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5. EXPERIMENTS AND RESULT ANALYSIS 

This chapter discusses the experimentation and the result analysis in two sub-sections. The first 

sub-section starts with the data analysis and visualization details of the proposed air quality 

monitoring system using IoT. Next, the sub-section discusses the details of the performance of 

the power consumption optimization scheme and the event-based transmission scheme. In the 

end, it discusses the quality of service and system performance under periodic transmission. 

The second sub-section starts with discussing the performance of the air quality parameter 

prediction using the proposed approach. Next, the performance under the employed 

regularization techniques and attention mechanism with various hyperparameter settings are 

discussed in the same sub-section. 

5.1 RESULTS AND DISCUSSION OF PROPOSED AIR 

QUALITY MONITORING SYSTEM 

Figure 5.1(a) represents the prototype design of the sensing smart node of the proposed 

system. Figures 5.1(b) and 5.1(c) depict the deployment of the sensing node at indoor(home) 

and outdoor(rooftop), respectively.      

 

(a) 



2 
 

        

             (b)                                                                       (c) 

Figure. 5.1. (a) prototype (b) deployment at home(indoor) (c) deployment rooftop(outdoor) 

5.1.1 Data Analysis and Visualization   

We have conducted the deployment and testing of the proposed air quality monitoring 

system at two sites (indoor and outdoor). The experiments for the indoor site were conducted 

within the home environment which we will refer to as site 2, and outdoor experiments were 

conducted at the rooftop of the building, to which we will refer as site 1. 

 We utilized the HiveMQ broker during the experiments, and the MQTT publisher was 

set to work at QoS 0 and QoS 1 levels. The publisher transmits the observed data to the broker 

from the two sites. Figure 5.2 represents the sample real-time graph generated using python 

script for a visual appearance from the data collected and logged at the MQTT subscriber at 

the server-side. These real-time graphs of data collected at the server are implemented using 

the “matplotlib” library using python script. The obtained data of CO, PM2.5, and PM10 from 

the remote side at a particular instance is shown in the figure. The observation data received at 

the periodic interval at the server are displayed in the graph by updating the graph's data at 

every one-hour sliding window in the matplotlib library. Parallel to the rendering of the real-

time graph of retrieved parameters of air pollutants available at broker from the deployment 

sites, MQTT subscribers also log the data in the MYSQL database, which can be used for 

further analysis. 
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                                       (a)                                                                                     (b) 

 

   

                                     (c)                                                                       (d) 
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                                   (e)                                                                       (f) 

Figure 5.2. Some snaps of GUI cum graphs generated from the data at server for monitoring 

the parameters of home rooftop (site 1: outdoor) and home (site 2: indoor) per one-hour 

sliding window (a) CO (at rooftop) (b) PM 2.5 (at rooftop) (c) PM 10 (at rooftop) (d) CO (at 

home) (e) PM 2.5 (at home) (f) PM (at home) 

Figure 5.3(a) represents the distribution of the pollutants recorded at the server and 

compares the daytime distribution for indoor and outdoor sites. The readings displayed are 

analysed for 6 hours’ duration at the specific instance for the two sites.  It can be seen that the 

PM2.5 parameter values vary from the minimum value of 23 to the maximum value of 51 μg 

/m3. The median of the PM2.5 observed is 35 at site1. The PM10 is observed to be in the range 

98 to 126 μg /m3and the median is 110 at site 1. At site 1, the maximum value of carbon 

monoxide observed r) is 3.15 ppm. The temperature varies from the minimum value of 32.5◦C 

to the maximum value of 34.8◦C during the 6 hours’ interval at site 1. The relative humidity is 

found to be fluctuating in the range of 24.1 % to 31.1 %. 

For the observed air pollutants at site 2, carbon monoxide, Particulate matter10, and 

Particulate matter2.5, the median values are recorded as 0.38 ppm, 80 μg/m3, and 24μg /m3, 

respectively. The highest value of PM10 is recorded 102 μg/m3 for site 2 during this time 

interval, which is 23% lower than the maximum value of PM10 observed at site1. The 

minimum value recorded for PM10 is 69 μg /m3. Figure 5.3 (b) and Figure 5.3 (c) represent the 

recorded data of pollutants Particulate matter 10, 2.5, and carbon monoxide during daytime for 

outdoor deployment and indoor deployment. The figure represents the differences in the air 

pollutant levels at both sites. From the figure, it can be observed that the second site (indoor 
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environment) is less polluted compared to the first site (outdoor site). Moreover, the collected 

pollutant at site 1 also represents a higher concentration of particulate matter and carbon 

monoxide recorded during the mid-day. The figure depicts that at site 1, the recorded value of 

air pollutants particulate matter 10 and 2.5 have been varying around 110 and 35 median values, 

respectively. 

