chapter v

-

,

.

LABORATORY INVESTIGATIONS

Major oxides and trace element analysis

Chemical analyses of samples from representative members of nearly all bauxitic profiles described earlier on was done. Normal wet variation diagrams of the oxides versus the depth have also been given.

In order to study the variation of major oxides and trace elements, 12 profiles were chosen, spanning from the northern end of the lateritic/bauxitic belt to the western end.

The profiles selected were (starting from the northern flank) (Fig. 9).

- (a) Mota Asota
- (b) Virpur
- (c) Ran
- (d) Mahadevia
- (e) Mewasa the in the
- (f) Bhatiya Shet either in the
- (g) Buddhadhar . Spelling dies in the
- (h) Bhopamadhi ... Nel L'er ...
- (i) Khakharda 🔨
- (j) Kenedi
- (k) Karamkund
- (1) Lamba ./

Chemical analysis for the determination of major oxides and trace elements was done on ICP at R.S.I.C., IIT Powai Bombay.

Sample preparation

0.5 gram of rock powder is weighed accurately into a platinum crucible together with 1.5 gram of lithium metaborate (LiBO₂). The mixture is carefully mixed and then heated upto 900°C for 30-45 minutes in a furnace. After cooling, the entire crucible should be immersed in beaker containing 175 ml of distilled water and 10 ml of conc. nitric acid. A magnetic bead is placed in the crucible and stirring over the surface of the fused mixture began without delay. Complete dissolution should be achieved in 1-2 hours and the solution is then diluted to 250 ml.

Further, in order to ascertain the relative losses and gains of chemical constituents in the various horizons of the 12 weathering profiles mentioned, a mass balance model was made of each of the profiles. The methodology followed was as per Esson's (1983) paper. Elements, conventionally those contributing significantly to the analytical total, reported as oxides were retained as oxides in the mass balance model. The mathematical basis of the model is as follows (after Esson, 1983).

The purpose of the model is to estimate:

- (a) the thickness of bed rock consumed in forming the soil profile, and
- (b) elemental balance for each sampling interval in the profile.

Aggregate bed rock thicknesses and elemental balances for individual horizons and the full profile are obtained by summing the results from (b) over the measured thicknesses. All calculations are based on unit area of profile.

Consider a sampling interval of thickness T formed, according to the model, by differential leaching of bedrock. The mass of index constituents in this interval is given by IDT/100 where I is weight % of index constituent and D, the bulk density of the dry sample. Let T' be the thickness of bedrock containing an equal mass of index constituent. Then, IDT/100 = I'D'T'/100, where I' and D' are the weight % index constituent and density for bedrock. Thus, the model bedrock thickness consumed to produce thickness T of the soil profile is given by

 $T = \frac{IDT}{I'D'} - - - - - (1)$

In order to estimate T', however, the bulk density of the dry soil is required and is difficult to measure because variable amounts of shrinkage and crumbling occur on drying. Values of the mean particle density for dried powdered samples from horizon 3B are in the range 3.05 - 3.50 gcm. Crude

measurements of dry bulk density indicate a maximum porosity of about 50%. For the sake of uniformity, the D values used were taken as 50% of the mean particle densities, i.e. D value in the range 1.52 - 1.75. Bedrock density measurements given an approximate average value of 2.75 (D').

For any other constituent, the mass in dry soil of thickness T is given by EDT/100, where E is the constituent weight %. Similarly, a thickness T' of bedrock contains,

These two expressions can be used to evaluate the weight % of the constituent lost during the conversion of thickness T' of bedrock into a thickness T of soil. The result is

$$100 \quad 1 - \frac{EDT}{E'D'T}$$

using equation (1) to eliminate T', this reduces to wt % constituent lost

t

100
$$1 - \frac{EI'}{E'I}$$
 ----- (2)

The index constituent could be resistant mineral or a chemical constituent, and in the present case has been taken as the resistant index.

XRD Analyses

Minus 230 mesh portions of the powdered bulk samples of the sample were subjected to XRD studies. The instrument used was Philips X-ray diffractometer with a Cu-target and Cu K-alpha radiation. The study was carried out at the R & D laboratory of the I.P.C.L., Baroda. The samples were "scanned from 10° to 50° at a speed rate of 2° per minute and having a chart speed of 2 cm per minute, the range being 2 x 10^3 C/S. The 'd' spacing and intensities were calculated and compared with ASTM standard charts for different minerals.

			 		······			
		STH N HIS	-00 2-6	8-7 - 9-2	4.8-5-8		ϡ	
		NF NF	 21.57 <u>9</u>	3 3	18-36	32.79	5.00	
			 22-00	08.16	91.63	33 . 65	63.00	يئ ا
			 0.10	<u>-</u>	н Н	Et	8°00	
		Cu 2	 95.80	121.21	98 . 86	70.39	8°56	Bag
	mter N	►	 320.11	417.27	271.99	129.63	265.00	
	LEVENTS D	5	 131.32	161.53	14.68	£0,101	95.00	
	TRACE E	£	н.	£.	FI	H	H	
		ยื	63.50	79.32	101.58	63°63	70.00	
		E	 18,26	7.12	1.03	83.0	8.1	
		¥	 ęı	H	ę.	به	н	
2 1		SC	, 89 . 23	101.34	12.111	. 8. 8	95.00	
Table	1	2°5	0.08	0.12	0.12	0.0	0.08	
		Na ₂ o P	0.32	0-30	0.24	0.18	0.8	
		K20	0.15	0_18	0.18	0. 14	8 -	
	I	MgO	1.20	0.77	0.63	0.41	8.°0	-
	ž	Ca0	 4.11	3.56	3.21		0.97	
		MEO MEO	0.36	0.31	0.21	4E-0		×.
	HULDH	T102	2,30	2.32	3.41	<u>ຮ</u> ້.	2.40	
, el	•	a203	 29, 18	16.75	11.27	12.41	8. 60	
TLA ASOT		302	42.83	46.68	66.72	68,36	13.20	
2		4 201E	19.47	17.85	13.61	11.43	49.00	
		ستسه	 					

ı

.

•

141

FIG 34a. VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT MOTA ASOTA VILLAGE (SiO2, Al2O3, Fe2O3, TiO2)

142

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 34 b. PROFILE AT MOTA ASOTA VILLAGE (MnD₂, CaO, MgO, K₂O)

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 34 c. PROFILE AT MOTA ASOTA VILLAGE (NagO, PgO5)

.

143

.

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FLG. 34 d. PROFILE AT MOTA ASOTA VILLAGE (Sc, La, Ce, Zr)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT MOTA ASOTA VILLAGE (V, Cu, Cr, Ni)

.

FIG. 34 e.

к	1
1	
Q	<u>ر</u>
17	1
2,	1
Q	d
E	4

NET GAINS AND LOSSES OF MAJOR^I OXIDES AND TRACE ELEMENTS BASED ON A TI-RETAINED MASS BALANCE MODEL LOC. MOTA ASOTA

Bed rock thickness consumed to produce present thickness of the weathered profile 27.30 m.

Depth	0.00-2.6 ш	2.6 n-4.8	4.8 -5.8m	5.8m-8.2	
Horizon	Box (Fer)	¹ B _{mx} (Fer)	, B _{ax} (Alu)	, B _{cx(Alu)}	Remarks
5102	- 59.36	- 63.06	₩ 80°87	- 84.32	Downward increasing mobilities
A1203	237.05	264.18	254.14	68*01	mid profile gains in the Box(Alu) & Box(Fer) zone but with bottom and top horizon of substantial depletion.
Fe203	253.96	235.64	- 7.79	- 1.07	Top two horizon of gains in the Box(Fer) zone with two bottom horizon of losses in Box(Alu) zone.
T102	'n	ł	1	ŧ	1
MnO ₂	4.24	- 11.00	- 58.98	- 35.30	Top horizon of gain with three bottom horizons of losses
cao	341.37	279-01	132.51	117.36	Upward increasing gains with a top horizon maxima
MgO	- 34.26	- 58.18	- 76.72	- 85.24	Downward increasing mobilities.
К ₂ 0.	- 66,95	- 84.4 8	- B9.44	- 76.57	Mobile throughout the profile.
Na_2O	- 58.26	- 61.20	- 78.88	- 84.57	Downward increasing mobilities.
P205	4.34	55.17	5.57	- 14.28	Top three horizon gain with a bottom horizon of losses in Box(Alu)
Sc	- 3.01	- 9.18	- 14.02	- 35.07	Top and two bottom horizons of losses with a gain in the mid-profile of
≻	E	E	Ħ	н	Box(Fer) zone.
La	65.13	- 36.16	- 93.71	- 95,12	Top horizon of gain with three bottom horizons of losses.
Ce	- 61.30	16.24	1.28	- 21.67	Top and bottom horizon of losses with the mid-profile gain
Pb	H	£	H	Ħ	1
2 r	25.61	53.17	- 42.27	- 36 . 49	Top two profile of gain in Box(Fer) zone with bottom two profile of losses in Box(Alu) zone.
٨	25,26	- 99.61	- 28.21	- 66,66	Top horizon of gain with three bottom horizons of losses.
nD	- 98,95	25•38	- 30.42	- 51.73	Top horizon and bottom two horizon of losses with a gain in the Box(Fer) zone.
Zn	31.73	E1	H	Er	Top horizon of gain.
Сr	102.08	26.61	- 21.32	= 6.54	Top two horizon of gains with a bottom two horizon of losses
IN	30.65	3 0 • 84	- 41.31	2.11	Top two and bottom horizon of gain with a losses in the Box(Alu) zone.
e t 2 E	• 8 8 8 8 8	1 6 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	146

,

o- 1

•

						147
-	EPTH IN MTS.		1	21 - 3-2	3.2 - 6.5	-
	11	32.52	18.68	29,98	23.76 26.00	
		29.58	70.65	03.80	165.06 154.00	E
	4		12.80	7.24	H 0	- 25.1
	T			74.75	88.03 73.00	Basalt
	0		7.95		198.68 77.00	-
IN SING		-20	5.75 31		9.52 5.00 30	
HETE SO	7	 5	8	œ 	÷۳ ۵۵	
	£.	£1	F 4	с.		
	ទី	63.38	96.76	107.07	88.30 70-00	
	4	Ę	15.12	2.79	11-30 11-30	
	H'		ŧ	Ęł	H H	
4	8	57.01	80, 14	97 . 68	71.39	
able -	505	50°0.	0.08	0.03	0.07	
Ĕ	4-0- 1	0,08	0.11	0.08	0.12 1.00	•
	K20	0.10	60*0	60*0	0.12	
	8	0.25	0.27	0.23	0.23	
*	9		t. ti	1.07	1.11	
	2 2 2	0.19	°0,18	0.08	0.08 0.40	
MAJOR C	7102 M			2.49	2.21 2.50	. `
•	20 ³		44.16	54-13	35.29 9 . 00	
RUTER	1303 F	7	20.51	8.8	48,92	
51	102 A:	29.78	31.36	10.41	11.76	
	12					

(

.

149

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 35 b PROFILE AT VIRPUR VILLAGE (MnO2, CaO, MgO, K2O)

,

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT VIRPUR VILLAGE (Na20, P205)

FIG. 35 c.

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT VIRPUR VILLAGE (Sc, La, Ce, Zr)

---- Zr

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT VIRPUR VILLAGE (V, Cu, Zn, Cr, Ni)

.

٨

152

.

FIG. 35 e.

																							1	იი
	Remarks	Top and bottom two horizon of losses with a mid-horizon of gain lateritic soil zone.	Downward increasing gain with a maxima in the Box (alu) zone.	Top two horizon of gain in lateritic soil zone with two bottom horizon of substantial depletion.	900 900 900	Top and two bottom horizon of losses with a mid-horizon of gain.	Top two profile gains in the lateritic soil zone with two bottom horizon of substantial depletion.	Mobilities throughout the profile.	Mobilities throughout the profile.	Mobilities throughout the profile.	Top and two bottom horizon of losses with a mid-profile horizon of gain in the lateritic soil.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Upward increasing gains with a maxima at the top, and bottom horizon of losses.	Anna Manaj	Mid-profile gains in lateritic soil zone but in Bottom Box(Alu), zone of loss.	Increasing gains throughout the horizon with a maxima in lateritic soil zone.		Two top horizon of gain with two bottom horizon of losses.	Increasing gain throughout the horizon with a maxima in lateritic soil zone.	Increasing gain throughout the horizon with a maxima in lateritic soil zona.	Losses in the upper and lower portions with a mid-profile gain.	Increasing gain throughout the horizon with a maxima in lateritic soil zone	Unward increasing gains with a top horizon maxima.
3.2m-4.5m	' B(sap)	- 79.39	325,00	262.48	I	- 77.37	25-56	- 86,89	- 87.67	- 86.42	- 35-36		: : : : :	- 16.01	н	H	40.63	H	- 35.01	8.11	35.43	ŧ.	20.22	3.21
, 2.1m-3.2m	; Bax (Alu)	60*62 -	369.43	175.10	I	- 79.91	7.42	- 88.45	- 91.79	- 91.96	- 56.97		 	1.99	H	- 75.34	50.50	н	- 6.37	9.72	2.06	- 33.12	. 27.74	15.58
1 1.1m-2.1m	Lat.Soil	• 55.24	289,89	1111.12	1	11.38	201.98	- 66.58	- 79.77	- 72.77	182,85		 	106.30	FH	229.34	374.82	н	169.18	151.84	131.94	145.76	170.33	77.55
, 0.00-1.1m	Lat.Soil	- 6.35	215.53	608 . 52	I	- 25.31	77.67	- 80.34	- 85.72	_ 87.42	- 32.62			81.06	£+	H	39.51	H	84.57	20.81	34 . BB	н	30.39	96.34
Depth	Horizon	2012	A1203	Fe203	T102	Mn0 ₂	CaO	MgO	K_2^{0}	Nazo	P205	9 3 8 8 8		o N	ľ	La.	e	ፎ	Zr	٨	Cu	Zn	ц С	ŦN

.

