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Chapter 4 4 

In-silico analysis of target prediction and gene interactions of 

agrochemicals 

4.1 Introduction 

The first step of research often begins in academia, where a hypothesis 

is generated; like the inhibition or induction of a protein or pathway as a 

curative outcome in a toxic condition. Indeed, a crucial point of the research 

process is the selection of a target, which can be a range of biological entities 

such as proteins, RNA, and genes that can be selected via bioinformatics 

analyses (Cava et al., 2016). An optimal target must be accessible to the 

assumed toxic molecule and the binding toxic–target complex should induce a 

biological response (Hughes et al., 2011), which can be quantified with in 

vitro models. The binding affinity between the toxic and the target can be 

calculated In silico with molecular docking. Thus, In silico and in vitro 

screenings help to quickly identify the toxicity of the tested molecules, so 

avoiding further steps such as in vivo studies(Cava & Castiglioni, 2020). 

In silico approaches with docking studies require at least two elements: 

a protein database and a molecular docking algorithm. The rapidly increasing 

number of structures has created big data, which offer a wide range of 

biological and chemical information and are a recent opportunity to develop 

better knowledge of the relationships between toxic substances and usually 

targets proteins (Meng et al., 2011). Although the available data are often 

heterogeneous and incomplete, computational methods can exploit this 

knowledge to deepen these interactions (Gligorijevic & Przulj, 2016). Given 

the cost and time consumption of experimental methods, high-performing 

computational algorithms are needed. The computational technique known as 

“docking” predicts the binding of a toxic molecule–protein complexes, as well 
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as the conformation of the ligand upon binding to a protein target (Ferreira et 

al., 2015). The binding free energy of interactions establishes the affinity of an 

association and the conditions for forming a complex (Bolnykh et al., 2021). 

Ranked binding free energies are not always precise, but they can be used to 

understand and predict the molecular mechanism by experimentally testing by 

a virtual screening approach (Berry et al., 2015). In addition, molecular 

docking can be also used for predicting the effects of a toxic substance in 

identifying an undesired interaction between a compound and off-targets. To 

date, 57,000 abstracts/papers have been published on molecular docking, 

indicating the importance of this computational method (Cava & Castiglioni, 

2020; Ferreira et al., 2015). 

Despite encouraging results, the real condition of the cellular 

environment, such as the pH and temperature, cannot be fully replicated in a 

docking study. Each docking algorithm has its limitations and advantages. 

Therefore, it has been reported that binding free energy that integrates the 

results from different docking algorithms can lead to higher performance in a 

virtual screening process (Pinzi & Rastelli, 2019). Moreover, molecular 

docking, being a structure-based method, is limited to receptors and ligands 

with a known stable structure. Thus, the integration of in vitro and in vivo 

studies as a validation step of In silico methods is an indispensable part of 

xenobiotic interaction (Meng et al., 2011).  

Namely two major classes of methods for computational gene 

prediction are being found. One is the sequence similarity searches based on 

the gene sequence, and the other is gene structure and signal-based searches, 

which is also referred to as ab initio gene finding. The prediction of biological 

targets of any xenobiotic having materials that are machine-related can be 

exclusively performed by computational target prediction tools (Zhuo Wang et 

al., 2004). Lab-based work and computational approaches are used to envisage 

biological targets that interact with a toxicant. It has been agreed upon by 
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various research groups that experimental-based methods are usually costlier 

and slower than computational approaches, as computational approaches make 

predictions based on set models and algorithms with several approximations 

(Schomburg et al., 2014).  

