will be executed when a new task arrives, or the currently performing 

task is completed. When there is more than one task that is ready to run, the scheduler needs to 

select the task effectively. The PSO based scheduler has the following significant steps.   

 

1) Initialization of Task as a Particle 

2) Compute the velocity and position of each task 

3) Analyze the position and velocity of each task 

4) Selection of Task for execution 



24 
 

 

4.3.3 Critical Analysis of PSO Based Scheduling Algorithm  
 

The proposed algorithm has been compared with EDF (Earliest Deadline First) and ACO (Ant 

Colony Optimization) based algorithm.  The correctness of all three algorithms has been tested 

under a similar Hardwar and dataset, as described in section 3. These algorithms have been 

implemented in the simulator using the C language. These algorithms have been compared with 

parameter SR and ECU, as described in section 3. Convergence Analysis and Parameter 

selection of the proposed algorithm is also given by the researchers based on zheng (2003) 

research [40].  

 

4.3.4 Result and Comparisons  
 

Researchers have compared the practical performance of the proposed algorithm with EDF and 

ACO based scheduling algorithm. Performance parameters ECU% and SR% have been taken 

into consideration. It has been noted that when CPU load is less than or equal to one (Up ≤ 1), 

ACO and EDF algorithm make sure to meet all the given task set deadlines. Whereas PSO based 

scheduler misses a few deadlines in a specific case. In an overload situation when CPU load is 

more than one (Up > 1), EDF performance degrades rapidly; even ACO can perform better than 

EDF and try to meet the maximum deadline. PSO based scheduler even performs better than 

ACO based scheduler in an overload condition.   Figure 6 and Figure 7 show the performance of 

EDF, ACO, and PSO based scheduler with respect to ECU and SR parameter.  

 



25 
 

 

Fig. 6 - ECU% comparison of EDF Vs. ACO Vs. PSO Algorithm 

 

 

Fig. 7 - ECU% comparison of EDF Vs. ACO Vs. PSO Algorithm 

 

 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5
0

.8
0

.8
5

0
.9

0
.9

5 1
1

.0
5

1
.1

1
.1

5
1

.2
1

.2
5

1
.3

1
.3

5
1

.4
1

.4
5

1
.5

1
.6

1
.7

1
.8

1
.9 2

2
.2

5
2

.5
2

.7
5 3

3
.5 4

4
.5 5

EC
U

%

Utilization Factor (Load)

Effective CPU Utilization 

EDF

ACO

PSO

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0
.5

0
.5

5
0

.6
0

.6
5

0
.7

0
.7

5
0

.8
0

.8
5

0
.9

0
.9

5 1
1

.0
5

1
.1

1
.1

5
1

.2
1

.2
5

1
.3

1
.3

5
1

.4
1

.4
5

1
.5

1
.6

1
.7

1
.8

1
.9 2

2
.2

5
2

.5
2

.7
5 3

3
.5 4

4
.5 5

SR
%

Utilization Factor (Load)

Success Ratio

EDF

ACO

PSO



26 
 

4.3.5 Conclusion and Road Map for Future Work 

 

The proposed PSO based scheduling algorithm has been compared with EDF and ACO based 

scheduling algorithm under the Soft Real-Time periodic task set. The performance parameters 

SR and ECU have been calculated for each algorithm for a large dataset, and a comparison has 

been made. It has been observed that during the underload scenario (Up ≤ 1) proposed 

scheduling algorithm performs similar to the EDF and ACO based algorithm. In a slightly 

overload situation when 1.00 ≤  Up ≤ 1.5, EDF performance gets degraded sharply. The 

proposed algorithm and ACO based scheduling algorithm performs better than EDF, and even 

the proposed approach delivers better than the ACO based scheduling algorithm. During highly 

overload scenario (1.50 ≤  Up ≤ 5.00) EDF and ACO-based algorithms perform poorly, 

whereas the PSO-based scheduling algorithm can still meet a specific deadline. So, instead of 

static or dynamic priority, the proposed approach works well during underload, overload, and 

highly overload scenarios.  

The proposed method is tested with uniprocessor and periodic task set for Soft Real-Time 

System. In future work, this algorithm can be examined with Hard and Firm Real-Time System 

as well. By making a few changes, the modified PSO based scheduling algorithm can be 

implemented for the multiprocessor system.  

  



27 
 

5  REFERENCES  

 

[1] S. Ahmad, S. Malik, and D. H. Kim, “Comparative analysis of simulation tools with visualization 

based on real-time task scheduling algorithms for iot embedded applications,” Int. J. Grid Distrib. 

Comput., vol. 11, no. 2, 2018. 

[2] Y. Laalaoui and N. Bouguila, “Pre-run-time scheduling in real-time systems: Current researches 

and Artificial Intelligence perspectives,” Expert Syst. Appl., vol. 41, no. 5, pp. 2196–2210, 2014. 