, Table - 5 Net cains and losses of major oxines and trace flements based on a ti-fetained mass balance morel.

,

151

ډ.

	1 77		www.co.u.co.co.co.co.co.co.co.co.co.co.co.co.co.				j	154
	SEPTH IN ME		5·1 - 00-0	6-E 	3.5 - 5.5	× 5-5		
	TH N		27.18	17.88	8 0°0 2	£4.66	32.8	
	5	1	716.27	628.13	178.23	129.16	156.00	
	-		Ę4	£4	ы	н	e	2
		1	80.15	246.75	127.17	108.09	97.50	asalt
mdd N	-		287.23	312.17	341.71	298,63	301.00	
u sineau	-	-	217.141	131.19	155-27	- 9 4 ,88	101.20	
TRACE E	P 42		EH /	E4	Ęı	F	E4	
	9 0		52. ⁴ 8	79.80	101.67	8.01	63. X	
	.9		H	Ę4	H	H	Fi	
	Y		н	H	ч	E4	ŧ.	
9 1	2	-	02.78	90.25	107.19	87,06	89.03	•
able	20,	 ``	0.08	60°0	0.07	0*06	0-06	
F-4	a_0 P	,	0.78	0.77	0.61	0.59	070	
	3	,	1.61	1.51	477°L	1.23	1.20	
	MgO		1.36	1.32	1.22		7.70	
ж А и	oe:	1	0.51	0	0.53	67°0	1+20	•
		u l	0.83	66.00	1-06	1.01	0.50	
MAJOR	H LOE	v	3.12	3.31	3.58	3.20	2,16	
	e_0_	с у С у	27.24	11.76	11.12	29.73	8. æ	
RAN	1-0-1		42.17	60.79	61.14	40.25	17.50	N
	10	N	2.11	17.30	16.49	22.47	39.00	

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG: 36 a. PROFILE AT RAN VILLAGE (SiO2, A1203, Fe203, TiO2) .

% OF OXIDE % OF OXIDE 35 A 30 3 25 20 2 15 10 1 5 or Or 0 2 4 ٥ 2 4 8 8 DEPTH IN MTRS. - Fe₂O₃

•

8 6 DEPTH IN MTRS.

. .

155

ł

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT RAN VILLAGE (Na20, P205)

157

FIG. 36 c.

t

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT RAN VILLAGE (Sc, Ce, Zr, V)

FIG. 36 d.

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 36 e. PROFILE AT RAN VILLAGE (Cu, Cr, Ni)

.

	and a second												1 1 1 1	111										160
SS BALANCE_ MODEL : 24.31 m		53) zone but with no bottom denletion	vith a zone of depletion		a bottom horizon maxima			ncreasing downwards.			, , , , , , , , , , , , , , , , , , ,					***			with a míd-profile horizon		ottom horizons of losses.	losses with a mid-profile zone.
LEARENTS BASED ON A TI-RETAINED MAY		Remark	Mobile throughout the profile	Mid-profile gains in the Bax(al and top horizons of substantial	Top and bottom horizon of gain in the Box(Alw) zone.	90 mm	Downward increasing gains with	Mobile throughout the profile	Mobile throughout the profile	Mobile throughout the profile i	Downward increasing mobilities	Downward increasing mobilities	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Downward increasing mobilities			Upwards increasing mobilities		Downward increasing mobilities	Mobile throughout the profile	Losses throughout the profile, of gain in the Box(AlW zone.	1900 VALUE - AND	Top horizons of gain with two b	Two top and bottom horizons of horizon of gain in the Box(AlW
Table - 7 25 AND TRACE E1 ince present th	5.5-7.1m	, ^B (sap)	- 61.37	54.71	127.62	ł	36,35	- 72.43	- 55.94	- 30.81	- 43.21	- 32.5	3 3 2 3 1 4	- 34.70	H	ŧ	- 4.36	Ħ	- 41.94	- 34.67	- 25.68	£I	- 47.52	
CF MAJOR OXID	3.9-5.5m	' ^B ox(Alu)	- 74.73	110.06	- 23.89	ı	27.91	- 73.35	- 56.72	- 27.59	- 47.51	- 29.60	1 1 1 1 1 1 1 1 1 1		H	E4	- 3.44	H	- 8,91	- 33.18	- 21.85	fi	- 35.27	66.65
S AND LOSSES thickness c	1.9-3.98	' ^B ox(Alu)	- 71.25	135.87	- 13.02	1	29.20	- 62.47	- 49.35	- 12.44	- 28.35	- 2.11	3 8 3 5 5 8		H	£	- 18.03	H	- 16.76	- 33.98	64.00	T	170.26	- 63,80
NET GAIN LOC.: RAN Bed rock	,0.00-1.9 ^m	· ' ^B ox(fer)	- 62,92	63.62	110.52	ı	13.11	- 71.04	- 45.51	- 8.50	- 24.21	- 9.14	4 9 8 6 5 6		E	Ħ	- 43.71	Fi	- 6.31	- 36.57	- 44.37	£	193.73	- 42.55
:	Depth	Horizon	S102	A1203	Fe203	rio_2	MnO ₂	CaO	MgO	K ₂ 0	Na ₂ 0	P205	8 6 3 8	1 20 1 20 1 20 2 1 20 2 1 20 2 1 20 2 1 20 20 2 1 20 20 20 1 20 20 1 2 2 2 2	Y	La	Сe	പ്	Zr	٨	C r	Zn	Сr	1

.

9-6 - 10-6 8-2 - 9-6 DEPTH INMTS. 6-6 - 8-2 3-6 - 5-6 5-6 - 6-6 0-00 - 1.6 1-6 - 3-6 61.19 53.62 43.93 36.50 2 3.59 22.56 38.40 17.88 W 240.40 313.56 213.00 276.16 219.99 301.98 333.33 412.76 5 13.00 19.98 21.07 15.10 11.74 H H н អ 65.00 17.92 61.13 57.02 68.15 42.67 82.79 12.07 . ä 140.71 270.00 211.49 176.88 267.03 289.19 313.77 341.63 PRACE ELEMENTS IN DIA ⊳ 120.38 106.00 80.14 180.17 101.98 93.71 131.49 161.45 5 ы qq ы H н н ы Fi ы 68.50 47.53 52,98 107.92 80.23 99.71 69. 15 10.01 5 7.50 2.03 11.11 ы FI н ы н F. 1.10 1.12 0.97 ÷ ę. 54 ы ы ч . 8,8 117,46 87.52 120.03 56.31 107.11 83,96 149.82 Table - 8 8 0.08 0.03 0.03 0, 12 0.19 0.17 0-03 0,08 P205 0.60 0.13 0.24 0.09 0.01 1⁰.0 60*0 0.23 Nazo 0.80 0.09 0.13 0.08 0.05 0.03 0.03 0*03 $\mathbf{K}_{2}^{\mathbf{0}}$ 8. 1.19 0.02 1.23 1.42 1.47 1.58 1.53 0⁸M 1.10 1.19 1.86 1.32 1.51 1.51 1.16 1.28 MAJOR OKITES IN 🛠 Cao 0.50 0.19 0.28 0.17 0.21 0.19 0.24 0.20 MIIO2 2.40 3.16 3.39 2 1.83 2.19 1.68 4.81 T102 13.83 38.60 8.40 12.86 30.4 28,92 16.47 18,30 A1503 Fe-03 MARADEVIA 23.50 21.65 36.39 61.77 62.81 58.97 25.77 35.48 40.00 19.39 27.97 33.58 15.78 16.93 \$10² 41.02 29.17

,

- 47 =-- Basalt

`.

.

~

•

÷

,

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 37 b. PROFILE AT MAHADEVIA VILLAGE (MnO2, CaO, MgO, K2O)

163

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 37c. PROFILE AT MAHADEVIA VILLAGE (Na20, P205)

164

•

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 37 e. PROFILE AT MAHADEVIA VILLAGE (Zr, V, Cu, Zn)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 37 f. PROFILE AT MAHADEVIA VILLAGE (Cr, Ni)

.

.

•

167

---- NI

თ
I
٩.
q
EH

NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A T1-RETAINED MASS BALANCE MODEL LOC.: MAHADEVIA Bed rock thickness consumed to produce present thickness of the weathered profile : 22.8 m

.

,

Depth	0.00-1.6m	•1-6-3.6 m	1 3.6 -5.6m	1 5.6 = 6.6 m	16.6-8.2m	,8.2-9.6m	,9.6-10.6m	Damontre
Horizon	Soll	, B _{DX} (Fer)	B _{ox} (Alu)	, B _{ox} (Alu)	(ntv) ^{xo} g'	¹ B(Sap)	, B _(sap)	
5102	¢6*9	- 20.08	- 80.31	- 70.38	- 63.18	- 88.29	17.13	Top and bottom horizons of gain with mid- profile. losses
A1203	117.17	69.90	30-98	88,98	37.41	98.44	99. 13	Top and bottom horizon of gain with mid-horizon of substantial depletion.
Fe ₂ 03	210.44	276.35	- 23.80	16.26	48.54	374.06	539.59	Two top and four bottom horizon of gain with a mid horizon of losses in the Box(Alu) zone
T102	1	t	1	ł	ı	1	ı	
MnO ₂ .	- 42.85	- 58,35	- 76.04	75.92	- 71.13	- 44.91	- 21.86	Top three and three bottom horizons of losses with a mid-profile horizon of gain in the Box (alu) zone
CaO	50.52	- 98.72	- 30.28	- 23.47	- 8.93	19-61	135.74	Top and two bottom horizons of gain with a mid profile horizon of losses.
MgO	41.07	4.79	- 54.15	- 47.34	- 41.61	16.39	- 79.16	Top two and B(sap) horizon of gain with a mid- profile horizon and bottom horizon of losses.
K20	まま・	- 99.37	- 91.89	- 92.92	- 95.25	- 95.08	- 84.30	Mobilities throughout the profile
Na_2O	- 90.47	- 83.56	- BO.O4	- 72.86	- 88.60	- 84.69	- 69.76	Upward increasing mobilities.
^P 205	42.85	64.38	18.50	50.444	- 71.51	- 50.81	- 47.67	Top four horizon of gain with a bottom three horizon of losses.
NC I	65.76		1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			a a a a a a a a a a a a a a a a a a a
ł		۱ ۱		<u>R</u>	5		#	+ OP two pottom and mid profile horizon of losses
х	Ħ	ы	- 56.03	ŧ+	H	33.42	H	Box(Alu) zone of losses and gan in B(sap) zone.
La	111.61	E-I	Ħ	H	+++	ы	ы	Top horizon of gain with a mid-profile horizon of loss in Box(Alu) zone
မ ပ	- 91.52	10.51	= 61,44	11.42	- 11.13	10.43	- 7.35	Mixed behaviour with alternate horizons of gains and losses.
ፚ	ŧ	F1	н	Ħ	E4	H	£1	1
2 1	111.42	80°08	- 39.85	- 33.81	- 34.75	- 44.20	53.97	Two top and bottom horizon of gains with a mid-profile of losses in Box(Alu) & B(Sap) zones.
۸	27.15	5.64	- 47.81	- 19.37	- 46.45	- 22.67	- 34.55	Two top horizon of gain with a bottom five horizon of losses.
nŋ	. 51.52	12.02	- 68,06	- 7.19	- 51.10,	20.25	19.34	Two top and two bottom horizon of gain and mid-profile of losses in Box(Alu) zone.
Zn	61.78	- 3.50	н	£4	13.81	107.24	H	Top and two bottom horizon of gains with a losses in Box(Fer) zone.
ว้	170.25	67.42	- 30.94	- 10.39	- 16 . 31	32.23	.100.53	Top two and two bottom horizon of gain with a mid-profile of losses in Box(Alu) zone.
TN	48.57	- 32.73	- 75.83	- 54.76	25.86	90.45	66 . 01	Top and three bottom horizon of gains with a mid-profile of losses in Box(Fer) & Box(Alu) zone.
1 1 ~ 1 ~	- 1 1 5 5 5 5 5 5 5	2 2 4 1 1 1 1 7	* 1 1	8 8 8 8 8 8 8 1	1 1 1 1	5 5 7 7	t t t t t t	

.

168

-

3-5 - 5-1 DEPTH IN MTS 2-6 - 3-6 1-6 - 2-6 0-5 - 1-6 0-00 - 0-0 53.19 55-00 40.12 17.24 86,56 14.26 . M 128.41 170-00 318.18 11.14 636.35 427.17 279.63 5 1.39 17.25 3.20 E4 ţ4 អ 91.26 **63.**59 103.19 26,95 63.88 79.97 ទី 128.37 178.00 193.69 216.91 317.24 360.60 TRACE ELEMENTS IN 1700 ⊳ 121.13 . . 8**3**.00 80.74 100.79 63.39 N ы н H E4 ы đa 54 55,22 76.22 101.10 23.45 69,22 62.0 ຍື 3.15 24-13 18.0 0.81 FI P. ы 13.5 16.76 10.04 H H **F**1 ы 127.76 27.00 98.02 110.80 66.76 8.8 R 0.13 0.15 0.14 0.50 p.05 0.30 0.24 P205 0.33 0.30 0.44 0.45 0.54 Na₂0 0.70 0.30 0.27 0.47 0.58 0.32 х20 1.50 2.31 1.11 0.93 53.1 69.1 0²M 38.08 3.13 0.90 3.98 3.26 4.06 MDD2 CaO MAJOR OXIDES IN % 0.44 0.44 1.40 0.20 69.0 0.71 0.53 2.11 2.76 TIO2 3.76 4.13 4.01 B.20 14.21 15.24 55.86 22.50 13.00 15.87 S102 A1303 F8203 11.70 8.3 60.11 32.00 43.73 ۱ 44.18 49.8 14.13 11.60 10.51

.