In general, the data on computational target prediction approaches fall 

into two major categories of target-based methods (also called structure-based 

or receptor-based) and ligand-based methods (Batool et al., 2019). Ligand-

based methods incorporate chemical structures to predict targets (Schenone et 

al., 2013). Hence, the chemical similarity criteria for bioactive molecules play 

key roles in ligand-based modelling (Wang et al., 2016) . Target-based 

methods rely on three-dimensional (3D) receptor structures to predict 

receptor–toxicant interactions (Forouzesh et al., 2019; Haupt & Schroeder, 

2011). With regards to the speediness, ligand-based methods tend to be faster, 

while target-based methods take substantially more computational resources 

for a docking run against hundreds, or even thousands, of targets still not 

achieving reliable results (Koutsoukas et al., 2011). 

The prediction of biological targets of molecules like toxicants, 

xenobiotic or bioactive compounds from machine-readable materials can be 

routinely performed by computational target prediction tools (CTPTs). 

However, the prediction of biological targets of toxicants from non-digital 

materials (e.g., printed or handwritten documents) has not been possible due to 

the complex nature of the compound which leads to unapproachable 

computations. However, with many advances over the last decades, 

computational target prediction remains a very challenging task, as reflected 

by the low experimental target validation success rate (Thafar et al., 2019). 

The removal of false positives reduces the risk of yielding predictions that 

could incorrectly affect the downstream experiments for drug and pesticide 

discovery (Forouzesh et al., 2019; Zhonghua Wang et al., 2016). 
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Many attempt(s) has been made to improve the target prediction 

success leading to the creation of an innovative method based on chemical 

similarity. The recently developed methods of prediction have five distinctive 

advantages: First, no statistical method is used in the prediction. Second, 

accuracy is high. Third, it can be used appropriately without similarity 

calculations in non-digital materials and with similarity calculations (perfect 

similarity) in machine-readable materials. Fourth, deeper insights into 

understanding the interactions happening between a molecule of interest and 

the target can be extrapolated. Fifth, it requires basic knowledge for high-

performance computing techniques or algorithms that do not stop its 

implementation part (Thafar et al., 2019; Mathai & Kirchmair, 2020). 

With the great evolution of genetic/molecular biology, several high-

throughput profiling technologies such as genomics, transcriptomics, 

proteomics, and metabolomics have been developed, among which 

toxicogenomics combines toxicology with these approaches to analyze the 

gene expression profile of several thousand genes aiming to identify changes 

associated with xenobiotics-induced toxicities (Cui & Paules, 2010). In the last 

two decades, epigenetic alterations have been shown to play a role in the 

transcriptional processes that regulate gene expression. Therefore, the field of 

toxicogenomics coupled with in-silico, which studies the relationship between 

epigenetic modifications and disease status in response to exposure to 

environmental contaminants and toxic agents, is now at the forefront of 

environmental health science. 

As we wanted to understand the different possible targets apart from 

the candidate gene profiles performed in previous chapters. To cover the 

lacunae and unravel the other possible targets, this chapter aims to account 

for in-silico prediction of test agrochemicals and different gene interactions 

that will help understand the overall effect of agrochemicals in the system 

and will also be helpful for the prediction of its future use. 
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4.2  Materials and methodology 

Database Construction and Target Prediction:  

Chemical SMILES structures of ingredients were found from the online 

software PubChem. These formulae were imported into the online Swiss 

Target Prediction network database (http://www.swisstargetprediction.ch/) 

(Gan et al., 2019) to identify possible target proteins in Homo sapiens species. 

Results were received in the form of binding Probability for Imidacloprid, 

pyrazosulfuron ethyl, cymoxanil, and Mancozeb compounds. SMILES 

formula of each molecule was used to run target prediction (Table 4.1) 

Sr 

N

o 

Compound 

Name 
SMILES formula 

1 Imidacloprid [O-][N+](=O)N=C1NCCN1Cc1ccc(Cl)nc1 

2 Cymoxanil CCNC(=O)NC(=O)C(=N/OC)\C#N 

3 

Mancozeb  

(zineb) 

(maneb) 

C(CNC(=S) [S-]) NC(=S) [S-].[Zn+2] 

C(CNC(=S)[S-])NC(=S)[S-].[Mn+2] 

4 
Pyrazosulfur

on ethyl 

CCOC(=O)C1=C(N(N=C1)C)S(=O)(=O)NC(=O)NC2=NC(=C

C(=N2)OC)OC 

Table 4.1: Agrochemicals and SMILES formula 

Gene Interactions: 

Association of different genes with the selected candidate markers, 

bioinformatics software was used for the representation of pathways and to 

investigate which pathways were being affected by the tested agrochemicals. 