 

(a) 

 

               (b) 
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                                                                                                  (c) 

Figure. 5.3. (a) distribution comparison of observed Parameters (b) observation of PM2.5, 

PM10, and CO at the rooftop during day time (site 1: outdoor) (c) observation of PM2.5, PM10, 

and CO at home during day time (site 2: indoor) 

Figures 5.4 (a) and 5.4 (b) show the aggregated air pollutant values of particulate matter 

10 and 2.5 for three days. The measured periodical air pollutant values were aggregated every 

three hours. The figure depicts that the outdoor site has observed the higher air pollution index 

specifically during the time slot of 12-15 hours each of the three days.  

 

  

                                (a)                                                                       (b) 

Figure. 5.4. (a) scatter plot of PM 2.5 at the rooftop (site 1: outdoor) over 3 days (b) scatter plot 

of PM 10 at the rooftop (site 1: outdoor) 

 



7 
 

Figure 5.5 represents the screenshots of the python shell at the server showing the 

received stream of air pollutants from the deployment sites. Figure 5.6 shows some of the 

snapshots of the mobile application developed for air pollutant parameters monitoring as one 

of the handy tools. 

 

Figure. 5.5. Screenshots of the python shell at sever 
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Figure. 5.6. Screenshots of the mobile application 
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5.1.2 Power Consumption Optimization Scheme and Performance 

 

Figure. 5.7. The detailed circuit design of sensor interfacing 

 The power consumption of the sensing node is a big issue when the deployment is done 

at remote places. We address the issue and attempt genuine effort to reduce the power 

consumption of the sensing node by switching the smart node to five different modes. Power 

consumption of the smart node has been reduced by switching the smart node to sleep mode at 

suitable intervals, thus the soft solution instead of hardware optimization.  The controller in 

sleep mode draws very little power comparing to regular consumption during the active mode. 

The ESP8266 12E controller supports deep-sleep, light-sleep, and modem-sleep, three types of 

sleep modes [126]. The controller draws a 0.9 mA current during light sleep mode and 120 mA 

in an active mode. The controller has been kept to a light sleep mode when the node is not 

fetching(reading) the air quality parameters data to reduce the power consumption. The RF 
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transceiver remains in an idle state while it is reading data from sensors. The transceiver is 

switched on only when the transmission of the data starts to reduce the power consumption. 

Figure 5.7 shows the interfacing of the sensors with the sensor board. As shown in the 

figure, PM sensor SDS021 and CO sensor ZE07C0 are connected to [vin] directly instead of 

the power out pin of the controller. The [Vin] here is the direct output from the power backup 

supply, which supplies the controller's power.  So, even if the controller is kept in a light sleep 

mode, the [vin] will not idle and can supply the necessary power to the two sensors.  The 

sensors can also be put to a power-down state while readings are not taken.  It is also possible 

and beneficial to power down SDS021 by switching the module to a sleep mode. It is necessary 

to maintain the ZE07CO sensor in the active mode all the time because the sensor needs a 

warm-up time of 3-minute before getting stable whenever it is switched on and off [127]. So it 

is not suitable to switch the sensor ZE07CO sensor off during the communication period. 

Table 5.1. Sensing cycle phases for various components of sensing unit during  

 parameter reading 

Phases controller DHT22 SDS021 ZE07CO Wi-Fi 

P1 light sleep  Power down sleep active OFF  

P2 active  active sleep Active OFF 

P3 active active active Active OFF 

P4 active active sleep Active OFF 

P5 active active sleep Active ON 

 The operation of the sensing node can be separated into five different phases as shown 

in Table 5.1. Initially, the system remains in the P1 phase.  

During this phase, the controller stays in a light sleep mode for 60 seconds. During this phase, 

the PM sensor module stays in hibernation mode, and DHT22 remains in sleep mode.  The 

controller will switch to an active mode from a light sleep mode when the timer expires, and 

the P2 phase starts. On entering the p2 phase, DHT22 takes 10 seconds considering the 

stabilization period of 8 seconds (delay) and records the temperature and humidity parameter. 