-- Basalt - 38.1 m

Table - 10

MEWASA
VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 38 a. PROFILE AT MEWASA VILLAGE (SiO₂, Al₂O₃, Fe₂O₃, TiO₂)

170

τ.

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT MEWASA VILLAGE (MnO2, CaO, MgO, K2O)

.

FIG. 38 c.

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT MEWASA VILLAGE (Na20, P_2O_5)

(Sc, Y, La, Ce) IN ppm IN ppm б б б **DEPTH IN MTRS DEPTH IN MTRS** ---- So - Y IN ppm IN ppm б Ó **DEPTH IN MTRS DEPTH IN MTRS** ---- La ---- Ce

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 38 d. PROFILE AT MEWASA VILLAGE (Sc, Y, La, Ce)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 38 e PROFILE AT MEWASA VILLAGE (Zr, V, Cu, Zn)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 38 f, PROFILE AT MEWASA VILLAGE (Cr, Ni)

δ **DEPTH IN MTRS**

---- NI

Table - 11

-

NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A T1-RETAINED MASS BALANCE MODEL Loc.:NEWASA

Bed rock thickness consumed to produce present thickness of the weathered profile : 51.60 m.

Denth	0.00-0 -		+ K_2 fm			
Horizon	Caj limestone	B _{OX} (Fer)	B _{ox} (alu)	Box (Alu)	i B(sap)	Remarks
si02	- 92.17	- 92.13	- 34.76	- 67.53	1446.3	Losses throughout the profile with horizon of gain in the B(san) zone
21A	76.79	81.29	78.38	88.54	N.D.	Downward increasing gain with a maxima in Box(Alu) zone.
Fe203	1.72	- 46.48	- 32.72	- 6.13	2919,62	Top and bottom horizon of gain with a mid horizon of losses.
r_{10_2}	•	ł	1 1	I	i	. 933 939 939
Ma O ₂	28,45	20.33	- 7.48	11.59	3750	Two top and two bottom horizon of gain and mid-horizon of losses.
CaO	64,06	52.37	26.00	75.77	73.68	Increasing throughout the profile with maxime in B(sap).
MgO	- 62.03	- 61,82	- 74.17	- 68.56	2594.03	Losses throughout the profile, with a bottom horizon of gain in the B(sap) zone.
K ₂ 0	- 15.00	- 71.91	* 84.03	- 78.26	575.00	Top four horizon of losses with bottom horizon of gain in B(sap) zone.
Na ₂ 0	- 65.74	- 63.38	- 69 . 27	- 66.52	950.00	Top four horizon of losses with bottom horizon of gain in B(sap) zone.
^P 205	78.76	103.38	32.66	42.02	4450.00	Top two horizon of gain with bottom three horizon of subs- tantial depletion.
			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			
Sc	- 61.26	- 51.70	+6°69 -	- 6.01	8,98	Top four horizon of losses with a bottom horizon of gain in B(sap) zone.
к	- 54.08	£4	£4	- 16.62	ŧ	Upward increasing mobilities.
Ę	F	F1	- 53.66	- 97.74	- 88.50	Mobilities throughout the profile.
e C	- 59.49	- 87.50	- 69.70	- 39.24	5.41	Losses throughout the profile, with a bottom horizon of gain in the B(sap) zone.
qa	F4	Ħ	H	fi	E4	
Zr	- 57.11	- 53.07	- 67.78	- 42.66	- 51.93	Mobilities throughout the profile.
٨	- 40.93	- 38,88	- 62.13	- 42.66	- 57.41	Mobilities through the profile.
n Cu	- 68.09	- 90.21	- 76.10	- 43.91	- 34.76	Mobilities throughout the profile.
Zn	F1	- 71.40	ħ	- 33.75	- 93.01	Mobilities throught the profile
сг.	- 33.36	23.66	- 14.77	- 18.94	- 51.31	Top, and bottom horizon of losses with a mid-horizon of gain.
Ŧn	- 84.82	- 61.14	- 82,80	25.44	0.83	Top three horizon of losses with bottom two horizon of gain.
1						· · · · · · · · · · · · · · · · · · ·

176

-

.

•

`

FIG. 39.

X - RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF BAUXITIC PROFILE AT MEWASA.

I c

,

.•

	Depth in mtr.	Horizon	Dominating minerals	۲
	0.00- 0.6 m	Gaj limestone	Calcite, Rutile Baryte, Quartz, Maghemite, Saponite Beidellite, Nontronite	
	0.6 - 1.6 m	^B (ox) Ferricrete	Maghemite Kaolinite Montmorillonite Saponite Quartz Anatase	
	1.6 - 2.6 m	^B (ox) Alucrete	Gibbsite Diaspore Kaolinite Boehmite Saponite Geothite Quartz.	
	2-6 - 3.6 m	^B (ox) Alucrete	Gibbsite Diaspore Kaolinite Montmorillonite Maghemite Nontronite Geothite Saponite	27.8 27.8 27.8
·	3.6 - 5.1 m	^B (Sap)	Kaolinite Nontronite Beidellite Maghemite Saponite Montmorillonite Hematite Augite Quartz	17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

•

,

Table - 12

-

VILLACE - MEWASA (0.00-0.6 m)

.'

X - ray data

١

. Gaj Limestone

20	d spacing	Inter Io	nsity %	- Remark
6.5 12.6 18.4 23.2 25.4 225.4 227.6 227.6 229.3 316.1 36.7 39.6 339.5 41.4 43.4	13.598 7.0251 4.8216 4.2302 3.8338 3.5065 3.4012 3.2318 3.1104 3.0379 2.9497 2.8312 2.4880 2.4487 2.2758 2.2273 2.1609 2.0849	1.8 2.9 6.0 8.1 18.0 4.6 20.0 5.0 7.6 97.60 7.0 8.5 35.5 7.6 51.0 5.9 5.3 47.2	1.84 2.97 6.14 8.29 18.44 4.71 20.49 5.12 7.78 100.00 7.17 8.70 36.37 7.78 52.25 6.04 5.43 48.36	Nontronite Maghemite Maghemite Sphene Saponite Maghemite Maghemite Montmorillonite Quartz Calcite Calcite Calcite Rutile Baryte Sphene Saponite Beidellite Maghemite

~

Table - 13

VILLAGE - MEWASA (0.6 - 1.6 m)

X - ray data

B_{ox} - Ferricrete

,

2Q	d spacing	Inter Io	nsity %	L Remark
6.1 12.3 18.2 19.3 20.3 21.3 223.0 224.9 23.0 24.9 25.7 23.4 90.5 336.5 539.3 36.5 539.3 36.5 539.4 44.4	14.448 7.1957 4.8742 4.4838 4.3744 4.1713 3.8667 3.5758 3.5339 3.3386 3.0480 2.8488 2.5707 2.4947 2.4616 2.2869 2.2378 2.1365 2.0941 2.0402	3.5 4.2 11.6 9.0 9.1 9.3 21.0 9.5 9.8 60.0 98.10 11.6 39.5 12.5 48.1 11.5 10.2 40.3 10.9	3.56 4.28 11.82 9.17 9.27 9.48 21.40 9.68 9.98 61.16 100.00 11.21 11.82 40.26 12.74 49.03 11.72 10.39 41.08 11.11	Saponite Kaolinite Gibbsite Montmorillonite Montmorillonite Kaolinite Maghemite Kaolinite Anatase Montmorillonite Calcite Sphene Kaolinite Kaolinite Quartz Quartz Gibbsite Quartz Maghemite Gibbsite

•

Table - 14

VILLAGE - MEWASA (1.6 - 2.6 m)

X - ray data

B_{ox} - Alucrete

29	d spacing	Inten	sity %	r Bemark
	1 1 1	Io		
12.1340132703785976883496620150	7.1342 6.1935 5.7535 4.9279 4.4175 4.3744 4.1907 3.6043 3.5617 3.3885 3.3386 3.2090 3.1318 2.9882 2.8225 2.6671 2.5779 2.5081 2.4747 2.4682 2.4358 2.3921 2.4747 2.4682 2.4358 2.3921 2.3324 2.2539 2.1961 2.1759 2.0579	8.5 9.05 96.3 96.3 96.3 96.3 15.5 14.0 15.5 17.0 13.7 15.0 17.0 13.7 15.0 10.0 19.0 10.0 19.0 10.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	8.82 9.74 100.04 31.09 15.080 15.080 17.09 17.09 17.09 17.09 17.09 17.09 17.09 17.09 17.00 10.05 10.00	Saponite Boehmite Nontronite Sphene Kaolinite Gibbsite Kaolinite Sphene Kaolinite Geothite Montmorillonite Saponite Saponite Saponite Sphene Calcite Sphene Diaspore Calcite Nontronite Quartz Diaspore Kaolinite Gibbsite Goethite Gibbsite Gibbsite

,

Table	-	15

VILLAGE - MEWASA (2.6 - 3.6m) X - ray data

B_{ox} - Alucrete

.

				·····
20	d spacing	, Int	ensity %	Remank
		Io	I I _c	
12.2 14.2 20.3 22.2 23.3 23.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	7.3142 6.2369 4.9279 4.4394 4.3744 4.1907 3.5485 3.3886 3.2090 3.1318 3.05885 2.5779 2.5149 2.5149 2.593 2.2593 2.	6.2 97.70 942.9 19.08 305.9 18.39 18.39 18.39 18.39 19.08 15.58 10.8 5.03 5.22 11.1 10.1 3.0 122 12.2 11.1 10.1 3.1 43.1	$\begin{array}{c} 6.34\\ 7.16\\ 100.00\\ 96.41\\ 43.90\\ 19.44\\ 19.24\\ 31.01\\ 26.50\\ 14.90\\ 10.50\\ 10.50\\ 10.50\\ 30.64\\ 75.90\\ 15.77\\ 27.48\\ 11.\\ 32.33\\ 10.11\\ 44.11\\ 32.331 \end{array}$	Saponite Saponite Sphene Montmorillonite Montmorillonite Kaolinite Nontronite Geothite Montmorillonite Saponite Saponite Nontronite Augite Kaolinite Maghemite Geothite Quartz Diaspore Kaolinite Beidellite Gibbsite Goethite Gibbsite Maghemite Kaolinite Saponite Gibbsite

•

~

•

·

-

Table - 16

,

VILLACE - MEWASA (3.6 - 5.1m)

;

X - ray data

^B(Sap)

(

29	d spacing	Inte	ensity %	t Pomomic
		I I _o	I ^I c	Remark
111122222222333333333333333344444444444	7.1957 6.1085 5.3723 4.8216 4.3744 3.5201 3.3624 3.3264 3.1865 3.1104 3.0379 2.9785 2.7883 2.6984 2.6518 2.536 2.5014 2.4747 2.4295 2.4044 2.3921 2.3500 2.2981 2.2485 2.2220 2.1910 2.1659 2.0758 2.0534	5.4 5.4 895.0 178.22588781500967098201025887815009670982010253887815009670982010253.0 1238523.0 129.20	5.91 5.95 7.95 100.64 17.34 22.936 9.92 17.42 19.92 17.92 10.64 17.42 19.92 17.92 10.64 127.42 89.3006 149.645 123.64 11.29.59 10.64 11.21 29.59 10.64 11.22 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.64 11.23 10.39 10.64 11.23 10.39 10.64 11.23 10.39 10.64 11.23 10.39 10.64 11.23 10.39 10.39 10.64 11.23 10.39 10.39 10.39 10.39 10.39 10.39 10.64 10.39 10.	Kaolinite Boehmite Maghemite Maghemite Montmorillonite Illite Illite Quartz Nontronite Nontronite Nontronite Augite Maghemite Hematite Saponite Saponite Montmorillonite Montmorillonite Montmorillonite Montmorillonite Montmorillonite Montmorillonite Boehmite Kaolinite Quartz Saponite Kaolinite Beidellite Sphene Sphene

~ .

	EPTH IN MIS.	1.1 00-0	<u> [17</u> - 11]	3.3 - 4.6	9-9 - 7 7- 8 - 7		
	TN E	40,42	58.03	46.13	49.00		
		.1.215	328.76	278 . 66	236.00		
	5	EH .	€-i	to. 1	18 .00		
	cn	37.56	131.42	B0.70	68°,00		
adu 1	*	216.15	276. 11	311.76	215.50		
TI SINGNI		160-15	121.70	114.22	95.50		
TRACE EL	Pa 2	7.62	2.15	Ę4	80.22		
	Ce	 3	01.27	98, 56 9	4 . 69		
		20.11	11.78	B.01 ⁻	25.5		
	¥	F1	Ē4	E4	E4		
,	3	115.11	178.02	121.17	10200		
,	205	0.17	0°05	0.05	0*02		
•	Ma_O P	0,20	0.31	0.33	9.0		
	K,0	14.0	24-0	- 0.51			
,	Q ² X	076	0.59	0.43	1.40		
×	.a0	86.0	0.72	0.62	1.30		
SHID	202	0.72	0.68	0.23	09*0		
MAJOR	T102	2.01	2.17	2.39	2.10		
	re203	31.76	17.63	50	7.60		
BIATIN	1303	44.22	56.29	33.18	16.00	<i>,</i>	
	5102	. 18.27	19.39	38.52	41.50		-

•

,

•

Table - 77.

÷

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG.40 a. PROFILE AT BHATIYA VILLAGE (SiO₂, Al₂O₃, Fe₂O₃, TiO₂)

184

4

б

7

.

VARIATION OF MAJOR DXIDES IN THE BAUXITE FIG. 40 b. PROFILE AT BHATIYA VILLAGE (MnD2, CaO, MgD, K2O)

:

,

.

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT BHATIYA VILLAGE (Na20, P205)

FIG. 40 c.

. .

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT BHATIYA VILLAGE (Cr, Ni)

- -

•

185

FIG. 40 f.