The pathway maps were generated for the candidate genes listed in the Table 

4.1 with their upstream and downstream association of possible genes, which 

may get alter under the influence of the agrochemicals. Genes were selected 

http://www.swisstargetprediction.ch/
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by searching the homology using NCBI Blast which was also found in a 

teleost, hence they were considered for analysis, other genes were rejected 

which are yet to be discovered in teleost. The analysis was carried out using 

pathway commons (https://www.pathwaycommons.org), and Wiki pathways 

(https://www.wikipathways.org/index.php/WikiPathways) and was visualized 

in Cytoscape bioinformatic software. 

4.3  Result 

Target Prediction: 

Target prediction using online software Swiss Target Prediction 

delivered the for Imidacloprid, pyrazosulfuron ethyl, Cymoxanil, and 

Mancozeb have been done. Results were obtained in form of Pie charts, 

indicating categorization of target protein, as well as target protein with 

binding probability. Figure 4.1 to 4.4 indicate the structure of the respective 

agrochemical and its pie charts. Each Pie chart explains % of the Protein class 

of total target proteins belonging to a particular protein class. Out of all the 

molecules, Imidacloprid exhibited binding in diversified protein classes 

including nuclear receptor, cytochromes, enzymes, proteases, Kinases, 

GPCRs, and transporters. Whereas rest compounds like pyrazosulfuron ethyl, 

Cymoxanil, and Mancozeb exhibited very little binding probability with 

proteins. Elaborating, Imidacloprid showed 26.7 % of binding with ligand-

gated channel and Family a G protein-coupled receptor class of proteins and 

20 % of binding with Enzymes Figure 4.1: Imidacloprid structure and Pie 

chart indicating Target proteins class distribution 

https://www.pathwaycommons.org/
https://www.wikipathways.org/index.php/WikiPathways
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Figure 4.1: Imidacloprid structure and Pie chart indicating Target 

proteins class distribution 

Sr 

no 
Compound Target Target Class 

Probabili

ty 

UniProt 

ID 

1 

Imidacloprid 

Neuronal acetylcholine 

receptor; alpha4/beta2 

Ligand gated ion 

channel 
1.0 P17787 

2 

Neuronal acetylcholine 

receptor protein alpha-

4 subunit (by 

homology) 

Ligand gated ion 

channel 
1.0 P43681 

3 
Bax Ligand Binding 

Site 

0.45 Q5EA

R7 

4 
Cyclin A Cyclin 0.41 A0A3P

9B0M9 

5 
Cytochrome P450 Substrate binding 

Site 

0.41 P79739 

6 
Cyclin E Cyclin 0.35 A0A3P

9AY88 

7 

Neuronal acetylcholine 

receptor protein alpha-

7 subunit 

Ligand gated ion 

channel 
0.048 P36544 

8 

Neuronal acetylcholine 

receptor subunit alpha-

3 

Ligand-gated ion 

channel 
0.048 P32297 

9 

Trace amine associated 

receptor 1 (by 

homology) 

Family A G 

protein coupled 

receptor 

0.048 
Q96RJ

0 

Table 4.2: Results of In-silico analysis of Imidacloprid  
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Figure 4.2: Cymoxanil structure and Pie chart indicating Target proteins 

class distribution 

Sr 

no 
Compound Target Target Class 

Probabili

ty 

UniProt 

ID 

1 

Cymoxanil 

Carbonic 

anhydrase II 
Lyase 0.031 P00918 

2 
Carbonic 

anhydrase XII 
Lyase 0.031 O43570 

3 
Carbonic 

anhydrase IX 
Lyase 0.031 Q16790 

4 
Lysine-specific 

demethylase 5C 
Eraser 0.031 P41229 

5 
Lysine-specific 

demethylase 4B 
Eraser 0.031 O94953 

 

