TABLE OF CONTENTS

Sr. No.	Topic	Page No.
i	Certificate	I
ii	Approval	II
iii	Candidate's Declaration	III
iv	Acknowledgments	IV
V	Abstract	V
vi	Table of Contents	VII
vii	List of Tables	X
viii	List of Figures	XI
1	INTRODUCTION	1
	1.1 Air Pollution and Hazardous Effects	1
	1.2 Role of IoT in Environment Monitoring	3
	1.3 Deep Learning in Air Quality Prediction	5
	1.4 Motivation For This Work	7
	1.5 Problem Statement and Objectives	7
	1.5.1 Problem Statement	7
	1.5.2 Objectives	8
	1.6 Research Contributions	8
	1.7 The Overall Organization of Thesis	11
2	LITERATURE REVIEW	13
	2.1 Review of Existing Air Quality Monitoring Systems	13
	2.2 Review of Existing Air Quality Parameters Prediction	22
	Approaches	
3	FUNDAMENTALS OF THE IoT AND DEEP LEARNING	31
	3.1 Internet of Things Ecosystem	31
	3.1.1 Infrastructure Protocols	33
	3.1.2 Session/Application Protocols	34
	3.1.3 Low-Cost Sensors for Air Pollutant Gases	38

	3.2 Deep Learning	40
	3.2.1 Recurrent Neural Network	43
	3.2.2 LSTM Neural Network	45
4	PROPOSED SYSTEM ARCHITECTURE AND	50
	METHODOLOGY	
	4.1 Air Quality Parameters Monitoring Using IoT	50
	4.1.1 Proposed Standardization and Layered Architecture	50
	4.1.2 Details of the Sensing Unit	54
	4.1.3 Detailed Functioning and Implementation	58
	4.2 Air Quality Parameters Prediction using Deep Learning	64
	4.2.1 Proposed LSTM based Neural Network (FBLSTM	: 65
	bidirectional and stacking)Model	
	4.2.2 Attention Mechanism Employed	66
	4.2.3 Data Preparation	67
	4.2.4 Preprocessing and Performance Metrics	69
	4.3 Tools Used for Implementation	70
5	EXPERIMENTS AND RESULT ANALYSIS	74
	5.1 Results and Discussion of Proposed Air Quality Monitoring	g 74
	System	
	5.1.1 Data Analysis and Visualization	75
	5.1.2 Power Consumption Optimization Scheme and	d 82
	Performance	
	5.1.3 Event-based Transmission for Power Consumption	n 84
	Optimization and Performance	
	5.1.4 Quality of Service(QoS) and System Performance	e 87
	under Periodic Transmission	
	5.2 Results and Discussion of Proposed Air Quality Parameter	s 90
	Prediction Using FBLSTM	
	5.2.1 Performance Comparison of the Proposed Model	96
	5.2.2 Performance with Regularization Technique	s 100
	Employed	

	5.2.3 Performance with the Self-Attention Mechanism	104
6	CONCLUSIONS AND ROAD-MAP	107
	6.1 Conclusions	107
	6.2 Road-Map for Future Work	108
7	PUBLICATIONS	110
8	REFERENCES	112