	LCC.: Bed 1	GAINS AND LOSS IYA rock thickness	ES OF MAJOR OXIDES AN	D TRACE ELEMENTS BASED ON A TI-RETAINED MASS BALANCE MODEL present thickness of weathered profile : 3.37 m
epth	1 0.00-1.1E	1.1 -2.3m	; 2.3 - 4.6m ;	
orizon	, B _{ox(Fer})	¹ B _{ox(Alu)}	B(sap)	Remarks
102	- 54.55	- 55.32	- 19.41	Upwards increasing mobilities
1203	186.20	239.81	81.86	Upward increasing gainsthroughoutthe profile with maxima in Box(Alu) horizon.
°203	336. 10	124.23	169, 18	Top and bottom horizon of gains with - mid-horizon of substantial depletion.
102	ı	ı	ī	
00 100	25.37	9.67	- 66.31	. Top two horizon of gains and - bottom horizon of losses.
a0	- 21.50	- 46.58	- 58.23	Downward increasing mobilities throughout the profile
б0	- 43 . 28	- 59.21	- 73.01	Mobile throughout the profile
50	- 52.47	- 49.53	- 50.28	Mobile throughout the profile increasing upward.
^a 20	- 93.43	- 90.57	- 90,88	Upward increasing mobilities.
205	255.22	- 3.22	5.43	Top Box(Fer) and B(sap) horizone of gain with losses in Box(Alu) zone.
1 1 1 1 1 1 1 1			3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0	14.53	64.07	479-19	Top three horizon of sain with hottom horizon of less.
	H	H	Ę4	
61	- 17.95	- 96.22	- 56.97	Top two horizon of losses with the gain in the B(sap) zone.
0	- 10.82	- 6.66	- 17.52	Downward increasing mobilities.
۵	· - 65.88	- 91.08	H	Downward increasing mobilities.
ч	6 † *†L	22.82	4.65	rop three horizon of gain with bottom horizon of losses.
	- 4.31	23.42	- 26.53	Top and bottom horizon of gains with mid profile horizon of mains in the Rec(111)e
5	11.63	3 9 . 29	- 22.33	Top two horizon of gain with bottom horizon of losses.
8	ħ	EH	- 21.80	Bottom . horizon of losses.
ы	105.82	21.20	- 6.72	. Top two horizon of gain with bottom horizon of losses
	- 15,54	12.31	- 18, 93	Top horizon of Box(Fer) and B(sap) horizon of losses with Box(Alu) - zone of gain.

1

.

, ,

		EPTH IN MTS.		1-00 3-B	1-1 - 8-0	7-1-1-1	8-1 - 7-1		
		N1		32.17	14.13	B. 25	62.24	48.93 29.00	
			· · · · · · · · · · · · · · · · · · ·	1.50	5.11	18,47	30.48	279.95	
		ບິ 		5.57 23	н 	1 13	6.06 15	0.63	я
		22					.23	78°.35	selt33
	п	cn 			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		¥ 		8
	NU PP	٨		146.5	219.6	340.5	276.6	129.0 268.0	
	SINGNATA	2r		161.25	101.02	79-90	40.35	119.08 00.011	
	TRACE	44 44		E+	н	н	, H	H H	
		Ce		63.13	80,59	96.24	117.27	75.75	
		a.		18,88	ы	ы	14.10	1.06	
		Ŧ		Ē	ен Ен	еч	ы	ÊN ÊN	
۰ <u>ا</u>		Sc		130-50	90.36	62.39	89.27	101.38 84.00	•
Ţable		2 ⁰⁵		0.03	0.05	60*0	0.11	0.0 8 8	
		Na ₂ 0 P		0.09	0.11	0.15	0.19	0.5 8.0 8.0	
		K20		0.11	0.16	0.21	0.23	0.32	
		Ng0		0.51	0.72	17.0	0.86	8 8	
	×	Cao		1.24	1.31	1.23	1.43	1.0	
•		20am	·	0.19	0.24	0.32	L4.0	0.47 0.40	
	MAJOR	T102		0.43	85.0	0.96	1.09	5	
<u>EAR</u>		6 203		42.78	40.10	40-42	32.87	17.20 8.7	۱
BUDDEAD		1203		21.43	32.07	36.71	43.65	60.84 16.8	
		103		33.18	23.37	20+20	11.61	15.40 38.3	

BUDDEADHAR

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG.41a. PROFILE AT BUDDHADHAR VILLAGE (SiO₂, A1₂O₃, Fe₂O₃, TiO₂)

,

,

193

2.5

3

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG.41 c. PROFILE AT BUDDHADAR VILLAGE (Na20, P205)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 41d PROFILE AT BUDDHADHAR VILLAGE (Sc, La, Ce, Zr)

~

.

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 41 e. PROFILE AT BUDDHADAR VILLABE (V, Zn, Cu, Ni, Cr)

.

•

SED ON A T1-RETAINED MASS BALANCE MODEL	f the weathered profile : 16.03		T Remarks	Upward increasing gains throughout the profile with a bottom horizon of B(Alu) losses.	Upward increasing gains with maxima in the B(Fer) zone.	Upward increasing gains with maxima in the B(Fer) zone.		Top four horizon of gain with bottom horizon of losses.	Upward increasing gain throughout the profile with maxima in B(Fer) zone.	Losses throughout the profile with a top horizon of gain in B(Fer) zone.	Downward increasing mobilities.	Downward increasing mobilities.	Mid-profile gains in the Box(Fer) zone but with bottom and top horizons of substantial depletion.	* * * * * * * * * * * * * * * * * * * *	Upward increasing gain with a maxima in top B(Fer) zone and bottom horizon of losses in B(Alu) zone.		Increasing throughout the profile	Increasing throughout profile with maxima in top horizon in B(fer) and losses in B(Alu) zone.		Top three horizon of gain with two bottom horizon of losses.	Top three horizon of gain with two bottom horizon of losses.	Top three horizon of gain with two bottom horizon of losses.	Top horizon of gain and bottom horizon of losses.	Upward increasing gain with maxima in $\mathbb{B}(^{T}er)$ zone.	Top two and bottom two hirizon of gain with a mid-profile of losses in the Box(Fer) zone.	
S ELEMENTS BAS	t thickness of	, 1.8m-3.1m	, ^B (Alu)	- 66.61	202.07	65.38	١	- 1.39	98, 88	- 69°63	- 75.60	- 66.51	88,81	4 3 7 7 7 8	- 0.746	н	493.50	- 30-54	H	- 16.72	- 63.91	- 28.77	- 94.42	37.03	40.28	1 1 1 1 1 1 1 1
cdes and tract	roduce present	1.4-1.8	, ^B ox(Fer)	9°04	468.65	729.28	ł	125.68	214.86	- 0.35	- 54.00	- 53.63	202.75		129.31	H	106.97	222.76	H	- 25.27	-103.01	- 4.03	6.74	1444.65	229,42	₹ ₹ ₹ ₹ ₹
ies of major oxites an	consumed to pr	· 1.1-1.4B	, Box(Fer)	30.45	00 * 544	1057.86	ł	66*66	207.50	- 6.59	- 51.31	- 58.43	181.25		81.79	H	н	200.75	H	66.45	183.80	200.92	H	160.26	- 29.53	5 1 1 2 3 5 5
INS AND LOSSES	k thickness (, 0.80-1.1m	, ^B (Fer)	47.25	364.68	1025.25	ł	46.93	220.81	- 7.20	- 64.40	- 70.14	53.06		158.17	H	£-1	146.70	H	106. 16	79.32	61.22	H	5.5	18.23	1 ? 1 1 1 1 5
NET CAL	Bed roc	+0-00-0-80m	, ^B (Fer)	378.40	607.68	2635.93	•	165.11	592.09	62.64	- 44.23	- 44.32	109.30		749.76	H	602.51	340.44	F1	650.00	176.27	172.75	595.21	673.25	513.47	-
		Depth	Horizon	s102	A1203	Fe203	T102 .	MIIO2	cao	MgO ,	K20	Nazd	P205		Sc	Y	La	Ce	ፈ	Zr	٨	Сu	Zn	Cr Cr		

-

.

Table - 20

,

-

197 -

198

FIG. 42.

X-RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF BAUXITIC PROFILE AT BUDDHADHAR

.

	-		35.7
Depth- in mtr.	Horizon	Dominating minerals	Martin R. R. J.
0.00- 0.80m	B(ox) Ferricrete	Maghemite, Saponite, Kaolinite, Montmorillonite Nontromite, Ilmenite, Fayalite, Calcite	
			m
0.80- 1.1m	^B (ox) Ferricrete	Maghemite Saponite Kaolinite Montmorillonite, Quartz, Hematite Illite,Calcite Sphene.	
1.1 - 1.4 m	^B (ox) Ferricrete	Montmorillonite Saponite Kaolinite Quartz, Calcite Illite, Hematite, Fayalite	A HANNA THAT AND A HANNA AND AND A HANNA AND AND AND AND AND AND AND AND AND
1.4 - 1.8 m	^B (ox) Ferricrete	Kaolinite Montmorillionite Magnemite Illite Fayalite Hematite	20-6 19-2 -0.41-8 -0.41-8 -0.41-8 -10.4
1.8 - 3.1 m	B(ox) Alucrete	Gibbsite Diaspore Boehmite Kaolinite Montmorillonite Geothite Anatase	26-0 25-0 25-8 25-2 10-1 10-1 10-1 10-1 10-1 10-1 10-1 10

Table - 21

,

VILLAGE - BUDDHADHAR (0.80 - 1.1 m)

.

X - ray data

B_{ox}-Ferricrete

.

20	d spacing	Inter	nsity%	r L , Remarks
6.0 9.0 12.8 17.8.4 19.0 221.2 2222222222222222222222222222222	14.730 9.8254 7.1957 4.9828 4.8216 4.5063 4.2302 4.1907 3.6776 3.5617 3.4662 3.3264 3.1534 2.9785 2.8577 2.6984 2.5636 2.5081 2.4551 2.4169 2.3266 2.2758 2.2432 2.2012 2.1175 2.0316	7.2 10.1 18.9 10,7 18.7 18.8 22.7 15.0 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	14.17 19.88 37.20 21.06 36.81 37.00 43.70 42.71 30.70 61.02 44.48 100.00 32.08 34.25 29.92 30.11 41.73 38.58 41.33 34.84 39.38 34.64 32.46 38.97	Saponite Illite Kaolinite Illite Montmorillonite Sphene Kaolinite Saponite Maghemite Illite Quartz Montmorillonite Magnetite Calcite Hematite Montmorillonite Calcite Maghemite Beidellite Sphene Montmorillonite Hematite Illite Gibbsite

Table -22	Tal	ble	-	22
-------------	-----	-----	---	----

VILLAGE - BUDDHADHAR (0.00-0.80 m)

X-ray data

B_{ox} - Ferricrete

.

29	d spacing	, Inte	ensity %	Remark
6.2 125.4 125.4 122.2 224.0 121.0 122.2 225.6 235.5 2 2 2 2 2 2 2 2 2 2 2 2 2	14.225 12.998 7.1957 5.9060 4.8216 4.5063 4.1713 4.0583 3.9342 3.6776 3.5617 3.3386 3.2549 3.1318 2.9785 2.6595 2.5495 2.5149 2.4169 2.3500 2.2981 2.2378 2.2273 2.0849 2.0230	5.9 7.1 14.5 17.3 25.3 27.6 32.7 27.6 32.7 32.7 32.7 32.7 32.5 30.3 43.5 30.3 43.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 3	12.66 15.23 31.11 37.12 54.29 46.13 59.22 67.81 57.51 64.37 65.02 92.70 67.59 68.66 84.12 94.84 82.83 100.00 83.47 83.69 80.04 85.83 88.19 83.04 88.62	Saponite Nontronite Kaolinite Maghemite Maghemite Montmorillonite Kaolinite Saponite Saponite Saponite Kaolinite Montmorillonite Augite Saponite Augite Fayatite Ilmenite Hermatite Maghemite Boehmite Calcite Maghemite Saponite Maghemite Maghemite Maghemite Maghemite

.

•

Table - 23

.

VILLAGE - BUDDHADHAR (1.1 - 1.4 m)

,

X - ray data B_{ox}-Ferricrete

20	d spacing	Inte	nsity %	r Remank		
1		, I _o	I _c			
8.2 11.12	10.782 7.8998 7.4995 7.2545 5.9854 5.7535 5.1852 5.0107 4.8742 4.5521 4.4394 4.3744 4.1907 3.8667 3.5201 3.3386 3.3022 3.1644 3.1318 2.9882 2.8225 2.6984 2.6827 2.5779 2.5014 2.4487 2.3921 2.2813 2.1659 2.1317 2.1080 2.03116	7.8 8208005247000400184010877260000103 121927000400184010877260000103	$\begin{array}{c} 16.70\\ 23.12\\ 26.12\\ 29.97\\ 31.69\\ 32.40\\ 39.36.40\\ 39.59\\ 41.560\\ 45.59\\ 41.560\\ 60.17\\ 2.60\\ 77.62\\ 60.17\\ 59.67\\ 100\\ 81.72\\ 76.640\\ 77.085\\$	Montmorillonite Saponite Saponite Kaolinite Montmorillonite Maghemite Montmorillonite Montmorillonite Montmorillonite Montmorillonite Kaolinite Calcite Illite Montmorillonite Montmorillonite Montmorillonite Saponite Montmorillonite Fayalite Hematite Sphene Kaolinite Calcite Illite Kaolinite Calcite Illite Kaolinite Calcite Guartz Beidellite Gibbsite Gibbsite		

Table -	· 24
---------	------

.

VILLAGE - BUDDHADHAR X - ray data B_{ox} - Ferricrete (1.4 - 1.8 m)

.

.

-

.

~

.