Table 4.3: Results of In-silico analysis of Cymoxanil 
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Figure 4.3: Mancozeb structure and Pie chart indicating Target proteins 

class distribution 

 

Sr no Compound Target 
Target 

Class 

Probabilit

y 

UniProt 

ID 

1 

Mancozeb  

Carbonic 

anhydrase II 
Lyase 0.105 P00918 

2 
Carbonic 

anhydrase I 
Lyase 0.084 P00915 

3 
Carbonic 

anhydrase XII 
Lyase 0.084 O43570 

4 
Carbonic 

anhydrase IX 
Lyase 0.084 Q16790 

5 
Carbonic 

anhydrase IV 
Lyase 0.023 P22748 

 

Table 4.4: Results of In-silico analysis of Mancozeb  
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Figure 4.4 Pyrazosulfuron ethyl structure and Pie chart indicating Target 

proteins class distribution 

Sr 

no 
Compound Target 

Target 

Class 

Probab

ility 

UniProt 

ID 

1 

Pyrazosulfuron 

ethyl 

c-Jun N-terminal 

kinase 1 
Kinase 0.115 P45983 

2 
c-Jun N-terminal 

kinase 3 
Kinase 0.115 P53779 

3 
c-Jun N-terminal 

kinase 2 
Kinase 0.115 P45984 

4 
Adenosine A1 

Receptor 

Family A G 

protein 

coupled 

receptor 

0.115 P30542 

5 
Adenosine A2a 

receptor 

Family A G 

protein 

coupled 

receptor 

0.115 P29274 

Table 4.5: Results of in-silico analysis of–  Pyrazosulfuron ethyl 

Besides Pie charts, the software provided the binding probability of 

each target protein for that agrochemical along with target protein name, class, 

and UniProt ID. Out of all the compounds, Imidacloprid showed a high (1.0) 

binding probability. The rest of all the other agrochemicals showed very little 

binding probability and were in the range of 0 – 0.15. All the results are 

mentioned in Table: 4.5. 
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Gene association: 

Gene association studies were carried out using two open-based 

software i.e. Pathway-common and Wiki Pathways for the candidate genes.  

The association was checked for the apoptotic markers, proliferation markers, 

and other toxicological markers. The interactions of pcna, ccne1 (Cyclin E), 

ccna2 (Cyclin A) was being found to be interacting with numerous genes. A 

total of 396 genes were found to be in close association with the candidate 

genes whose gene expression was studied. Out of which 18 were found to 

function as controlling state change of other genes, while seven were found to 

be involved in controlling the expression and the remaining 371 were 

designated as state change genes. Similarly, the genes of the apoptotic 

pathway were analyzed. Primarily, the interaction of bax and bcl2 was 

visualized. The interaction showed that the two were interacting controlling 

each other expression pattern. Furthermore, bcl2 also showed its controlling 

state for bak1 (bcl2 antagonist/killer 1) gene. While bax showed its controlling 

expression of agt (angiotensinogen). Both bax and bcl2 showed complex 

formation with VDAC1 (Voltage-Dependent Anion Channel 1).  

Moreover, the interaction was elucidated by including casp3 with bax 

and bcl2. The interaction showed that casp3 had controlling state change with 

bcl2 and bax, while the expression pattern control was only found between 

bcl2 and casp3. The interaction also revealed that casp9, tnf (Tumor Necrosis 

Factor), fasl (Fas Ligand), ptk2 (protein tyrosine kinase 2) had a control state 

change. While there was no direct interaction between nfkb with casp3,9. 