[3] K. Chatterjee, A. Pavlogiannis, A. Kößler, and U. Schmid, “Automated competitive analysis of real-

time scheduling with graph games,” Real-Time Syst., vol. 54, no. 1, pp. 166–207, 2018. 

[4] A. Magdich, Y. Hadj Kacem, M. Kerboeuf, A. Mahfoudhi, and M. Abid, “A design pattern-based 

approach for automatic choice of semi-partitioned and global scheduling algorithms,” Inf. Softw. 

Technol., vol. 97, no. November 2017, pp. 83–98, 2018. 

[5] J. Teraiya and A. Shah, “Comparative Study of LST and SJF Scheduling Algorithm in Soft Real-Time 

System with its Implementation and Analysis,” 2018 Int. Conf. Adv. Comput. Commun. 

Informatics, ICACCI 2018, pp. 706–711, 2018. 

[6] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time 

Environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973. 

[7] G. Saini, “Application of fuzzy logic to real-time scheduling,” in 2005 14TH IEEE-NPSS Real Time 

Conference, 2005. 

[8] S. Baruah et al., “On the competitiveness of on-line real-time task scheduling,” Real-Time Syst., 

1992. 

[9] S. C. Yu, “Elucidating multiprocessors flow shop scheduling with dependent setup times using a 

twin particle swarm optimization,” Appl. Soft Comput. J., vol. 21, pp. 578–589, 2014. 

[10] H. Kazemi, Z. M. Zahedi, and M. Shokouhifar, “Swarm Intelligence Scheduling of Soft Real-Time 

Tasks in Heterogeneous Multiprocessor Systems,” Electr. Comput. Eng. An Int. J., vol. 5, no. 1, 

2016. 

[11] A. Shah and K. Kotecha, “Scheduling algorithm for real-time operating systems using ACO,” in 

Proceedings - 2010 International Conference on Computational Intelligence and Communication 

Networks, CICN 2010, 2010. 

[12] F. Lindh, T. Otnes, and J. Wennerström, “Scheduling algorithms for real-time systems,” Dep. 

Comput. Eng. Malardalens Univ. Sweden, 2010. 

[13] D. Thakor and A. Shah, “D_EDF: An efficient scheduling algorithm for real-time multiprocessor 



28 
 

system,” Inf. Commun. Technol. (WICT), 2011 World Congr., pp. 1044–1049, 2011. 

[14] G. Koren and D. Shasha, “Dover: an optimal on-line scheduling algorithm for overloaded 

uniprocessor real-time systems,” SIAM J. Comput., 1995. 

[15] D. G. Harkut, “Comparison of Different Task Scheduling Algorithms in RTOS : A Survey,” vol. 4, no. 

7, pp. 1236–1240, 2014. 

[16] G. C. Buttazzo, “Rate Monotonic vs. EDF: Judgment day,” Real-Time Syst., vol. 29, no. 1, pp. 5–26, 

2005. 

[17] M. Patel and B. Oza, “International Journal of Advance Engineering and Research An Improved 

LLF _ DM Scheduling Algorithm for Periodic Tasks by Reducing Context Switches,” vol. 0, pp. 248–

254, 2015. 

[18] K. Ramamritham, J. A. Stankovic, and P. F. Shiah, “Efficient Scheduling Algorithms for Realtime 

Multiprocessor Systems,” IEEE Trans. Parallel Distrib. Syst., 1990. 

[19] W. Li, K. Kavi, and R. Akl, “A non-preemptive scheduling algorithm for soft real-time systems,” 

Comput. Electr. Eng., vol. 33, no. 1, pp. 12–29, 2007. 

[20] Shah Apurva, “Dynamic Scheduling for Real-Time Operating Systems,” pp. 1–141, 2009. 

[21] A. Shah, “Adaptive scheduling for real-time distributed systems,” Biol. Tech. Knowl. Discov. Data 

Min., pp. 236–248, 2014. 

[22] “Real Time System Dataset.” [Online]. Available: http://www.processdataset.in/. 

[23] J. Teraiya and A. Shah, “Analysis of Dynamic and Static Scheduling Algorithms in Soft Real-Time 

System with Its Implementation,” Adv. Intell. Syst. Comput., vol. 1053, pp. 757–768, 2020. 

[24] R. Belagali, S. Kulkarni, V. Hegde, and G. Mishra, “Implementation and validation of dynamic 

scheduler based on LST on FreeRTOS,” 2016 Int. Conf. Electr. Electron. Commun. Comput. Optim. 

Tech. ICEECCOT 2016, pp. 325–330, 2017. 

[25] G. Chen and W. Xie, “On a laxity-based real-time scheduling policy for fixed-priority tasks and its 

non-utilization bound,” 2011 Int. Conf. Inf. Sci. Technol. ICIST 2011, pp. 7–10, 2011. 