20	d spacing	Inte	nsity %	r Remark
1	•	I _o	i I _c	
12.4 14.7 18.2 21.4 22.2 22.2 22.2 22.2 22.2 22.2 22	7.1379 6.1507 5.3084 4.8742 4.3114 4.1520 3.6627 3.5339 3.3510 3.3022 3.1865 3.1104 3.0582 2.7883 2.6984 2.6518 2.5149 2.4422 2.4169 2.3799 2.3500 2.2325 2.1859 2.1609 2.0804 2.0446	4.0 5.4 5.0 66.0 21.6 8.0 21.6 8.0 21.6 8.0 21.6 8.0 21.6 8.0 9.1 9.0 523.8 214.9 111.5 0 8.2 53.6 11.5 21.5 31.6 8.0 9.1 9.0 52.5 5.5 6 4.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	6.01 8.12 7.51 100.00 70.67 12.33 10.52 32.48 31.27 45.11 38.79 21.05 11.87 12.18 14.43 16.39 14.43 16.54 77.44 85.19 14.35 19.84 41.35 19.85 17.14 74.58	Kaolinite Boehmite Fayalite Illite Illite Kaolinite Hematite Anatase Montmorillonite Montmorillonite Nontronite Kaolinite Calcite Maghemite Hematite Saponite Maghemite Gibbsite Boehmite Maghemite Illite Gibbsite Gibbsite Gibbsite Gibbsite

202

/

VILLAGE - BUDDHADHAR X - ray data B_{ox} - Alucrete (1.8 - 3.1 m)

~

20	1	d spacing	1	Intensity %					t Bomowic		
	1		;-	Io	1 }		1 _c		, Remark		
18.4351222222222222222222222222222222222222		4.8216 4.3744 4.1329 3.6929 3.5339 3.3510 3.3264 3.1865 3.1104 2.9214 2.7621 2.6984 2.5149 2.4295 2.3921 2.3500 2.2981 2.2539 2.1709 2.0849 2.0446		98.00 98.1 19.39 15.3 15.5 21.5 15.5 21.5 25.5		100 82 96 121 232 8 101 15 26 25 36 22 16 23 16 23 16 23 15 50	0075448233367021400056725812270830		Gibbsite Gibbsite Kaolinite Illite Anatase Gibbsite Montmorillonite Gibbsite Montmorillonite Beidellite Geothite Maghemite Gibbsite Diaspore Boehmite Calcite Gibbsite Augite Gibbsite.		

	EPTH IN MTS		000 - 5-1	1-9 - 1-5	64 - 74	7-1 - 8-3			
	NT		47.17	21-12	56.89	76.13	29-00	25.00	
			419.19	276.03	138.41	115.76	216,09	130-00	
		<u></u>	17.25		н	85°8	4	00-11	8) 6
	п 2		43.12	88.67	63.76	10.22	, 06 . 66	76.00	ř
Į.		· ·		1.63	9.97	60.7	9.13	2.00	Basa
a a E	>		91	33			 	8	
IGUETZ	ង		ž.			Lot.	ф 	8	
. Ente	£		13.23	fH	H	H	0.B1	11.5	
	e		110.85	83.12	71.61	2.10	93 .03	56 .0	
	E		19.19	FI	н	4.76	ы	12.00	
	×		E4	6	£4	ę	- 14	н	
- 26	8		129.25	120,95	88,55	140.22	71.58	ର ଅ	
able -	505		0.29	0.26	0.24	0.26	0.21	0.07	-
ë	a20 E		0.59	0.29	0.28	0.27	0.25	0.B	
	No No		0.66	0.32	0.41	0.41	0*30		
	0 ⁹ ×		4-87	2.06	2.83	2.79	2.32	8	٠
X A	9		2.11	2.64	2.64	2.61	1.76	0.90	
CKIDES	da 2		0 E3	0.51	0.64	0.63	0.58	8.0	•
MAJOR	7102		1-90	69°0	3.31	£2.4	48 .4	2.35	
H	F0203		9.32	20.53	18.12	14.29	12.31	1.8	
BHDPAPA	A303		۱	44.88	52.45	6 .50	64.92	2.5	
	R		3.47	3.81	80.9	-11	8	8.	

.

'n

204

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT BHOPAMADHI VILLAGE (SiO₂, A1₂O₃, Fe₂O₃, TiO₂) FIG. 43 a.

.

.

FIG. 43 c.

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT BHOPAMADHI VILLAGE (Na20, P205)

,

.

- -

208

209

.

FIG. 43 e.

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT BHOPAMADHI VILLAGE (Zr, V, Cu, Zn)

- -

•

	Red no.	ck thickness	consumed to pr	roduce presen	t thickness of	the weathered profile : 35.52
Jepth	, 0.00-5.1m	<u>†</u> 5.1−6.1⊞	6.1-7.1m	, 7.1-8.3m	1 8.3-9.9m	
lorizon	1 Laj 1 limestone	, ^B ox(Fer)	, Box(Alu)	, ^B cx(Alu)	, ^B ox(Alu)	T Rezerks
510 ₂	45,40	96•69	- 67.14	- 79.63	- 84.10	Top two horizon of gain with three bottom horizon of losses.
11203	ł	576.45	64.79	53.66	39.49	Upward increasing gain with a maxima with a Box (fer)
⁶²⁰³	1.53	515.89	13.31	- 30.07	- 47.35	Top three horizon of gain with two bottom horizon of losses.
110 ₂	ı	ł	I	ı	ı	
(m0 ₂	159.62	478.73	51.39	16.61	- 6.16	Top four horizon of gain with bottom horizon of losses.
a0	4450-01	66°868	108.24	61.10	- 5.05	Top four horizon of gain with bottom horizon of losses.
150	234.49	289.60	11.57	- 13.92	- 37.44	Top three horizon of gain with two bottom horizon of losses.
20 2	- 18.36	8.98	- 70,89	- 77.25	- 85.43	Mobile throughout the profile increasing downwards except
Va ₂ 0	- 8.79	23.43	- 75.15	- 81.25	- 84.82	Top and three bottom horizon of losses with mid-horizon of Rain in Bok(Fer) zone.
P205	412 . 38	-1165.95	143.40	106.34	45.65	Top and three bottom horizon of gain with mid-horizon of losses in Box(Fer) zone.
1 1 1 1	3 7 3 9 9 9 9 9 9 9 9 9	L 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i i I I I I		
g	91.27	408.4	- 24.17	- 3.86	- 57.11	Top two horizon of gain, and bottom three horizon of losses.
	H	H	H	H	H	
P	96.95	fi	ы	- 78.05	H	Top horizon of gain, and Box(Alu) horizon of losses.
<u>ج</u> ۲	144.92	405.94	- 5.59 	- 48.26	- 19.27	Top two horizon of gain and bottom three horizon of losses.
0	42°04	H	H	H	- 96.58	Top horizon of gain and Box(Alu) horizon of losses.
Zr	2.2	248,98	- 40.92	- 28.66	- 42.80	Top two horizon of gain and three bottom horizon of losses.
	108.48	412.74	- 56.80	1 30.54	- 33.37	Top two horizon of gain and three bottom horizon of losses.
'n	133.51	298.37	- 40.28	- 19.22	- 36.01	Top two horizon of gain and three bottom horizon of losses.
Zn	51.61	H	Ħ	- 64.54	н	Top horizon of gain and, Box(Alu) horizon of losses.
A	297.12	620.07	- 24.73	- 50.74	- 19.63	Top two horizon of gain and bottom three horizon of losses.
1 1 1 1	133.36	191.80	61.56	69.17	- 43.67	Top four horizon of gain with bottom horizon $Box(Alu)$ N^{\bullet} zone of losses.
	6 - 6 6 6 6 6 6	 	5 8 8 8 8 8 8	1 8 1 1 1 1	t 1 1 1 1	

•

.

Table - 27

.

•

•

-

•

.

State Muth cares if ye Number cares if ye Number care if ye Numbe			and the second						1
BIRRIERA MARK GUIDS IF Y MARK GUIDS IF Y Cut Za Y Za Y Cut Za Y Za Y Za Y Za Y		DEPTH IN MTS	0-00 - 2,2		0.6 - 7.7	- E-DI D-5	10-3 - 13-0	12-0 - 13-0	13-0 - 16-0
BURGIER MARK CITES TAY FAURT CITES TAY FAURT CITES TAY FAURT CITES TAY 510, AD, D \$F20, \$10, \$400, \$E0, \$400, \$E0, \$20, \$20, \$20, \$20, \$20, \$20, \$20, \$2		NE	ź7.44		49.71	19,99	40-59	57.66	24.50
RUMENTA MORE CLARS IF \$ MORE CLARS IF \$ TAGE ELARCING TH \$ TAGE ELARCING TH \$ S10_1 LLP_0 \$		cr.	331.34 258.46		236. 18	6 4.7 6r	2 45.00	187.56	172.36
RMAGE RAME MACR GETES IF S MACR GETES IF S MACR GETES IF S MACR GETES IF S S10_2 ALJ73 F2.9.5 TO K20 Ma20 P2.05 SC T La Ca F5 T V Cu S1.1 17.1.23 19.3.5 1.7.6 0.22 2.36 2.37 0.30 2.67 T La Ca F5 T V Cu S2.71 19.11 19.15 1.77 2 2.36 2.36 0.30 2.67 5 T La Ca F5 T V Cu T V Cu T V Cu T V Cu T		42	н н		H	11.22	8.53	1.07	7.18
RULE FLAX MAURICE JIF \$ MAURINE OFFICE JIF \$ MAURINE OFFICE JIF \$ TALE FLAX TALE FLAX <th< td=""><td></td><td>ηŋ</td><td>57.50 80.49</td><td></td><td>117.97</td><td>98.11</td><td>101.41</td><td>66*66</td><td>88.08</td></th<>		ηŋ	57.50 80.49		117.97	98.11	101.41	66*66	88.08
RILATION MAJON CALDE AT \$ RALACTION RA		٨	202.54 358.90		301.03	19-055	20.47	297.23	236.16
TRIMENEA MAOR OFFINE JT K TAGE	STREATS	2	101.10	<u> </u>	163.56	80.73	97.64	80.03	<i>4</i> 7°511
SID2 MJOR CLES MAOR CLES MAO	TRACE	£.	દ્ય દ્ય		н	e.	H	f4	F4
EMMEMON MAJOR CATES If % K_20		8	77.93		107.73	141.39	159.98	63.59	63. <i>81</i>
KINWARPA MAOR OKTES IT % SIO2 AU ₂ O Fa ₂ O TLO2 MAOR OKTES IT % SC Y SIO2 AU ₂ O Fa ₂ O TLO2 MAO AL2O Fa ₀ Y Y SIO2 AU ₂ O Fa ₂ O TLO2 MAO AL2O Fa ₀ Y Y SL1 19.15 1.70 0.20 2.156 2.08 0.09 80.00 T SL1 19.11 19.15 2.01 0.30 2.161 1.017 - - 93.21 T SL1 19.11 19.454 2.37 0.33 2.179 2.46 1.11 1.166 - 111.67 T M-17 20.35 20.26 2.775 0.33 2.19 1.11 1.166 - 111.67 T - 111.67 T M-17 20.76 2.775 0.33 2.19 0.11 1.11 1.166 T 111.67 T		E.	21.20			1.98	0.91	н 	8.1
KILVELATAL MAJOR OKTES: IX % SIO2 MJ,O3 F*2.03 T102 MG2 Gao Mg0 K_2O Ma_2O 2.05 SC SIO2 MJ,O3 F*2.03 T102 MG2 Gao Mg0 K_2O Ma_2O 2.05 SC SU.13 '17.123 19.55 1.76 0.222 2.356 2.492 0.490 80.009 80.000 SU.11 19.11 19.55 '1.76 0.230 2.667 2.481 1.107 - '93.21 SU.53 19.54 2.01 0.30 2.677 0.30 2.678 0.69 9.09 80.00 SU.53 19.54 2.077 0.33 2.678 2.48 1.11 1.16 - 111.67 SU.52 19.54 2.017 0.35 2.012 2.77 0.39 9.09 - 95.21 SU.52 20.56 2.73 2.01 1.196 1.41 1.166 - 111.67 <td></td> <td>¥</td> <td>e e</td> <td></td> <td>н</td> <td>۴</td> <td>ы</td> <td>ะ </td> <td>E4</td>		¥	e e		н	۴	ы	ะ 	E4
SIO2 MJ.03 PS-03 TJ02 MJ.08 GCTDS IX % K20		x	80.00 93.21		111.67	106.55	126.59	87.83	90.69
SIO2 ALJO3 Fa203 TLO2 MADR OXTES TK % SIO2 ALJO3 Fa203 TLO2 MEO2 Gao MEO K20 Me20 J SU13 '17.123 19.55 1.705 0.222 2.356 2.92 0.600 0.90 S2.71 19.11 19.55 1.706 0.22 2.356 2.92 0.900 S2.71 19.11 19.55 2.01 0.30 2.67 0.30 0.90 S2.73 19.54 2.07 0.33 2.779 2.64 1.11 1.66 S0.52 19.54 2.07 0.33 2.779 2.64 1.16 1.66 Mu.17 20.76 2.73 0.41 3.11 1.96 1.17 1.16 Mu.17 20.76 2.73 2.01 0.53 3.23 2.19 1.72 1.26 0.95 38.36 23.42 3.21 0.41 3.11 1.96 1.41 0.28 <	-	rz ⁰ 5	60° t		1	1	40°0	0-03	20-02
SIO2 MJ.903 Fa2.03 T102 MA.008 CATES D3 C 5402 MJ.903 Fa2.03 T102 MC02 CatO M60 K20 54.13 T7.23 19.35 1.776 0.222 2.356 2.922 0.600 52.71 19.11 19.55 1.776 0.222 2.356 2.92 0.400 52.77 19.11 19.55 2.01 0.30 2.467 2.81 1.07 50.59 19.54 2.07 0.33 2.779 2.468 1.11 49.22 19.54 2.075 0.33 2.779 2.46 1.17 49.22 19.54 2.015 2.735 0.33 2.719 1.28 44.17 20.76 2.431 2.81 0.41 3.11 1.96 44.17 20.76 2.343 2.41 3.11 1.96 1.41 38.36 23.43 2.441 3.11 1.96 1.41		Ma20			1.16	0.98	8.	0.78	0.68
SIQ_2 ALJO3 Fe2O3 TLO2 MADR OXTES IX 5402 ALJO3 Fe2O3 TLO2 MAD2 CAD M60 54.13 '17.23 19.55 '1.702 19.55 '1.702 2.01 0.22 2.36 2.92 52.71 19.11 19.55 '1.76 0.22 2.36 2.92 52.71 19.11 19.55 2.01 0.30 2.67 2.61 50.53 19.54 2.07 0.33 2.79 2.46 49.22 19.54 2.07 0.33 2.79 2.46 49.22 19.54 2.01 0.33 2.79 2.46 49.22 19.54 2.01 0.33 2.79 2.46 49.22 2.43 2.01 0.33 2.79 2.49 49.5 2.5.43 0.44 3.11 1.96 4.46 2.19 38.36 23.43 2.64 3.23 2.19 2.19 <td< td=""><td></td><td>K₂0</td><td>0.80</td><td></td><td>1-11</td><td>1.29</td><td>14-1</td><td>1.78</td><td></td></td<>		K ₂ 0	0.80		1-11	1.29	14-1	1.78	
SIQ_2 ALJO3 Fe203 TLO2 MADR OX CONS DAS 54,13 '17.23 19.35 '1.702 Ano2 Ano 2.36 54,13 '17.23 19.35 '1.76 0.22 2.36 52.71 19.11 19.55 '1.76 0.22 2.36 52.71 19.11 19.55 2.01 0.30 2.47 50.53 19.54 2.37 0.33 2.79 49.22 19.54 2.37 0.39 3.01 49.22 19.54 2.37 0.39 3.01 49.22 26.47 3.02 0.41 3.11 49.35 26.47 3.02 0.59 3.23 32.72 26.47 3.02 0.59 3.24		M _B O	2,32		2.48	2.27	1.96	2.19	+. K
SIO2 ALJOR OKTINA MAJOR OKTINA \$102 ALJO 7102 7102 \$4.13 17.23 19.35 1.76 0.22 \$4.13 19.13 19.55 2.01 0.22 \$52.71 19.11 19.53 2.01 0.22 \$52.71 19.11 19.53 2.01 0.30 \$20.53 19.54 2.07 0.35 \$0.52 19.54 2.37 0.39 \$49.25 19.55 20.26 2.75 0.39 \$44.17 20.76 24.31 2.81 0.41 \$44.17 20.76 24.31 2.81 0.41 \$44.17 20.76 24.31 2.81 0.41 \$44.17 20.76 24.31 2.81 0.41 \$44.17 20.76 24.31 2.0.5 0.59 \$44.17 20.60 2.6.47 3.02 0.59 \$25.43 26.47 3.02 0.59 0.59	× 1	CaC	2,36		2.79	3.01	3.11	3.23	3.42
SHAWARDA MJOR SJO2 A13-05 Fa205 T102 2 54.13 -17.23 19.35 1.76 2 2 52.71 19.11 19.53 2.01 2 2 2 52.71 19.11 19.53 2.01 2	са Про	tn0 ₂	0.22		0.33	0.39	0.41	0-59	0.69
SIO2 ALJO3 Pa205 5402 ALJO3 Pa205 54.15 17.23 19.35 52.71 19.19 19.55 52.61 19.19 19.55 52.72 19.65 20.26 49.29 19.55 20.26 49.29 19.55 20.26 49.29 19.55 20.26 49.29 19.55 20.26 38.36 23.43 26.47 32.72 26.72 30.80	MAJOR	102	1.76		2.37	2.75	2.81	3.02	3.21
S102 A1303 E	শ	'e203	19.35		19.54	20.26	24.31	26.47	8.8
54.13 54.13 52.71 52.71 52.71 52.71 49.22 49.22 49.22 49.22	KHAKFARL	A1303 F	-17.23	· ·	19.35	19-63	20.76	23.43	26.72
		510 ₂	54.15		20.53	7 6 7	1.17	38.36	32.72