Nevertheless, the addition of tnf with this interaction showed that it was 

controlling the expression of nfkb. The interaction further revealed that it 

showed the controlling the state change of hdac2 (histone deacetylase 2). 

Other genes and their interaction with the candidate genes are shown in the 

Table 4.6 



Chapter 4 In-silico analysis of target prediction and gene interactions 

of agrochemicals 
 

138  

 

Sr 

No. 

Name of the genes Associated 

Genes 

Interaction types 

 

 

 

 

 

1 

 

 

 

 

ccna2 

hdac1 Genera 

expression, in 

complex 

e2f1 in complex 

cdk2 In Complex 

atm In complex 

nbn In complex 

rad50 In Complex 

cdkn1a Control state 

change, in 

complex 

e2f4 Control 

Expression 

rbl1 Control 

Expression 

 

 

2. 

ccne1 cdk2 In Complex 

cdkn1b In Complex 

cdkn2b In Complex 

rb1 In Complex 

skp2 In complex 

 

3. 

Pcna ccne1 In complex 

cdk2 In complex 

 

4. 

 

nfkb1 

rela In complex 

bcl2l Control gene 

expression 

 

 

 

5. 

 

 

 

casp3 

sod2 Control state 

change 

map2k1 Control state 

change 

casp9 Control state 

change 

tnfsf10 Control state 

change 

ptk2 Control state 

change 

faslg Control state 

change 

6. Bax vdac1 In complex 
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agt Control 

expression 

7. Nfkb ier3 In complex 

prkc1 Control state 

change, in 

complex 

prkc Control state 

change, in 

complex 

ripk1 Control state 

change, in 

complex 

tradd Control state 

change, in 

complex 

traf2 Control state 

change, in 

complex 

sostm1 Control state 

change, in 

complex 

prkcz Control state 

change, in 

complex 

il6 Control gene 

expression, in 

complex 

cxcl8 Control gene 

expression, in 

complex 

bcl2l Control gene 

expression, in 

complex 

cebpb Control gene 

expression, in 

complex 

Table 4.6 The candidate genes with associated genes and its interaction 

types. the interaction types were deduced from pathways 

commons. 
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Figure 4.5 Gene interaction of PCNA with different genes, shows 

interaction with more than 10 genes (Green: represents in 

complex, Red: represents gene expression, Blue: controls stat 

change) 
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Figure 4.6: Gene interaction of CCNE1 with different genes. shows 

interaction with more than 10 genes. (Green:  represents in 

complex, Red: represents gene expression, Blue:  controls 

state) 

 

 

 

 

  



Chapter 4 In-silico analysis of target prediction and gene interactions 

of agrochemicals 
 

142  

 

Figure 4.7: Gene interaction of CCNA2 with different genes, shows the 

overall interaction with 51 genes. (Green: represents in 

complex, Red:  represents gene expression, Blue: control state 

change) 
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Figure 4.8: Gene interaction of bax, with different genes, shows 

interaction with more than 10 genes. (Green: represents in 

complex, Red: represents gene expression, Blue:   controls 

state change) 

 

 

Figure 4.9 Gene interaction of bcl2, with different genes, shows 

interaction with more than 10 genes. (Green: represents in 

complex, Red: represents gene expression, Blue:   controls state 

change) 
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Figure 4.10: Gene interaction of casp3 with different genes, shows 

interaction with more than 10 genes. (Green: represents in 

complex, Red: represents gene expression, Blue: controls 

state change) 

 

 

Figure 4.11: Gene interaction of nfkb with different genes, shows 

interaction with more than 10 genes. (Green: represents in 

complex, Red: represents gene expression, Blue: controls 

state change) 
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Figure 4.12: Gene interaction of tnfα with different genes, shows 

interaction with more than 30 genes. (Green: represents in 

complex, Red: represents gene expression, Blue: controls 

state change) 
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4.4 Discussion: 

Since the last couple of decades, structure-based drug discovery has 

gained significant popularity. Advancements in information technology and 

the development of various bioinformatics software platforms have 

revolutionized the drug discovery approach (Kirchmair et al., 2008). In-silico 

study is the structure-based drug designing and target prediction which 

provides insights into the interaction of various chemical compounds with its 

specific target protein, yielding information about affinity and the specificity 

of the interaction. The drug design and target prediction-based approach aim 

to find out the identification of the compound as well as its molecular target. 