[26] T. Feld, A. Biondi, R. I. Davis, G. Buttazzo, and F. Slomka, “A survey of schedulability analysis 

techniques for rate-dependent tasks,” J. Syst. Softw., vol. 138, pp. 100–107, 2018. 

[27] J. Teraiya and A. Shah, “Hybrid Scheduler (S_LST) for Soft Real-Time System based on Static and 

Dynamic Algorithm,” Int. J. Eng. Adv. Technol., vol. 9, no. 2, pp. 2885–2889, 2019. 

[28] J. Brownlee, Clever Algorithms. 2011. 

[29] “Swarm Intelligence.” [Online]. Available: http://www.techferry.com/articles/swarm-

intelligence.html. 



29 
 

[30] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on 

Neural Networks - Conference Proceedings, 1995. 

[31] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. 

Life, 1999. 

[32] B. Yuce, M. S. Packianather, E. Mastrocinque, D. T. Pham, and A. Lambiase, “Honey bees inspired 

optimization method: The bees algorithm,” Insects, vol. 4, no. 4, pp. 646–662, Nov. 2013. 

[33] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Inf. 

Sci. (Ny)., 2009. 

[34] J. Teraiya, A. Shah, and K. Kotecha, “ACO based scheduling method for soft RTOS with simulation 

and mathematical proofs,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 4736–4740, 2019. 

[35] A. S. A. Beegom and M. S. Rajasree, “Integer-PSO: a discrete PSO algorithm for task scheduling in 

cloud computing systems,” Evol. Intell., vol. 12, no. 2, pp. 227–239, 2019. 

[36] R. Zarrouk, I. E. Bennour, and A. Jemai, “A two-level particle swarm optimization algorithm for 

the flexible job shop scheduling problem,” Swarm Intell., vol. 13, no. 2, pp. 145–168, 2019. 

[37] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for 

scheduling workflow applications in cloud computing environments,” Proc. - Int. Conf. Adv. Inf. 

Netw. Appl. AINA, pp. 400–407, 2010. 

[38] R. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,” in Proceedings of the 

International Symposium on Micro Machine and Human Science, 1995. 

[39] M. Elbes, S. Alzubi, T. Kanan, A. Al-Fuqaha, and B. Hawashin, “A survey on particle swarm 

optimization with emphasis on engineering and network applications,” Evol. Intell., vol. 12, no. 2, 

pp. 113–129, 2019. 

[40] Y. L. Zheng, L. H. Ma, L. Y. Zhang, and J. X. Qian, “On the convergence analysis and parameter 

selection in particle swarm optimization,” Int. Conf. Mach. Learn. Cybern., vol. 3, no. November, 

pp. 1802–1807, 2003. 

 

  



30 
 

6  PUBLICATIONS  

 

[1] Jay Teraiya, Apurva Shah, “Comparative Study of LST and SJF Scheduling Algorithm in 

Soft Real-Time System with its Implementation & Analysis”, In the proceedings of IEEE 

ICACCI-2018, PES Institute of Technology, Bangalore, India (Indexed By Web of Science, 

SCOPUS, DBLP)   

 

[2] Jay Teraiya, Apurva Shah, “Analysis of EDF and RM Scheduling Algorithm in Soft Real-

Time Operating System”, this paper has been submitted Journal of the Maharaja 

Sayajirao University of Baroda. (Indexed By UGC Care) 

 

[3]  Jay Teraiya, Apurva Shah, “Analysis of Dynamic and Static Scheduling Algorithms in Soft 

Real-Time System with its Implementation”, Advances in Intelligent Systems and 

Computing (AISC) Series, Springer, (Proceedings of SoCTA-2018) (Indexed by DBLP, 

SCOPUS, SpringerLink) 

 

[4] Jay Teraiya, Apurva Shah “Hybrid Scheduler (S_LST) for Soft Real-Time System based on 

Static and Dynamic Algorithm” International Journal of Engineering and Advanced 

Technology, ISSN: 2249 – 8958, Volume-9, Issue-2 December 2019.  

 

[5] Jay Teraiya, Apurva Shah, Ketan Kotecha “ACO Based Scheduling Method for Soft RTOS 

with Simulation and Mathematical Proofs”, International Journal of Innovative 

Technology and Exploring Engineering, ISSN: 2278-3075, Pg. no. 4736-4740, Volume-8, 

Issue-12, October 2019. (Indexed by SCOPUS) 

 

[6] Jay Teraiya, Apurva Shah “Optimized Scheduling Algorithm for Soft Real-Time System 

using Particle Swarm Optimization Technique”, paper has been submitted to 

Evolutionary Intelligence Journal of Springer and it is under 2nd review with minor 

revision. 

 