During the p3 phase, the ESP8266 12E will activate the SDS021. It will read the particulate 

matter data for around 10 seconds and switch into sleep mode again. After reading the Carbon 

monoxide data, the proposed system will enter into the P5 phase. Eventually, a publisher turns 



11 
 

on the transceiver and transmits the gathered data using MQTT messages. The average power 

usage of the node can be calculated as: 

𝑃 = [
𝐼𝑙𝑠𝑚∗𝑇𝑠𝑙𝑒𝑒𝑝+𝐼𝑎𝑐𝑡𝑖𝑣𝑒∗𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑠𝑖
+ 𝐼𝐶𝑂] ∗ 𝑉𝑖𝑛                                                                           (5.1) 

 where Ilsm is the current usage by sensing node in the light sleep mode, Tsleep is period 

spent in sleep mode by the node, Iactive is usual current is drawn when the node is in active 

mode, Tactive is the total active time comprised of data collection and stabilization time of the 

sensors, Tsi is the total time per sampling duration which comprises of node operation (active 

period) and sleep period, Ico is the current usage of carbon monoxide sensor which is never at 

rest. Vin is the input voltage power supply. The smart node remains in a sleep mode for 60 

seconds duration out of around 90 seconds sampling interval. The ESP8266 12E draws 0.9 mA 

current during the light sleep mode and 120 mA in an active mode as per the manufacturers' 

datasheet. The average power consumption of a smart node for 90 seconds is 316 mW plus the 

consumption of CO sensor (CO sensor is never at rest) by applying a power optimization 

scheme around 900 mW plus the consumption of CO sensor without power optimization. The 

battery's lasting time is extended, as mentioned in the table below during the experiments. 

 Without the Power 

Reduction scheme 

Under Power 

Reduction Scheme 

Battery Life Time 

(with 2500 mAh) 

7 hrs 15 minutes 12 hrs 50 minutes 

 

5.1.3 Event-based Transmission for Power Consumption Optimization and 

Performance 

The average power consumption of the sensing node depends on two criteria, the 

number of readings taken periodically (sampling frequency) and the number of transmissions 

that occur of the sensed parameters. It can be seen from Table 5.1 that the transceiver is 

activated only when the transmission takes place. The power consumption of the system can 

be reduced further if the number of transmissions can be decreased, in addition to the power 

optimization method represented above.  

|𝑋𝑡
̅̅ ̅ − 𝑋𝑡−1

̅̅ ̅̅ ̅̅ | >  𝛿 𝑋𝑡−1
̅̅ ̅̅ ̅̅                                                                                                                     (5.2) 
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Where,𝑋𝑡
̅̅ ̅ =

∑ 𝑋𝑘
𝑘=𝑡
𝑘=𝑡−(𝑁−1)

𝑁
and𝑋𝑡−1

̅̅ ̅̅ ̅̅ =
∑ 𝑋𝑘

𝑘=𝑡−1
𝑘=𝑡−(𝑁−1)

𝑁−1
 

The proposed air quality monitoring system was also investigated and implemented 

with the event-based transmission with the goal of overall transmission reduction and 

eventually the power consumption reduction. The proposed event-based transmission uses 

equation 5.2 for the decision of transmission. On fulfilling the condition of the equation, the 

transmission happens otherwise not. The 𝑋𝑡
̅̅ ̅ is the average of the last N measurement, including 

the latest measurement at time t and 𝑋𝑡−1
̅̅ ̅̅ ̅̅  is the average of previous N-1 measurement till time 

step t-1 (excluding the recent measurement). If the change in the average due to the contribution 

of the current or recent value is greater than δ percent, then the update or change is said to be 

significant for reporting, and thus the transmission happens. If any recent value of the carbon 

monoxide, PM 2.5, or PM 10 makes the condition true of the equation, then the MQTT message 

generated by the publisher is sent; otherwise, the message transmission will be skipped. 

Algorithm 4. MQTT publisher with event-based transmission 

Step 1: The smart node gets registered with the MQTT broker using a unique 

ClientID. 

Step 2 : 

 

The ESP8266 12E (publisher) turns on the Particulate matter sensor, 

fetches the observations from three sensors, and again turns the SDS021 

sensor into the hibernation mode. Store and swap the values of parameters 

for keeping the previous two values that can be used in the calculation of 

equation 5.2 in step 3. (for N=3) 

Step 3 :  If (the equation is true for any of the sensed parameters) or (skip 

counter=9)  

Reset the skip counter to zero and go to step 4 

Else increase the skip counter and go to step 7. 

