List of Figures

Figures		Page
1.1	Evolution of isotopic composition of substrate (NO ₃ ^{$-$}) and product (N ₂) for different fractionation factors as denitrification progresses	4
1.2	Summary of δ^{15} N in biogenic nitrogen containing substances in the marine environment.	5
1.3	Important biogeochemical transformations involving nitrogen and their relationships	6
1.4	Summary of US JGOFS primary productivity observations as compiled by Falkowski et al. (2003)	12
1.5	Simplified nitrogen cycle in euphotic zone modified after Dugdale and Goering (1967)	14
1.6	Export ratios calculated as a function of temperature and net photosynthesis rate (Laws et al. 2000)	14
1.7	Export flux of particulate organic carbon (²³⁴ Th method) vs primary productivity (Buessler 1998) (source: Treguer et al. 2003)	15
2.1	Locations showing all the CTD stations as well as new and regenerated production stations (PP)	28
2.2	Sampling of seawater onboard ORV Sagar Kanya.	29
2.3	Sample Locations in the NE Arabian Sea	32
2.4	Filtration unit used during the present study	37
2.5	Schematic diagram showing the elemental analyzer set up	40
2.6	A typical chromatogram (for ammonium sulphate ~ 0.053 mg) obtained during the present study	42
2.7	The linearity of ¹⁵ N atom% for (a) atropine and (b) ammonium sulphate over widely varying sample amounts	45
2.8	A typical example of calibration curves using different materials (atropine, ammonium sulphate and potassium nitrate)	47

.

Page

•

3.1	A schematic representation of identified current branches during Northeast (top) and southwest (bottom) monsoon	56
3.2	Findlater jet along with region assumed to have positive and negative wind stress curl (Brock et al 1991)	57
3.3	Euphotic zone integrated concentration (left panel) and vertical profile (right panel) of Chlorophyll <i>a</i>	64
3.4	The euphotic zone integrated (left panel) and vertical profile (right panel) of ambient nitrate at different stations during January 2003	64
3.5	The euphotic zone integrated (left panel) and vertical profile (right panel) of ambient ammonium at different stations	65
3.6	The long-term average Sea surface Temperature (SST) of the Arabian Sea during January	66
3.7	Air temperature at different stations at the time of sampling (right panel) during January 2003	67
3.8	The monthly average of wind speed and direction over Arabian Sea (left panel, Source: Quikscat)	67
3.9	Air pressure at the time of sampling during January 2003	68
3.10	Temperature profiles at different stations obtained with Satlantic Radiometer during January 2003	68
3.11	Salinity variation from south to north at sampling time during January 2003	68
3.12	¹⁵ N based total productivity (estimated as sum of nitrate, ammonium and urea uptakes) observed during present study	69
3.13	New production observed at different locations during January 2003	71
3.14	Relationship between new and total production (excluding PP2) observed during January 2003 in the Arabian Sea	72
3.15	New (nitrate uptake) and Regenerated (ammonium + urea uptake) production observed in the Arabian Sea during present study	74
3.16	Vertical profile of nitrate uptake rates at discrete depths at different locations	76
3.17	Vertical profile of ammonium uptake rates at different depths at various locations	77

Page

3.18	f-ratio observed (with and without urea) during January 2003	79
3.19	The observed negative relationship between f-ratio and euphotic zone integated nitrate (left panel)	81
3.20	Euphotic zone integrated (left panel) and vertical profiles (right panel) of Chlorophyll <i>a</i> at productivity stations	83
3.21	The euphotic zone integrated (left panel) and vertical profiles (right panel) of ambient nitrate at different stations	84
3.22	The long-term average Sea Surface Temperature (SST) of the northeastern Arabian Sea for the study period (1-10 March)	85
3.23	Air temperature measured over the northeastern Arabian Sea during sampling	86
3.24	Wind speed over the Arabian Sea during Late February-early March	86
3.25	Air Pressure during sampling time in the Arabian Sea	86
3.26	Temperature profile at different stations obtained with Satlantic Radiometer during Late February-Early March 2003	87
3.27	¹⁵ N based total productivity during late February-early March 2003	89
3.28	Components of regenerated production (ammonium and urea uptake)	89
3.29	New production observed at different locations during late February- early March in the northeastern Arabian Sea	90
3.30	Observed relationship between new and total production in the Arabian Sea during late February and early March 2003	91
3.31	Relationship between new production and euphotic zone integrated nitrate observed in the Arabian Sea	91
3.32	Vertical profiles of nitrate uptake rates at various locations in the northeastern Arabian Sea during late February-early March	93
3.33	f-ratios observed (with and without urea) in the northeastern Arabian Sea during the present study	94
3.34	Relationship between the temperature based mixed layer depth and the residence time of nitrate in the water column	95

