List of Figures

Sr	Table no.	Title	Page
No.			no.
1	Figure 1.1	ICG cell mortality of IMI	32
2	Figure 1.2	ICG cell mortality of CZ	32
3	Figure 1.3	ICG cell mortality of MN	33
5	Figure 1.4	ICG cell mortality of PE	33
7	Figure 1.5	Cell viability at the Sub-lethal concentrations for all AGs	35
8	Figure 1.6	Depicts the level of pcna in ICG cells treated with sub-lethal concentrations of AGs	37
9	Figure 1.7	Depicts the level of cyclin A in ICG cells treated with sub-lethal concentrations of AGs	38
10	Figure 1.8	Depicts the level of cyclin E in ICG cells treated with sub-lethal concentrations of AGs	39
11	Figure 2.1	Alteration in Cell Morphology of ICG Cells on Exposure of AGs	62
12	Figure 2.2	Depicts DCF-DH staining for ROS Generation in ICG cell line after exposure of IMI and CZ with sub lethal concentrations	64
13	Figure 2.3	Depicts DCF-DH staining for ROS Generation in ICG cell line after exposure of MN and PE with sub-lethal concentrations	65
14	Figure 2.4	Depicts the result of DCFDA staining in ICG cells exposed to AGs	66
15	Figure 2.5	SOD level after treatment of AGs	68
16	Figure 2.6	Catalase activities after treatment of AGs	68
17	Figure 2.7	GSH level after treatment of AGs	69
18	Figure 2.8	LPO level after treatment of AGs	69
19	Figure 2.9	Depicts the results of Acridine orange/Ethidium bromide assay for sub-lethal concentrations of all AGs (IMI and CZ)	70
20	Figure 2.10	Depicts the results of Acridine orange/Ethidium bromide assay for sub-lethal concentrations of all AGs (MN and PE)	71
21	Figure 2.11	Depicts the result of AO/EB staining in ICG cells exposed to AGs	72
22	Figure 2.12	Flow cytometry dot plots with double Annexin V- FITC/PI staining for Apoptosis of ICG cells exposed to IMI	73
23	Figure 2.13	Flow cytometry dot plots with double Annexin V- FITC/PI staining for Apoptosis of ICG cells exposed to CZ	74

24	Figure 2.14	Flow cytometry dot plots with double Annexin V-	75
		FITC/PI staining for Apoptosis of ICG cells	
		exposed to MN	
25	Figure 2.15	Flow cytometry dot plots with double Annexin V-	76
		FITC/PI staining for Apoptosis of ICG cells	
		exposed to PE	
26	Figure 2.16	Depicts the results of summary data of FACs	77
		analysis of apoptosis for IMI	
27	Figure 2.17	Depicts the results of summary data of FACs	77
	C	analysis of apoptosis for CZ	
28	Figure 2.18	Depicts the results of summary data of FACs	78
	-	analysis of apoptosis for PE	
29	Figure 2.19	Depicts the results of summary data of FACS	78
	-	analysis of apoptosis for MN	
30	Figure 2.20	The level of bcl ₂ in ICG cells treated with sub-	81
	_	lethal concentrations of AGs	
31	Figure 2.21	The level of caspase 3 in ICG cells treated with	82
	_	sub-lethal concentrations of AGs	
32	Figure 2.22	The level of nfkb in ICG cells treated with sub-	83
		lethal concentrations of AGs	
33	Figure 2.23	The level of bax in ICG cells treated with sub-	84
		lethal concentrations of AGs	
34	Figure 2.24	The level of tnfa in ICG cells treated with sub-	85
		lethal concentrations of AGs	
34	Figure 3.1	Depicts the results of DAPI staining with sub-	108
		lethal concentrations of all AGs	
35	Figure 3.2	Different types of nucleus abnormalities A-	109
		micronucleus B-Bi-nucleated cells C- Lobbed	
		Nucleated cells on exposure of 7 days of AGs	
36	Figure 3.3	Depicts frequency micronuclei formation in ICG	112
		cells exposed to AGs.	
37	Figure 3.4	Depicts frequency binucleated formation in ICG	112
		cells exposed to AGs.	
38	Figure 3.5	Depicts frequency lobbed nuclei formation in ICG	113
		cells exposed to AGs.	
39	Figure 3.6	Depicts the total nuclear abnormalities in ICG	113
		cells exposed to AGs	
40	Figure 3.7	The level of p450 in ICG cells treated with sub-	114
		lethal concentrations of AGs	
41	Figure 3.8	The level of dnmt in ICG cells treated with sub-	115
		lethal concentrations of AGs	
42	Figure 3.9	Nucleotide sequence alignment of the dnmt region	117
		between nucleotide 21-134 of known sequence for	
		dnmt for <i>C. catla</i> and cells treated with IMI	

43	Figure 3.10	Nucleotide sequence alignment of the P450 region	117
		between nucleotide 104-235 and B) 297-424	
		of known sequence for p450 for C. catla and	
		cells treated with IMI	
44	Figure 4.1	Imidacloprid structure and Pie chart indicating	133
		Target proteins class distribution	
45	Figure 4.2	Cymoxanil structure and Pie chart indicating	134
		Target proteins class distribution	
46	Figure 4.3	Mancozeb structure and Pie chart indicating	135
		Target proteins class distribution	
47	Figure 4.4	Pyrazosulfuron ethyl structure and Pie chart	136
		indicating Target proteins class distribution	
48	Figure 4.5	Gene interaction of PCNA showing interaction	140
	C	with more than 10 genes	
49	Figure 4.6	Gene interaction of CCNE1 showing interaction	141
		with more than 10 genes	
50	Figure 4.7	Gene interaction of CCNA2 showing the overall	142
		interaction with 51 genes	
51	Figure 4.8	Gene interaction of bax showing interaction with	143
		more than 10 genes	
52	Figure 4.9	Gene interaction of bcl2 showing interaction with	143
		more than 10 genes	
53	Figure 4.10	Gene interaction of casp3 showing interaction	144
		with more than 10 genes	
54	Figure 4.11	Gene interaction of nfkb showing interaction with	144
		more than 10 genes	
55	Figure 4.12	Gene interaction of tnfa showing interaction with	145
		more than 30 genes	
56	Figure GC	Graphical Abstract	150
1			