Step 4: The publisher creates the MQTT message by allocating the value fetched 

in step2 to the relevant sub-topic. 

Step 5: The publisher gets connected to the HIVEMQ broker, authenticated using 

the unique ClientID. 

Step 6: The publisher's MQTT message created in step 4 is published using the 

topic set for an individual site. 

Step 7: The controller again switches to a light sleep mode. 

Step 8: After the timer gets expired, the controller auto awakes from sleep mode 

and then goes to step 2. 
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The above algorithm displays the MQTT publisher with the event-based transmission 

scheme. The gradual and steady small change can make it happen that the condition of the 

equation never (or for a longer period) becomes true under the employed scheme. Due to that, 

the air quality parameters cannot be reported at the server for a very long period. To stop such 

kind of scenario, one more condition is added to the scheme. If continuous nine transmissions 

are skipped in the algorithm (no transmission of observed data), then forceful tenth 

transmission occurs. The event-based transmission scheme is implemented using a skip counter 

that is incremented for each transmission skipping in the MQTT publisher. 

Figure 5.8 represents the total number of transmissions in the applied scheme 

experimented for 6 hours a day. The number of transmissions is calculated by considering the 

number of MQTT messages subscribed and logged at the subscriber. The figure shows very 

few transmissions in the event-based transmission scheme with N=3. Reduced number of 

transmissions results in power consumption reduction.  

 

Figure. 5.8. Message transmission under event-based transmission 
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Figure. 5.9. Message transmission for N=3 and various values of delta 

The employability of such a scheme depends on the trade-off between tolerance 

requirements in micro-level changes (to be reported at the server) versus power consumption. 

Figure 5.9 shows the effect of the delta value on the number of transmissions over five different 

runs. The number of transmissions becomes periodic transmission under the larger delta value, 

as shown in figure 5.9.  

5.1.4 Quality of Service(QoS) and System Performance under Periodic 

Transmission 

IoT-based ecosystems such as air quality monitoring systems are transporting real-time 

parameters and updates to the remote server. Such a system can also provide threshold-based 

notifications based on received data. In such a real-time system, delivering the messages (in 

terms of messages transmitted Vs. messages received) to the subscribers is a very important 

parameter. Reliable delivery or accuracy is one of the metrics representing the Quality of 

Service provided by the system. Thus implementation of QoS adds value to such a diverse 

system by providing performance, visibility, and usability of the services offered. Very few 

efforts have been attempted to implement and assess the performance of the implemented 

system under complex architecture design. 

There are three levels of Quality of Services supported by the MQTT publisher. The 

least reliable level is Level 0 in these three levels. Level 0 is fire and forgets the type of delivery 
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where the MQTT publisher transmits the MQTT message and does not bother about the actual 

delivery at the destination happen or not. The second is QoS level 1, where the publisher retains 

the message until the acknowledgment - the PUBACK message received from the broker. The 

message will be published again if the PUBACK acknowledgment is not available. Here the 

multiple deliveries at the destination are possible. The QoS level 2 guarantees precisely one 

message delivery to the subscriber. Sender and receive use various message identification for 

the synchronization of the message delivery. A publisher sends the message again with a 

duplicate flag if PUBREC is not acknowledged.  

 

Figure 5.10. System performance over an MQTT protocol: rooftop (site 1: Outdoor) and home 

(site 2: Indoor) 
 

 

Figure. 5.11.  End to End delay against QoS level in simulation 
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Figure 5.10 depicts the system performance at level 0 and level 1 of QoS for 12 hours. 

With the QoS level 0, the packet dropout ratio observed is 1.97%, and for level 1, the dropout 

ratio is around 0.94 % at site1. For understanding the effect of Quality of Service level on delay 

(end to end), the publisher environment is simulated using MQTT-JMeter (apache tool). The 

JMeter is configured with the MQTT plugin, which can serve to accomplish testing in which 

simulated clients register to the broker.  

 Figure 5.11 represents the correlation between the transmission rate and end-to-end delay 

under three QoS levels during the simulation. It can be seen from the figure that the end-to-end 

delay starts increasing when a packet is transmitted is shifted from a lower level to a higher 

level of QoS. The effect is observed in the account of the retransmission and acknowledgment 

overhead. The choice of the QoS level is a very important criterion for mitigating end-to-end 

delay and packet loss ratio.  