3.35	Relationship between δ^{15} N and PON during both cruises	99
3.36	Relationship between $\delta^{15}N$ and NO ₃ concentration during both cruises	100
3.37	Geographical limits of the Arabian Sea denitrification zone delineated by Naqvi (1991)	102
3.38	Isotopic composition of nitrate and nitrogen gas with depth	103
3.39	Relationship between fraction of remaing nitrate (f) and its isotopic composition for different fractionation factors	107
4.1	Mean monthly water discharge of Ganges (averaged over 1985-1992) and Brahmaputra (averaged over 1969-1975)	110
4.2	The result of experiment 1 showing variation in specific uptake rate (top panel), uptake rate (middle panel) and f-ratio (bottom panel)	115
4.3	The result of experiment 2 showing variation in the specific uptake rate (top), uptake rate (middle) and f-ratio (bottom)	118
4.4	Comparison of uptake results obtained from in-situ and simulated in- situ experiments	121
4.5	The specific uptake rate at PP2 (left) and PP7 (right) for the incubation at different intervals during a day	122
4.6	Euphotic zone integrated (left) and vertical profiles of Chl <i>a</i> at different productivity stations (right) in the Bay of Bengal	125
4.7	Figures showing euphotic zone integrated (left) and vertical profiles of nitrate at different productivity stations	126
4.8	The spatial distribution of salinity (top left), SST (top right), MLD (bottom left) and typical wind speed.	127
4.9	The euphotic zone integrated total column productivity (left) and relationship with 14 C based productivity (right), during postmonsoon.	128
4.10	The euphotic zone column integrated nitrate uptake (left panel) and depth profile of nitrate uptake at different stations (right panel)	130
4.11	Euphotic zone integrated column uptake of ammonium (top left) and urea (top right)	131

Page

4.12	The upper bound of f-ratio (left) and relationship between f-ratio and total production during post monsoon in the Bay of Bengal	132
4.13	Euphotic zone integrated (left) and vertical profiles of Chl <i>a</i> at different productivity stations during premonsoon	133
4.14	Euphotic zone integrated (left) and vertical profiles of nitrate at different productivity stations	135
4.15	Comparison of Salinity (top left), MLD (top right) and SST (bottom) during pre and postmonsoon in the Bay of Bengal	136
4.16	The euphotic zone integrated total column productivity (left) and relationship with ¹⁴ C based productivity	138
4.17	The euphotic zone column integrated nitrate uptake (left panel) and depth profiles of nitrate uptake at different stations	139
4.18	Euphotic zone integrated column uptake of ammonium (top left) and urea (top right) during premonsoon.	141
4.19	The upper bound of f-ratio (left) and relationship between f-ratio and total production during pre monsoon in the Bay of Bengal	142
4.20	Relationship between total and new production. Top panel represents the Arabian Sea data from Watts and Owens (1999)	149
4.21	The relationship between δ^{15} N and PON during post (filled circles and squares represent offshore and shelf stations) and premonsoon.	155
4.22	The relationship between salinity and $\delta^{15}N$ for post (filled circles and squares represent offshore and shelf stations) and premonsoon.	157
4.23	The depth profiles of δ^{15} N and PON during premonsoon in Bay of Bengal at different stations. The filled and unfilled circles indicate δ^{15} N and PON respectively.	161
4.24	The Log-Log plot of euphotic zone integrated insitu primary productivity estimated by ¹⁵ N technique and corresponding climatological mixed layer integrated OCM values.	169

Plates showing OCM data based productivity maps for the Bay of Bengal 170-171