For instance, where the target protein or structure of the target protein is 

unknown, ligand-based target prediction approaches are employed to fulfill the 

desired information. Obtained structure or targets using such an in-silico 

method are often used to design further experiments. 

Molecular docking is the preferred in-silico technique for the 

simulation of biomolecular interaction. Such methods hold the capability to 

give insights into the interaction at the molecular level, which provides an 

opportunity to study and characterize the binding and interacting site in target 

protein (Waghulde et al., 2018). With such bioinformatics tools, it could 

possible to explore the probable binding of agrochemicals with target proteins. 

Bioinformatics study in the present study has identified few target proteins 

with which study agrochemicals have a binding probability. These target 

proteins belong to various protein classes such as the Ligand-gated ion 

channel, Family A G protein-coupled receptor, Lyase, and Kinase. Out of four 

players, Imidacloprid has arisen to have strong binding probability with 

ligand-gated ion channels like Neuronal acetylcholine receptor, Cyclin A and 

E cytochrome p450, bax, and bcl2. This receptor works as a Sodium channel 

upon binding of acetylcholine. These results are supported by earlier published 

reports. It is established that Imidacloprid shows a high affinity toward 
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acetylcholine receptors and impairs the nervous system in insects, mites, 

termites, and ticks (Yadav et al., 2020). On reaching into the aquatic 

environment, it causes toxicity to fishes by affecting their physiology, 

behavior, hematology and biochemistry of fishes (Inyang, 2008; Qadir & 

Iqbal, 2016). Besides these, Pyrazosulfuron ethyl had shown binding 

probability with kinases and GPCRs like c-Jun N-terminal kinase 1/2/3 and 

adenosine receptors respectively. Correlating the target proteins of 

Imidacloprid and Pyrazosulfuron ethyl together, it can be anticipated that 

agrochemical might have a role in the impairment of GPCR, c-Jun terminal 

kinase, and Sodium ion-based pathways.  

In-silico study of Cymoxanil and Mancozeb also revealed target 

proteins that belong to the category like Lyase and Eraser. Though binding 

affinity was less, both the agrochemicals show affinity toward Carbonic 

anhydrase enzymes as well as Lysine-specific demethylase. The gene 

interactions were studied with the help of pathway commons and were 

visualized in Cytoscape software. The overall aim was to understand that what 

are the genes that are getting altered with respect to the candidate genes. This 

was done not only to understand the downstream signaling but also to predict 

the genes getting altered in specific pathways. The genes which were found in 

the Zebrafish were only considered for the study and other genes related to 

humans were eliminated. 

The cell cycle pathway is a cell division process that moves in one 

direction. It’s a highly vital process that is critically required by the cell for its 

survival. It mainly comprises of 4 phases namely G1, S, G2 and M phase. 

These phases are regulated by two specific classes of proteins CDKs and 

Cyclins (Cava et al., 2016). These are also known to form complexes that will 

further downstream initiate the process via phosphorylation. The cell cycle 

pathway is a complex process that is highly regulated by three major 

checkpoints. The first checkpoint is the G1 checkpoint, which confirms that 
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whether or not a cell will enter into the cell division process. The second 

checkpoint, G2, ensures whether the cell will enter into mitosis or will remain 

in the G2 phase (Thakur & Chen, 2019). Both of the checkpoints are highly 

studied and are known to be affected by the presence or absence of various 

growth factors, DNA damage, or replicative senescence induced by the 

xenobiotics or a toxicant (Majeed et al., 2014). The ultimate checkpoint, 

metaphase, warrants proper chromosome packaging and alignment prior to 

cell division. The cell cycle pathway is intrinsically linked that maintains the 

homeostasis of cell survival and cell death. Malfunctioning and dysregulation 

of cell cycle checkpoints requirements will lead a cell to undergo apoptosis.  