The retransmission and acknowledgment overhead also affect the energy consumption of 

the system. We have not analysed the power consumption performance with the selection of 

higher QoS level during our experiments, but the energy consumption is expected to be more 

with the higher QoS level selection [145].  The QoS level selection is clear trade-off between 

the allowable message loss and the system performance (higher end to end delay, higher power 

consumption). Also the optimization strategy for QoS overhead (other than OoS 0) can be 

addressed in future work. 

The accuracy values observed at site 1(outdoor) and site 2(indoor) are 98% and 96%, 

respectively, as shown in figure 5.10. The accuracy values are calculated by considering the 

total number of packets transmitted and received at the two sites. The dropout and accuracy 

show the system's performance in terms of reliable delivery of MQTT messages, including 

sensing parameters. Figure 5.12 shows the average throughput of the system.  It can be seen 

that the observed average throughput of the smart node is around 4.28 for site 1 and 4.6 for site 

2 in bytes per second for 6 hours under periodic transmission. 
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(a) 

 

 

(b) 

Figure. 5.12. Throughput of the Sensing Unit (a) home (site 2: indoor) (b) rooftop (site 1: 

Outdoor) 

 

5.2 RESULTS AND DISCUSSION OF PROPOSED AIR 

QUALITY PARAMETERS PREDICTION USING FBLSTM 

  Experimentations of the proposed prediction system or model(FBLSTM) is conducted 

using Keras 2.1.6; Keras, in turn, uses Tensorflow as the back end. The proposed model utilizes 

60 units in each layer of LSTM. The data are scaled as discussed in the data preparation section, 

and each sample's input window or sequence size is kept to be sixty. In the Keras package, the 

long short-term memory layer is shaped with a 3-dimensional vector. The vector is to be 

initialized with fields (sample space size, timestep observations in a sample, and feature). The 

training of the model is achieved by utilizing the stochastic gradient descent(SGD) 

optimization algorithm. The SGD algorithm equates the prediction to original observation, and 

the difference is used to approximate the error gradient. The error gradient is then utilized to 

modify or update the weights and biases in the neural network. The SGD [142] algorithms are 

facing the problem of determining the optimal step size. The issue is resolved by developing 

the new optimization algorithm, i.e., ADAM [142]. Adaptive moment estimation(ADAM) is 

one of the best stochastic optimization algorithms for deep neural network learning, and it 

realizes the advantages of two broadly used algorithms AdaGrad and RMSProp. We used the 

ADAM algorithm in the proposed model for optimization. The ADAM algorithm adjusts the 

rate of learning based on the average of first and second moments of the gradients. The ADAM 

delivers quick convergence with less memory requirement than the other two stochastic 

algorithms [142].  
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The batch size in a recurrent neural network can be defined as the total number of 

individual training samples used (after processing that many samples, the error gradient 

calculated) to estimate the error gradient. The batch size is one of the hyperparameters for the 

ADAM optimization algorithm. We keep the batch size of 32 during the experiments. The 

number of unidirectional layers in stacking to gain minimum loss for predicting air pollutant 

time series data is decided through experiments. The return_sequence attribute is set to true in 

Keras, while the output of one LSTM layer is given as input to the subsequent layer. So, instead 

of giving one output, the LSTM layer gives output for each timestep. The backward pass layer 

is implemented by setting go_backwards to be true in Keras. We use the functional API of 

Keras for building the proposed training model. Following is the stepwise algorithm of the 

proposed model implementation for prediction using Keras. 

Stepwise process of model creation using Keras APIs 

Tools used in experiments: 

•  Anaconda distribution with conda virtual environment 

manager 

•   Spyder open-source IDE 

•   Keras - with TensorFlow backend 
Step 1:  Read CSV file in panda DataFrame 

Step 2: Create NumPy array from panda Data Frame 

Step 3: Scale down data in [0-1] using scaler -  Min-Max Scaler 

Step 4: Create and fill train and test data structure as discussed in data preparation 

- according to the time steps parameter 

Step 5: Reshape data structure matching to Tensorflow  

- Parameters: batch size, time step, and features 

Step 6: Create a sequential model from Keras 

Step 7: Create forward and backward LSTM layer 

- set return_sequence=true for both layer and go_backwards = true for backward 

layer 

Step 8: Add both layers using bidirectional and shape them for Tensorflow 

- set merge option to the Alternatives available in Keras and of the choice 
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Step 9:  Add hidden layers(LSTM) as per requirement 