.

~

212

•

Table - 28

213

VARIATION OF MAJOR OXIDES IN THE BAUXITE FI PROFILE AT KHAKHARDA VILLAGE (SiO2, Al2O3, Fe2O3, TiO2)

FIG. 44 a

214

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 44 b. PROFILE AT KHAKHARDA VILLAGE (MnD2, CaO, MgO, K2O)

<u> ---- к₂0</u>

1

,

- MgÓ

F1G. 44 c.

.

215

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT KHAKHARDA VILLAGE (Na20, P205)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 44 d.

PROFILE AT KHAKHARDA VILLAGE (Sc, La, Ce, Zr)

216

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG.44 e. PROFILE AT KHAKHARDA VILLAGE (V, Zn, Cu, Ni, Cr)

217

~

•

,

.

NET CAINS AND LOSSES OF MAJOR OXITES AND TRACE ELEMENTS BASED ON A T1-RETAINED MASS BALANCE MODEL LCC.: KHAKHARDA. Bed Rock thickness consumed to produce present thickness of weathered profile : 4,64 m.

		op horizon maxima	e with maxima in Box(Fer)	tom four horizon of losses.	••		horizon	op horizon maxima.		lorizon	diate and bottom horizon
		Upward increasing gains with a co	Increasing throughout the profile	Top two horizon of gains and bott	I	Upward increasing mobilities	Upward increasing gains with top maxima	Upward increasing gains with a to	Mobile throughout the profile	Top horizon of gain with bottom h	or reses. Top horizon of gain with intermet of losses.
	· Box(Fer)	52.95	14.34	- 23,38	,	- 34.05	2.66	53.53	- 16.50	52.16	£4
4 4-9 OOm	Box(Fer)	108.94	1.82	- 14.25	1	- 35,25	10.42	94 . 63	- 16.63	109,89	ŧ
-2 -4 Lm	^B ox(Fer)	156.99	14,08	1.05	۲	- 30.59	24.59	160.02	- 5.24	H	ŧ
mc - 2-00-0.	, ^{Bax} (Fer)	210.00	17.40	14.34	ı	- 41.87	25.77	208.5	- 19.09	118.35	771.87
Denth	Horizon	si02	A1203	Fe203	T102	Mn02	cao	MgO	K20	Na ₂ 0	P205

,

•

218

ı

X - RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF BAUXITIC PROFILE AT KHAKHARDA

VILLAGE - KHAKHARDA (0.00 - 2.2 m)

X - ray data

B_{ox} - Ferricrete

.

29	d spacing	1	Intensity	I Domonia
	t 3	, I _o	I I _c	n nemark
5823789901081725850816954061441 764840492010817258508169540614441	15.504 10.281 7.1379 6.4168 5.0964 4.9279 4.5753 4.4615 4.3959 4.2302 4.2104 4.0401 3.9001 3.8502 3.7540 3.6776 3.6776 3.6322 3.5900 3.3634 3.3022 3.2090 3.1754 3.0278 2.9402 2.5636 2.5218 2.4682 2.3441 2.1462	376978887201308276357694440601835 50255687201308276357694440601835	63.13 26.93 32.32 29.46 47.97 31.31 39.89 37.31.98 37.54 26.43 34.68 27.44 42.92 23.06 75.08 45.28 100.00 24.94 25.92 30.30 26.26 38.04 25.42 21.54 22.39 22.72	Saponite Halloysite Kaolinite Illite Sphene Sphene Saponite Montmorillonite Gibbsite Sphene Saponite Diaspore Kaolinite Illite Saponite Halloysite Sphene Gibbsite Maghemite Gibbsite Sphene Gibbsite Sphene Gibbsite Sphene Gibbsite Sphene Gibbsite Sphene Gibbsite Sphene Gibbsite Sphene Halloysite Sphene Halloysite Sphene Maghemite Kaolinite Goethite Halloysite Illite Boehmite Illite

220

Table - 31

VILLACE - KHAKHARDA (4.4 - 9.00 m)

X - ray data

B_{ox} - Ferricrete

20	d spacing	Intensi	ty %	Remark
	2 1	Io	I _c	• • • • • • • • • • • • • • • • • • •
6.2696759542094759066647026941490784 13575954222222223335567790142	13.392 12.277 10.281 7.4367 6.5107 5.6442 5.0675 4.4838 4.3322 4.1520 4.00522 3.8667 3.7231 3.6479 3.6043 3.3510 3.3510 3.3510 3.3510 3.3510 3.3510 3.6479 3.6442 2.7968 2.7798 2.6671 2.6442 2.5355 2.4880 2.4044 2.3738 2.3094 2.2168 2.1609 2.1317	33.1 10.8 13.1 3.9 2.1 9.2 1.2 2.9 8.1 4.6 0.8 0.0 4.5 0.1 0.6 0.7 9.1 5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	$\begin{array}{c} 34 \\ 17 \\ 14 \\ 13 \\ 14 \\ 9 \\ 12 \\ 20 \\ 12 \\ 9 \\ 20 \\ 12 \\ 20 \\ 10 \\ 1$	Saponite Illite Illite Halloysite Saponite Maghemite Illite Illite Kaolinite Diaspore Maghemite Kaolinite Illite Halloysite Gibbsite Sphene Kaolinite Illite Titanite(Sphene) Maghemite Illite Sphene Maghemite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Sphene Maghemite Kaolinite Sphene Kaolinite Sphene Kaolinite Sphene Kaolinite Jllite Illite Illite

+

Table - 32		Tal	ole		32
------------	--	-----	-----	--	----

VILLACE - KHAKHARDA (9.00-10.3 m) X - ray data

B_{ox} - Ferricrete

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ł
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	d spacing	Intens	sity %	Remarks
5.9 14.979 38.1 56.86 Nontronite 6.2 14.255 42.5 63.43 Saponite 9.5 9.3093 25.8 38.50 Kaolinite-Smectite 9.8 9.0250 16.8 25.07 Montmorillonite 11.8 7.4995 27.1 40.44 Halloysite 12.9 6.8624 17.2 25.67 Maghemite 14.4 6.1507 14.8 22.08 Boehmite 15.8 5.6088 18.0 26.86 Maghemite 16.5 5.3723 18.2 27.16 Maghemite 18.4 4.8216 13.8 20.59 Maghemite 18.4 4.8216 13.8 20.59 Maghemite 20.6 4.3114 17.2 25.67 Halloysite 21.0 4.6615 19.0 28.35 Saponite		l I	I I O	I I C	1 1
29.6 3.0178 16.0 23.88 Forsterite 30.0 2.9785 16.1 24.02 Augite 30.4 2.9402 17.7 26.41 Augite 30.4 2.9402 17.7 26.41 Augite 30.6 2.9314 17.4 25.97 Sphene 31.6 2.8312 11.7 17.46 Augite 32.0 2.7958 10.8 16.11 Lepidocrocite 32.6 2.7466 11.7 17.46 Illmenite 32.2 2.6984 14.0 20.89 Goethite/Hematite? 34.5 2.5996 11.8 17.61 Nontronite 35.7 2.5149 22.5 33.58 Maghemite 35.8 2.5081 34.0 50.74 Montmorillonite 35.7 2.4169 13.8 20.59 Maghemite 37.2 2.4169 13.8 20.59 Maghemite 37.4 2.4044 12.2 18.20 Maghemite 40.5 2.2273 8.9 13.28 Sphene	56991124566889608159851152815604660625787245 9258894857489608159851152815604660625787245	$\begin{array}{c} 14.979\\ 14.255\\ 9.3093\\ 9.0250\\ 7.4995\\ 6.8624\\ 6.1507\\ 5.6088\\ 5.3723\\ 5.3084\\ 4.7199\\ 4.4615\\ 4.3114\\ 4.2302\\ 4.0767\\ 4.0220\\ 5.8835\\ 5.76335\\ 7.38885\\ 5.76337\\ 7.3634\\ 3.2784\\ 3.2784\\ 3.27890\\ 3.1758\\ 2.97466\\ 2.9312\\ 2.9466\\ 2.5996\\ 2.5148\\ 2.4464\\ 2.227466\\ 2.5996\\ 2.5148\\ 2.4464\\ 2.2274\\ 2.4404\\ 2.2273\\ 2.4404\\ 2.2273\\ 2.5081\\ 2.4404\\ 2.2273\\ 2.4404\\ $	$\begin{array}{c} 384256881280268202430004128706088017478708501829\\ 15880268202430004128706088017478708501829\\ 1271181122118632277437060880177478708501829\\ 128026820243004128706088017666777110114122311328\\ 128026820243004128706088017666777110114122311328\\ 128026820243004128706088017666777110114122311328\\ 128026820243004128706088017666777110114122311328\\ 1280268202430041287060880177478708501829\\ 1280268202430004128706088001774787085001829\\ 1280268202430004128706088001774787085001829\\ 1280268202430004128706088001774787087085001829\\ 12802682024300041287006088001774787085001829\\ 1280268202430004128706088001774787085001829\\ 12802682024830004128706088001774787085001829\\ 128026820024830001774787087085001829\\ 12802682002482000000000000000000000000000$	$\begin{array}{c} 56.86\\ 63.43\\ 38.50\\ 25.07\\ 40.44\\ 25.67\\ 22.08\\ 26.16\\ 27.20\\ 20.59\\ 20$	Nontronite Saponite Kaolinite-Smectite Montmorillonite Halloysite Maghemite Boehmite Boehmite Maghemite Maghemite Fayalite Maghemite Diaspore Kaolinite Halloysite Sphene Saponite Diaspore Beidellite Illite Kaolinite Illite Beidellite Maghemite Illite Sphene Maghemite Gibbsite Saponite Forsterite Augite Augite Augite Lepidocrocite Illmenite Goethite/Hematite? Nontronite Maghemite Sphene

1

VILLAGE - KHAKHARDA (13.7-15.00m)

1

X-ray data C - Basalt

.