So to understand this relationship, pathway analysis for the cell cycle 

and associated genes were analyzed. A close association was studies where, 

396 genes were found to interacting with the genes like pcna, ccne1 (cyclin E), 

and ccna2 (Cyclin A2). Among all the genes analyzed, 18 were found to 

function as controlling state change of other genes, while seven were found to 

be involved in controlling the expression and the remaining 371 were 

designated as state change genes. We predict that at the cells exposed to MD 

and HD of imidacloprid (insecticide) and Curzate (Fungicide), there may be a 

change in the expression of all the genes which are in close contact with the 

cell cycle regulators. Additionally, this cell will be having a highly 

dysregulated cell cycle and may eventually die due to excessive usage of ATP 

due to altered metabolism.  

In this context, the apoptotic pathway was also validated. This pathway 

has been broadly classified into the intrinsic pathway and the extrinsic 

pathway of apoptosis. The classification is based on the origin of their 

occurrence for instance; extrinsic pathway begins outside the cells, when the 

extracellular conditions are not feasible for the cell survival, while the intrinsic 

pathway is initiated by an injury occurring within the cells resulting in the 

stress condition thus activating the apoptotic pathways. Both the pathways 

ultimately lead to the activation of a family of Cys (Cysteine) proteases that 
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are known as caspases which are proteases that functions in a cascade that 

leads to cell death  (Parrish et al., 2013). So toxicants are also known to alter 

the core apoptotic pathway that leads to dysregulation of normal cellular 

homeostasis and cause pathogenic events.  

To understand the process in more detail gene interaction studies were 

performed to get a deep insight into the regulation part. Genes like casp3, bcl2, 

bax, nfkb1 and tnfα were taken into consideration as we had already 

established its gene expression profile and fold change was noted. A 

multitrophic interaction system was obtained where casp3 was found to be 

controlling the expression pattern of bcl2 and bax. Similarly, it was also in a 

close connection with antioxidants genes like sod and cat. The pathway also 

revealed that numerous genes for instance of hdac4 for acetylation, il6 and 

il1B for inflammatory pathway, map2k1 for the cell cycle progression were 

found to be in close contact bcl2, casp3, nfkb. This close interaction and 

complex formation may get altered due to exposure of MD and HD of 

Imidacloprid and curzate. The exposure of these pesticides disrupts the 

ultimate homeostasis and leads the cells into the apoptotic pathway.  

As the pesticides are acting on multiple pathways thus their mechanism 

of action can’t be limited to one or two genes/proteins. It is therefore 

necessary to test the action via checking binding affinity and other Lipinski 

properties by performing individual docking studies. Additionally, the 

homology modeling, x-ray crystallographic studies will unravel the potential 

binding of the imidacloprid and curzate and will open up new avenues for 

further research.  
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4.5 Conclusion: 

In a nutshell, the present study shows that  

1. among all the agrochemicals validated, Imidacloprid has a very strong 

binding affinity with ligand-gated ion channel, cyclins, and bax, bcl2 

for the apoptosis pathway. The present study also enlists the new 

possible targets of Imidacloprid, curzate which needs to be accounted 

in the in-silico databases. 

2.  Pathway analyses strongly suggest that alteration of candidate genes 

like ccne1, ccna4, pcna, bax, bcl2, casp3 tnf and nfkb will lead to 

change in the expression pattern of downstream genes and their protein 

products and ultimately leads the cell into apoptosis.  

3. All the evidence i.e. from morphological examination, gene expression 

to the In-silico analysis suggests that cells are highly under stressed 

and the use of test pesticides i.e. imidacloprid, curzate should be 

controlled.  

 

 