- units, activation function, return_sequences = true 

Step 10: Add Dense output layer 

Step 11: Compile the model with gradient optimization algorithm and loss function 

Step 12: Train with the fit function of the model created 

- parameters: no. of epochs, batch size for gradient update 

 

Sample screenshot showing the scaled training time-series sequence of PM2.5 
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Sample screenshot of supervised learning data structure: Input window with 60-time steps for 

PM2.5
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Sample screenshot Input window with 60-time steps with corresponding output(target) 

window for PM2.5 
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Sample screenshot showing performance after each epoch during training 

Sample screenshot: plotting of MSE per epoch (up to 100) during training  
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5.2.1 Performance Comparison of the Proposed Model: 

 

(a) 

 

(b) 

Figure. 5.13 Comparison of MSE of LSTM and RNN for (a) training and  (b) validation 
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(a) 

 

(b) 

Figure. 5.14 Comparison of MSE of proposed model(FBLSTM) with LSTM for (a) training 

and (b) validation 
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Table 5.2.: Comparison of MSE of the proposed model(FBLSTM) with LSTM and RNN for 

training and validation 

 Epochs 100 Epochs 200 Epochs 300 

Train Val. Train Val. Train Val. 

FBLSTM 

(1 hidden layer, 

CONCAT merge 

fun., sequence 

size =60) 

CO 0.0059 0.0082 0.0049 0.0069 0.0042 0.0093 

PM2.5 0.0041 0.0057 0.0039 0.0072 0.0026 0.0083 

PM10 0.0047 0.0077 0.0040 0.0073 0.0036 0.0088 

FBLSTM 

(2 hidden layer, 

CONCAT merge 

fun., sequence 

size =60) 

CO 0.0052 0.0078 0.0041 0.0061 0.0038 0.0093 

PM2.5 0.0030 0.0058 0.0025 0.0059 0.0023 0.0077 

PM10 0.0041 0.0070 0.0032 0.0067 0.0029 0.0080 

FBLSTM 

(3 hidden layer, 

CONCAT merge 

fun., sequence 

size =60) 

CO 0.0060 0.0080 0.0048 0.0074 0.0048 0.0098 

PM2.5 0.0043 0.0074 0.0045 0.0079 0.0033 0.0088 

PM10 0.0052 0.0084 0.0048 0.0081 0.0043 0.0094 

Figure 5.13 compares the loss in MSE (mean squared error) for simple LSTM and RNN 

based networks. Figure 5.14 shows the loss in MSE when applied with different stacking 

options (number of stacking layers N=1,2 and 3) for the FBLSTM model and compares it with 

the simple LSTM model. The MSE values consider for plotting the graph are the averaged 

MSE values calculated over six repeated runs. The experimentations are executed till 300 

epochs and the MSE is highlighted at the end of 100, 200, and 300 epochs for both train and 

test(validation) data. The FBLSTM performance shown in figure 5.14 is implemented with the 

“CONCAT” (Con) function for merging the two layers (forward and backward), which is the 

default one in Keras.  

RNN is facing the vanishing gradient problem as the sequence sample size grows, 

which can also be seen from figure 5.13 in the performance evaluation. On the increase of 

sequence size from 10 to 60, the MSE(loss) value also increases. Figure 5.14 shows the 

comparison of LSTM and FBLSTM with one, two, and three hidden layers. The FBLSTM 

outperforms the simple LSTM model. The Mean Squared Error values for the FBLSTM with 
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different stacking layers are shown in table 5.2 is the reproduction of figure 5.14, just to realize 

the comparison at a glance.  The MSE values in the table highlighted in bold represent the 

minimum observed loss. The minimum value of the loss, in turn, indicates the best accuracy 

for time series prediction. It can be seen from the table that in the FBLSTM approach, along 

with the mentioned hyperparameter, the minimum MSE can be realized with the stacking of 

two layers. Going further by adding more layers to the existing unidirectional stacking, i.e., 3 

layers, the performance begins degrading. The FBLSTM model performs better than the RNN 

and the simple LSTM layer. 

 
(a) 

  

(b) 

Figure 5.15: MSE for merge function alternatives over: (a) training data (b) validation data 
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The performance of the bidirectional LSTM is influenced by the way we merge the two 

layers of two directions. There are four different alternatives for merging that exist in Keras. 