20	d spacing	Inte	nsity %	l Donomia
		I I	I I	r Remark
5.2 5.82 112.689780308302968278124740088746666281 122.43344	$16.994 \\15.237 \\9.6122 \\7.4995 \\7.3142 \\7.0251 \\5.9854 \\5.2461 \\5.0107 \\4.4838 \\4.4394 \\4.3744 \\4.2302 \\3.9001 \\3.6627 \\3.5617 \\3.5617 \\3.5617 \\3.5617 \\3.5617 \\3.5627 \\3.9001 \\3.6627 \\3.9001 \\3.90$	$\begin{array}{c} 30.1\\ 18.8\\ 79.0\\ 15.8\\ 19.0\\ 15.2\\ 4\\ 215.2\\ 19.2\\ 28.6\\ 213.4\\ 12.2\\ 10.2\\ 28.6\\ 213.4\\ 13.7\\ 14.8\\ 8.0\\ 22.8\\ 15.6\\ 15.2\\ 0.2\\ 9.7\\ 32.3\\ 5.0\\ 9\\ 10.8\\ 0.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 10.9\\ 10.8\\ 1$	$38 \cdot 19$ $23 \cdot 47$ $100 \cdot 02$ $25 \cdot 24 \cdot 11$ $19 \cdot 28$ $17 \cdot 26 \cdot 65$ $21 \cdot 63$ $17 \cdot 57$ $25 \cdot 644$ $25 \cdot 644$ $25 \cdot 644$ $25 \cdot 651$ $17 \cdot 57$ $23 \cdot 7 \cdot 57$ $17 \cdot 57$ $23 \cdot 7 \cdot 251$ $17 \cdot 57$ $21 \cdot 38$ $30 \cdot 23$ $17 \cdot 7 \cdot 298$ $17 \cdot 421$ $13 \cdot 848$ $13 \cdot 848$	Saponite Nontronite Nontronite Saponite Saponite Maghemite Montmorillonite Fayalite Montmorillonite Montmorillonite Montmorillonite Montmorillonite Sphene Baryte Hematite Maghemite Anatase Anatase Montmorillonite Saponite Nontronite Nontronite Montmorillonite Augite Fayalite Beidellite Nontronite Montmorillonite Fayalite Beidellite Sphene Illmenite Forsterite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Sphene Beidellite Saponite Augite

	DEPTH IN MTS	1- 200	N 1 1	2 6 - 12	<u> 1.2 - 5-E</u>			
	NT I	8.8	41.9B	17.25	40.18			
	5	266.28	216.66	193.93	140.24	163.00		
		Et .	H	12.35	8.76	35.5	≇ 8	
	r,	4.4	102,27	45°-6	8	8.8	17. 17.	,
	λ	342.24	287.15	240.01	51.671	280.00	8)	
a sinata	4	98.02	20.15	80.14	88.10	85.00		
TRACE EL	2 94	Ч	н	₽-	H	£4		
	e	. 88.76	42.46	101.66	54.26	20°03		
	P	E4	E4	tı		ц		
	*	F4	H	H				
- 34	8	91.95	140.12	120.76	80 . 19	85°.03		
Table 	205	0.27	0,18	60°0	0.03	0.01		
	T OZAN	0.34	0.29	0.21	0.19	8.0		
	K20	0°-20	0.41	0.32	0.24	02.0		
	480	1.59	1.28	1.23	1-08	1.70		
× E	g		1.03	Ę	1.29	.6		
Salito	og g	1.7.0	 89 °0	0.59	0.50	9 9		
MUJOR	102	0.43	2.0	0.96 0	1.01	5-40		
	203 1		45.14	37.00	23°00	11.30		
IGENED	1303 Fe	18.56	18.32	22.63	32.57	18.6		
1941	102	31.21	32.13	35.85	30.09	38.50		

224

~

-

.

.

-

.

VARIATION OF MAJOR OXIDES IN THE BAUXITE

225

FIG. 46 a.

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG.46 b PROFILE AT KENEDI VILLABE (MnO2, CaO, MgO, K2O)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE F16.46 d. PROFILE AT KENEDI VILLAGE (Sc, Ce, Zr, V)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE PROFILE AT KENEDI VILLAGE (Cu, Zn, Cr, Ni)

• •

,

FIG.46 e.

		I		1							De.				I											23(
TTS BASED ON A T1-RETAINED MASS BALANCE MODEL	жss of weathered profile : 3.04 ш		Remarks	Upward increasing gains	Upward increasing gain with top horizon maxima	Upward increasing gain with a top horizon maxima.		Top four horizon of gains with a bottom horizon of losses.	Bottom three horizon of gain with top horizon of losses.	Mid profile gains in the $Box(\vec{r}er)$ zone but with bottom and top	norizon of substantial depletion. Top three horizon of gain with bottom horizon of losses in B(sap) zo	Two top horizon of gain and two bottom horizon of losses.	Upward increasing gain with a top horizon maxima.		Upward increasing gain, except Box(Fer) horizon of substantial depletion.		2000	Upward increasing gain, except Box(Fer) horizon of substantial depletion.		Upward increasing gain with a maxima with a top horizon.	Upward increasing gain with a maxima with a top horizon.	Upward increasing gain with maxima with a Box(Fer).	Downward decreasing mobilities.	Upward increasing gain with maxima with a top horizon.	Top two and bottom horizon of fains with mid-profile horizon of losses in Box(Fer).	
AND TRACE ELENE	e present thick	3.2 - 4.3 m ;	Box (sap)	78.75	315.99	529.67	` I	- 79.33	181.45	50.87	- 18.73	- 54.05	1.82	1 1 1 1 1 1 1	122.30	H	FI	157.86	u u	144.23	37.13	187.85	- 38.41	94.39	110.84	
F NAJOR CUIDES	sumed to produc	1 2.1-3.2 m	¹ ^B cx(Fer) ¹	124.06	204.09	717.08	1	145.83	177.5	80.78	13.99	- 41.81	221.37	1 1 1 1 1 1 1 1	252.21	£4	E4	408,29	H	133.74	100.00	242.52	- 8,66	187.18	- 4.76	1 8 9 1 2 1 4
AND LOSSES O	thickness con	1.1 - 2.1 m	^{1 B} ox(Fer)	238.21	314.61	1578.89	ł	342.10	333.68	216.85	145.99	35.33	982.52	1 1 1 1	58.30	H	÷	257.55	H	490.21	303.01	583.81	ы	432.14	290.34	k F F F
NET CALUS	Zed rock	1 0.00-1.1 H	^{1 B} ox(Fer)	335.48	456.79	2182.20	ı	560.46	- 49.76	31.96	297.67	110.32	2052.46	1 7 7 7 7 7 7 8 8 8	498.71	ы	H	801.50	H	438,26	536.72	236,30	H	832.07	306.74	
*	1	Depth	Horizon	\$102	A1203	Fe203	T102	Mn02	CaO	MgO	K20	Na ₂ 0	P205	1 7 1 2	SC SC	Y	La	се Се	PD D	Zr	٧	un D	Zn	u U		

230

-

.

•

FIG. 47

X - RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF BAUXITIC PROFILE AT KENEDI

~

VILLAGE - KENDI Top (0.00-1.1m) X - ray data

B_{ox} - Ferricrete

1	d Spacing	Inte	ensity %	T
20	u ~paoing	I _o	^I c	, Remark
6.2 7.2295553686701492543843594039494196188 9.012222222222222233333333356694041.88	14.25512.2775.82885.57375.37235.06.54.84784.52914.48384.31144.09533.86673.54773.50653.43993.40123.36343.25493.15343.09982.94022.85772.75492.72232.60692.56362.54252.50142.46822.43582.28692.24852.20642.17092.09872.06682.0230	1.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 1	$\begin{array}{c} 1.72\\ 8.64\\ 16.09\\ 17.95\\ 21.27\\ 100.00\\ 35.63\\ 44.81\\ 30.58\\ 39.62\\ 17.15\\ 19.54\\ 17.02\\ 23.93\\ 17.15\\ 19.54\\ 17.02\\ 23.93\\ 30.71\\ 21.14\\ 16.75\\ 866\\ 27.56\\ 27.56\\ 27.56\\ 27.59\\ 20.47\\ 27.39\\ 25.00\\ 27.39\\ 27.39\\ 20.47\\ 27.55\\ 19.01\\ 26.59\\ 17.55\end{array}$	Saponite Montmorillonite Nontronite Nontronite Maghemite Illite Maghemite Saponite Montmorillonite Kaolinite Saponite Maghemite Nontronite Montmorillonite Illite Maghemite Illite Augite Montmorillonite Kaolinite Calcite Kaolinite Forsterite Illite Montmorillonite Illimenite Beidellite Quartz Illite Hematite Forsterite Hematite Forsterite Magnetite Kaolinite Illite

232

VILLACE - KENDI (1.1 - 2.1 m)

,

X - ray data

B_{ox} - Ferricrete

20	d spacing	Inter	nsity %	! !
1		I _o	Г _с	, Remark
5.8 7.5 11.1 16.5 87.0 5.8 7.5 11.1 16.5 87.0 5.8 7.0 5.8 7.0 5 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15.237 14.255 11.787 7.9708 7.4995 5.5391 5.3723 4.9828 4.5063 4.4394 4.3322 4.0767 4.0042 3.7385 3.6627 3.6043 3.4269 3.4012 3.3759 3.2549 3.2090 3.1644 3.0893 3.0079 2.6905 2.5636 2.5355 2.5218 2.4947 2.4682 2.4295 2.3799 2.3382 2.3208 2.2813 2.2325 2.2064 2.1961 2.1034 2.0668	0 19.4 238.962.740602023756038229415888107612028583 196.0202.196.02023756038229415888107612028583 1122171215111237888107612028583	$\begin{array}{c} c\\ 20.12\\ 23.85\\ 18.56\\ 21.36\\ 20.95\\ 14.21\\ 100.00\\ 62.24\\ 36.92\\ 14.52\\ 19.91\\ 16.59\\ 16.80\\ 24.17\\ 19.39\\ 16.07\\ 22.40\\ 21.78\\ 17.94\\ 22.61\\ 11.61\\ 55.18\\ 12.34\\ 11.82\\ 55.14\\ 11.82\\ 12.55\\ 14.06\\ 13.69\\ 19.70\\ 14.73\\ 15.35\\ 11.92\\ 10.16\\ 21.05\\ \end{array}$	Nontronite Saponite Saponite Saponite Saponite Nontronite Maghemite Montmorillonite Mont@morillonite Mont@morillonite Mont@morillonite Kaolinite Hematite Sphene Maghemite Kaolinite Illite Saponite Nontronite Gibbsite Montmorillonite Hematite Montmorillonite Kaolinite Maghemite Kaolinite Quartz Magnetite Anatase Forsterite Sphene Quartz Hematite Hematite Hematite Hematite Beidellite Montmorillonite Calcite Kaolinite
40.0 43.8	2.1034 2.0668	9.8 20.3	10.16	Kaolinite

VILLAGE - KENEDI (2.1 - 3.2 m) X - ray data

B_{ox} - Ferricrete

20	d spacing	Intensity %		pansenan na sana ana sa	
1		I _o	c	T Remark	
6.9 9.16455453456838247162940949083485053289 0.16455453456838247162940949083485053289 0.016455453456838247162940949083485053289 0.016455453456838247162940949083485053289	14.730 9.7176 $9.21.26$ 7.7617 7.0810 5.7166 5.0964 4.7958 4.5988 4.5753 4.5521 4.3114 4.0767 3.9864 3.9001 3.8338 3.6479 3.4662 3.4140 3.3510 3.2784 3.1977 3.1426 2.8847 2.8053 2.7631 2.5707 2.5636 2.5081 2.4747 2.4682 2.3982 2.3678 2.3382 2.2924 2.2432 2.2116 2.1560	$\begin{array}{c} 11.9\\ 16.7\\ 194.4\\ 8297222117\\ 205.8\\ 470.89381622002631428520122728723\\ 115832432152252012232439211587232\\ 4392115872324\\ 327.2\\ 115872324\\ 27.2\\ 27$	$\begin{array}{c} 12.25\\ 17.19\\ 19.97\\ 25.12\\ 19.97\\ 25.30\\ 29.00\\ 23.85\\ 49.42\\ 16.37\\ 29.24\\ 100\\ 23.85\\ 49.42\\ 16.37\\ 29.24\\ 22.8\\ 83.46\\ 12.66\\ 12.66\\ 12.66\\ 12.66\\ 12.66\\ 12.66\\ 19.77\\ 34.16\\ 247\\ 403.07\\ 116.27\\ 19.59\\ 24.03\\ 116.25\\ 28.01\\ 28.01\\$	Saponite Nontronite Saponite Nontronite Nontronite Sphene Beidellite Saponite Nontronite Nontronite Nontronite Illite Saponite Illite Saponite Illite Vacinite Illite Maghemite Illite Maghemite Illite Sphene Kaolinite Illite Fayalite Beidellite Montmorillonite Calcite Nontronite Quartz Illite Forsterite Calcite Quartz Illite Montmorillonite	

. ,

n, -

Table - 39

VILLAGE - KENEDI (3.2 - 4.3 m)

· · ·

•

X - ray data

^B(Sap)

29	d spacing	Intensity %		t Domonia
6.7 17.7 200.7 224.8 266.4 27.5 222.2 24.8 266.4 27.5 222.2 22.2 22.2 22.2 22.2 22.2 22.	14.488 13.192 5.0107 4.4838 4.4294 4.2908 3.9515 3.6479 3.5900 3.4269 3.3759 3.3022 3.2433 3.1644 3.0893 2.6069 2.5286 2.4169 2.3799 2.3208 2.2758 2.1910 2.0758	17.0 18.5 98.90 726.6 17.0 19.7 29.0 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	17.18 18.70 100.00 73.71 46.91 23.86 17.69 29.33 19.91 22.30.33 19.85 13.95 17.89 17.89 17.49 17.69 17.69 17.69 17.69 17.69 17.49 21.53	Saponite Nontronite Saponite Montmorillonite Nontronite Maghemite Beidellite Illite Fayalite Maghemite Kaolinite Montmorillonite Augite Nontronite Fayalite Illite Maghemite Maghemite Anatase Maghemite Illite Beidellite Sphene