The Keras implements the Concat(Con) merging option by default, in which the outputs of the 

respective cell state from the two layers are concatenated together. Mul and Add are other two 

merge modes or functions in which these outputs from two layers are multiplied or added, 

respectively. Ave is the fourth alternative for which the average of the corresponding outputs 

from the two layers’ cell state is considered. We applied the optimum FBLSTM architecture 

as shown in the above results, which have two hidden layers, and investigated the architecture 

by applying all possible four merge alternatives. As shown in figure 5.15, the optimum 

performance can be observed with the Con function over train and test data(minimum loss 

function value). Add merge mode also achieve near equal performance to the Con merge mode. 

The architecture with the Mul merge function has observed the highest loss amongst all four. 

5.2.2 Performance with Regularization Techniques Employed: 

Table 5.2 represents the mean square value at 100, 200, and 300 epochs. The results 

show that the MSE value decreases with the increase of the number of epochs for the train data. 

The epoch denotes the total number of scans throughout the whole sample space. It is 

anticipated and obvious that the MSE (loss function) decreases with the increase of epochs, 

and it becomes stable at a specific point. The same performance and behaviour were also 

demonstrated for the train data, but the same is not observed for validation data (test data). The 

in-depth performance of the model is denoted in figure 5.16 by gathering and plotting MSE 

values after each epoch for a particular sample space for better understanding for train and test 

data of PM 2.5 time-series data. The figure shows that initially, with fast convergence and after 

obtaining the lowest value of loss function, the performance starts degrading with the increase 

of epochs for validation. The behaviour depicted is due to the issue of overfitting. 
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Figure 5.16: Plotting of MSE per every epoch for training and validation 

In the domain of deep neural networks, the researchers present various regularization 

methods to overcome the issue of overfitting. The dropout approach is one of the regularization 

techniques utilized to prevent the model performance from overfitting. The dropout 

regularization method is implemented by keeping the leaving edges of hidden units in the 

hidden layer to zero at every update of the training phase [143]. Keras employs the dropout 

technique with the use of dropout layers. Dropout layers are added in between hidden layers. 

Input and recurrent edges (connections to LSTM units) are omitted from activation with the 

provided probability. The addition of dropout layers provides the environment with many 

networks having a very dynamic structure in parallel. Also, due to dropout, a neural network 

can never rely on any input node because every node has the probability of being removed. The 

overall effect is that; the neural network will not allocate any high weight to a particular feature. 

The probability setting for getting optimum performance is again hyperparameter which is 

required to be set by experiments. Figure 5.17 (a) represents all values of dropout applied 

during experiments, which are plotted against the MSE observed for specific dropout values. 

The employed dropout value varies in the range of 0 to 1. The lowest MSE is obtained at 0.3 

dropout value during experiments, and also it can be seen from figure 5.17 (a) that after 0.5 

dropout value, there is a speedy increase in the MSE function. A dropout value of 0.3 indicates 

the 30 percent of probability of node removal during training in Keras. 
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(a) 

 

(b) 

Figure 5.17: Performance of the model for (a) various values of dropout parameter under 

dropout technique (b) various values of lambda or regularization factor under L2 

regularization 

  

Another approach for regularization is utilizing weight decay, also termed L2 regularization 

[144]. The neural network always attempts to decrease the cost function by modification of 

weights and biases. For the L2 regularization method, a factor is added that penalizes the large 

weights. The factor or component is added to the cost function. The addition of the factor leads 

the overall weight matric values down, which, in turn, decreases the activation function effect. 

As an overall effect, the relatively less complex activation function may fit the observations, 

which assists in overfitting reduction. The component of the factor added can be given using 

the following equation.  
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𝑁𝑒𝑤 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐺𝑜𝑎𝑙 = 𝐿(𝑊, 𝐵) +  𝜆 ‖𝑊‖2                          (5.3) 

Lambda(λ), in the added component here, is the regularization or tuning parameter that 

balances the trade-off between a low value of weights and low training loss. Lambda is also 

the hyperparameter that is required to be optimized by experiments. We applied the initial value 

of lambda provided as an argument to the L2 regularization in Keras, beginning from 10-1 to 

10-6. Figure 5.17 (b) represents all the employed values of lambda plotted against the MSE 

value observe for that specific lambda value (regularization factor). The figure shows that the 

minimum MSE observed for the lambda value of 10-5. 

 

Figure. 5.18. MSE comparison of the proposed model(FBLSTM) under regularization 

techniques for validation data 

Figure 5.18 represents the MSE value observed for the three time-series air pollutants data 

at the end 100, 200, and 300 epochs for validation or test data. It shows the comparison of the 

MSE values for the dropout value of 0.3 and the lambda value of 10-5, which is found to be 

achieving minimum loss during the respective regularization method application. The figure 

shows that the dropout-based regularization method performs better than the weight decay(L2) 

regularization method and is more appropriate for our model. The dropout regularization 

method gains the stable converse and loss in MSE with values 0.0052, 0.0025, and 0.0041 for 

CO, PM 2.5, and PM 10, respectively.  
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5.2.3 Performance with the Self-Attention Mechanism: 

Table 5.3: MSE comparison of FBLSTM with attention and without attention after 300 

epochs for various time horizons 

 
Simple 

FB-

LSTM   

With 

self-

atten. 

Simple 

FB-

LSTM 

With 

self–

atten. 

Simple 

FB-

LSTM   

With 

self-

atten. 

Simple 

FB-

LSTM   

With 

self- 

atten. 

 
(Tx) (4Tx) (8Tx) (12Tx) 

CO 0.0051 0.0047 0.0055 0.0049 0.0073 0.0053 0.011 0.006 

Rate - - 7.84 4.26 32.73 8.16 50.68 13.21 

PM2.5 0.0025 0.0023 0.0028 0.0025 0.0044 0.0029 0.0083 0.0034 

Rate - - 12.00 8.70 57.14 16.00 88.64 17.24 

PM10 0.0041 0.0036 0.0045 0.0039 0.0066 0.0044 0.0118 0.0052 

Rate - - 9.76 8.33 46.67 12.82 78.79 18.18 

Table 5.4: MSE comparison of FBLSTM with attention and without attention after 300 

epochs for various input windows 

  

Input 

Window 

size 

CO Rate PM2.5 Rate PM10 Rate 

FBLSTM            

60 

0.0055 - 0.0035 - 0.0046 - 

FBLSTM + 

Attention 

0.0036 - 0.0021 - 0.0034 - 

FBLSTM 

80 

0.0084 52.73 0.0057 62.86 0.0074 60.87 

FBLSTM + 

Attention 

0.0045 25.00 0.0029 38.10 0.0045 32.35 

FBLSTM 

120 

0.0223 165.48 0.0191 235.09 0.0208 181.08 

FBLSTM + 

Attention  

0.0086 91.11 0.0061 110.34 0.0091 102.22 

As discussed in subsection 4.2.2, the self-attention mechanism was also applied and 

tested during the experiments. The Self-attention layer is kept as the last layer in the 

model(FBLSTM) shown in figure 4.6. The output of the self-attention layer is given as input 

to the final dense layer for prediction. To understand the effect on loss function and 

improvement to the existing model, we analyse the self-attention mechanism with two 

dimensions; time horizon and input window size or input lag. While increasing the time 
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horizon, the sequence size is kept of the same length. By keeping the same sequence size and 

increase in time horizon, employed recorded parameter samples in training realize more 

fluctuations than the small-time horizon. Table 5.3 compares the loss function value (mean 

squared error) obtained for the FBLSTM (with two hidden layers), without attention, and with 

attention mechanism for the three air quality parameters. The table shows the effect on MSE 

value with the increase in the time horizon. The first two rows in the table depict the MSE 

value for Tx (the basic time step in the input sequence) 90 seconds. The time horizon increment 

further is obtained by aggregating the recorded value for the basic time step, i.e., 4Tx horizon 

is the aggregated value over 360 seconds, and so on. The rate column in the table shows the 

percentage of increase in MSE value with the increase of time horizon from the previous one. 

It can be seen from the table that with the extension of the time horizon, the rate of increase in 

MSE (compared to the previous horizon) remains small for the model with an attention 

mechanism. The high rate of increase in MSE represents the rapid reduction in prediction 

performance with the extension in the horizon. It can be seen that initially, there is not much 

difference between the performance of the two models. Still, with a higher time horizon, the 

attention mechanism model performs substantially better than the one without attention. Table 

5.4 shows the performance of the two models with the increase in input window size over 

recorded air quality parameters observations of a single day. The MSE value and rate of 

increase in MSE are listed for an input window size of 60, 80, and 120. The table indicates that 

the model with the attention mechanism realizes lower MSE and a slow rate of increase in MSE 

for larger input window size. Thus the table depicts self-attention mechanism provides better 

performance for longer sequences. 

 

 

 

 

 

 

 