•

	EPTH IN MIS		7-1 02-0		9.6 7.1	3-8 5-2	2.2 60	8-5	
	N1 D	44.76	58.25		22,98	34.54	20.11	63.67	28.0
	c.	222.67	161.33		42°L22	356.68	124.53	8	110.00
	4Z	F4	17.26		н	Ęł	5,06	H 	11.5
	ד ני	71.72	86.15		257.26	63. 11	105.55	B0.74	3,8
	*	178. 44	239.18		19611	217.26	143.12	127.22	185.00
LEMENTS 1	2	80.98	140.22	an a	91.68	156.14	ττ. . 53	61.54	8.8
TRACE E	e a	F1	ĥ		ę.	7.21	3.00	H	6.0
	ů	101.52	88.25			141.63	76.91	101.50	8.20
	ei		21.83			24.12	6	64	18.00
	 >4	F	16.0		ħ	ŧ.	F	ч	0.73
	ĸ	41_08	108 . 25		24°06	142.98	73.16	115.22	81.00
	205	1	1		0.08	0.13	0.18	0.15	0-03
	Na20 P	0.97	0.91		1.1.0	0, B1	0.34	0.32	
	X ₂ 0	0.81	0.72	5	0,68	0.75	0.25	0.11	1-20
	MgO	1.14	1.63		8.		5.1	1.69	5.00
N NI	Cao	0.47	0.58		0.63		1.81	1-2-	
COLUES	Mn02	0.19	0.21	•	0.25	0.30	0.31	0.37	0.50
MAJOR	T102	1.98	2.11		3.40	4*08	4.56	4.21	2.40
	e203	27.96	25,26		23.26	20.28	18,23	18.11	7.50
	1303	25,48	28.00		29.47	35-96	62.67	55-33	17.40
	5102 4	8	8.04		40.31	34.75	55.6	# #• 2 L	46,00

Table - 40

KARAMKUND

•

,

240

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG.48 e. PROFILE AT KARAMKUND VILLAGE (Zr, V, Cu, Zn)
VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 48 f PROFILE AT KARAMKUND VILLAGE (Cr, Ni)

.....

.

242

Table - 41 NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A TI-RETAINED MASS BALANCE HODEL LOC.: EARANKUND Bed rock thickness consumed to produce present thickness of the weathered profile : 69. 33
--

-

.

Depth	#0-00-0 ⁺	10.7-1.4m		,3.8-5.2m	, 5.2-6.00m	, 6.00-6.8 m	
Horizon	¹ ^B (Fer)	' ^B (Fer)	• ^B (Fer)	(NIN) I	(NIR) ^H '	i ^B (Sap)	Renarks
5102	7.67	- 214	- 39.76	- 55.71	- 89.34	- 78.40	Top horizon of gain with downward increasing of
A1203	76.30	81,80	16.01	20.74	84.24	B0.05	Top two and bottom two horizon of gain with mid-
Fe203	-351.87	283,09	113.88	59-05	25.18	37.65	protite of substantial depictant. Top horizon of losses with the bottom profile of gains
Tio2	ł	ı	1	ı	•	ı	
Mn02	- 53.93	- 52.22	- 65,51	- 64.70	- 68,06	- 57.81	Mobile throughout the profile
cao	- 48.25	- 40.07	- 60.53	- 48.17	- 15.32	- 37.34	Mobile throughout the profile.
MgO	- 30.90	- 7.29	- 33.79	- 41.47	- 55.45	- 51.82	Mobile throughout the profile.
K20	- 18.18	- 31.75	- 60.91	- 63.23	- 89.27	- 94.77	Mobile throughout the profile
Na ₂ 0	17.57	3.50	- 46.89	- 52.35	87*23 -	- 81.75	Top two horizon of gain with four bottom horizon of losses.
^P 205	1	ł	- 38.71	- 15.05	- 2.97	- 5.01	Top two and bottom of losses with a gain in the Box(Alu) zone.
SC	- 39,83	48.77	- 24.65	1.62	- 54.47	- 20.63	Top and bottom horizon of gain and intermediate zones of losses.
Y	H	41.45	ħ	Fi	E	H	Gain in the Box(Fer) zone.
La	ы	37.60	- 59.94	- 21.37	н	ы	Top horizon of gain with underlying zone of deple- tion.
Ge	48.69	21.29	• 0. 35	0.66	- 22.13	- 23,10	Top two horizon of gain with bottom four horizon of losses.
£	F	Ħ	H	- 29.31	- 74.24	ы	Losses in the Box(Alu) zone.
Zr	6.33	72.78	- 31.50	+ 0.58	- 59 . 08	- 61.99	Top two horizon of gain with bottmm four horizon of
٨	17.15	47.36	- 26.74	- 30.77	- 60.07	- 62.25	Loses Top two horizon of gain with bottom four horizon of losses.
Сц	57.04	30 . 65	136.50	- 50.50	- 27.51	- 38.62	Top three horizon of gain with bottom three horizon of losses
Zn	ен ,	70.14	. 64	EH	- 77.41	F1	Gain in the Box(Fer) zone with losses in the Box(Alu) zone.
сr	136.16	60.56	43.16	83.58	- 43,88	- 55.15	Top four harizon of gain with two bottom horizon of losses.
1 N	92.15	134.65	- 43.87	- 28,04	- 63.31	28.67	Top two and bottom horizon of gains with mid-profile R horizon of losses.
1 † 3 †	1 1 1 1	- , } } ! ! !	1 1 1 1 1 1 1 1	 	4 1 1 1 1 1 1 1 1 1 1		43

•

•

.

•

244

FIG. 49.

,

X - RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF BAUXITIC PROFILE AT KARAMKUND

.

,

.

-

Depth in mtr.	Horizon	Dominating minerals	5
0.00- 0.70m	^B (ox) Ferricrete	Maghemite,Kaolinite Nontronite, Saponite Montmorillonite Quartz, Gibbsite	· M.M. Mulitine
0.7- 1.4m	^B (ox) Ferricrete	Maghemite, Kaolinite,Saponite Montmorillonite Hematite, Gibbsite, Sphene	Si is is in the house of the second s
1.4- 3.8m	^B (ox) Ferricrete	Maghemite Kaolinite, Montmorillonite Goethite, Quartz Calcite,Boehmite Gibbsite	Mertunder will have here hered
3.8- 5.2m	^B (ox) Alucrete	Gibbsite Diaspore Kaolinite Montmorillonite Maghemite Calcite,Anatase	Mundullullullullul
5.2- 6.00m	^B (ox) Alucrete	Gibbsite, Boehmite Malloysite,Kaolinite Beidellite, Montmorillonite Saponite, Geothite	Will will will will will will will will
6.00- 6.8m	^B (sap)	Montmorillonite Saponite, Nontronite Maghemite,Kaolinte Beidellite Quartz, Anatase	E. M. M. S. S. M.

B_{ox} - Ferricrete

Table - 42

X - ray date

VILLACE - KARAMKUND (0.00 - 0.7 m)

Intensity % ŧ d spacing 20 Remarks Ī I_{c} 16.78 4.6 16.2 Saponite 19.206 5.1 17.327 20.0 20.72 Saponite Illite 14.30 17.30 35.23 9.32 9.22 13.8 16.7 9.9355 7.1379 8.9 Illite Nontronite 12.4 6.9157 12.8 34.0 Nontronite 9.0 8.9 17.9 4.9552 Saponite 4.8216 Maghemite 18.4 15.64 19.9 4.4615 15.1 Kaolinite 21.0 4.2302 43.2 44.76 Sphene 11.5 3.9171 3.8338 11.91 13.26 Diaspore 23.2 Saponite 13.2 3.5617 13.67 Kaolinite 25.0 9.9 10.25 Maghemite 25.8 3.4530 96.50 Quartz 100.00 26.9 3.3143 27.6 3.2318 16.37 Maghemite 15.8 3.1210 3.0998 3.0178 2.5636 80.93 53.47 7.04 7.46 78.1 Gibbsite 28.6 Gibbslte 51.6 28.8 29.6 6.8 Forsterite 35.0 36.0 7.2 Montmorillonite 5.59 14.50 9.32 13.05 5.4 2.4947 Kaolinite 36.6 38.5 39.5 40.4 14.0 Saponite 2.4551 2.3382 9,0 Kaolinite 2.2813 Quartz 12.6 6.2 6.3 6.42 Maghemite 2.2325 6.52 11.50 7.46 Kaolinite 41.2 2.1910 Beidellite 2.1659 41.7 11.1 Sphene 42.6 2.1222 7.2

Ta	b 1	е		43
----	------------	---	--	----

VILLACE - KARAMKUND . X - ray data B_{ox} - Ferricrete (0.7 - 1.4 m)

•

20	d spacing	Inte Inte	ensity %	Remarks
5.4 12.4 16.8 20.2 20.2 21.4 220.2 21.4 220.2 21.4 220.9 22.2 22.2 22.2 22.2 22.2 22.2 22.	16.365 14.730 7.1379 5.3402 4.9828 4.4394 4.3959 4.2502 4.1520 3.7540 3.7540 3.5758 3.5758 3.3386 3.3386 3.3022 2.8938 2.6905 2.6442 2.5636 2.5149 2.3324 2.3151 2.2758 2.2325 2.2012 2.1270	6.2 3.8 22.0 19.5 16.0 27.5 14.5 15.6 4.3 16.2 7.5 15.6 4.3 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	7.17 4.39 26.38 15.04 22.91 19.09 18.51 32.17 16.78 23.03 17.36 18.05 100.00 24.65 12.03 19.44 11.80 15.39 21.87 12.03 20.25 13.07 12.5 14.81 10.76	Saponite Saponite Kaolinite Maghemite Geothite Kaolinite Gibbsite Montmorillonite Kaolinite Kaolinite Saponite Kaolinite Montmorillonite Gibbsite Saponite Hematite Saponite Hematite Saponite Maghemite Anatase Maghemite Sphene Meghemite Hematite Sphene

246

Ta	bl	е -	44
----	----	-----	----

X - ray data

VILLACE -KARAMKUND (1.4 - 3.8 m)

28 d spacing 1 Intensity % ŧ ŧ. Remark lo Ic 6.8 7.6 10.2 12.998 26.84 Saponite 11.3 11.632 11.1 18.5 26.36 Maghemite 8.6720 43.94 Maghemite 45.94 100.00 34.20 28.50 23.27 19.95 21.37 69.59 65.55 90.73 12.4 14.3 17.2 17.8 7.1379 6.1935 5.1552 4.9828 4.9279 42.1 Kaolinite Boehmite 14.4 12.0 9.8 Montmorillonite Geothite Geothite 18.0 8.4 4.8478 18.3 9.0 Maghemite 19.7 29.3 4.5063 Montmorillonite 20.3 4.3744 27.6 Gibbsite 90.73 52.25 48.93 20.8 4.2704 Halloysite 38.2 21.2 22.0 Kaolinite 4.1907 Kaolinite 21.4 4.1520 20.6 24.9 25.9 26.6 3.5758 75.53 Kaolinite 31.8 27.07 3.4399 Anatase 11.4 3.3510 2.9402 95.96 Quartz 40.4 6.3 8.2 14.96 30.4 Calcite 32**.**1 34**.**9 2.7883 19.47 Maghemite 39.90 24.46 2.5707 16.8 Kaolinite Quartz 36.5 2.4616 10.3 38.4 2.3441 17.1 40.61 Boehmite 23.51 Kaolinite 2.2981 9.9 39.2 3.0 40.3 Maghemite 2.2378 7.12 3.1 7.36 Kaolinite 2.1910 2.0 42.4 2.1317 4.75 Quartz

B_{ox} - Ferricrete

B_{ox} - Alucrete

Ta	ble	-	45

VILLACE - KARAMKUND X - ray data (3.8 - 5.2 m)

,

20	d spacing	Inte	ensity%	Remarks
6.1 10.5 1	14.488 10.652 8.5057 7.6944 7.0251 6.3708 5.6088 4.8742 4.7199 4.4394 3.8015 3.5339 3.4662 3.2318 2.9592 2.9029 2.8577 2.7549 2.5636 2.4813 2.3678 2.3524 2.2648 2.2378 2.2064 2.0668	15.263566012012903300800435608 2221370935.012903300800435608 1122137028213225.008 112215.012903300800435608 1122219908	$\begin{array}{c} 18.46\\ 25.81\\ 25.88\\ 37.05\\ 35.96\\ 28.67\\ 30.37\\ 52.36\\ 30.61\\ 26.73\\ 25.63\\ 28.18\\ 46.05\\ 24.30\\ 100.25.88\\ 15.79\\ 14.58\\ 27.70\\ 18.22\\ 15.79\\ 18.71\\ 25.88\\ 24.90\\ 15.30\\ 23.08\\ 11.90\end{array}$	Saponite Montmorillonite Saponite Saponite Maghemite Maghemite Maghemite (?) Gibbsite Diaspore Nontronite Diaspore Bedillite Maghamite Maghamite Gibbsite Calcite Kaolinite Montmorillonite Geothite Beidellite Anatase Gibbsite Montmorillonite Maghemite Maghemite Maghemite Kaolinite

,

.

1

-	Ta	b1	е		46
---	----	----	---	--	----

~

VILLACE - KARAMKUND X - ray data(5.2 - 6.00 m)

B_{ox} - Alucrete

.

20	d spacing	Inte	nsity %	- Remark		
	t t	Io	I I _c	1 1		
6.0094536547428004360282497281642583 11123.6547428004360282497281642583	14.730 11.051 8.1166 7.7617 7.0810 6.6569 6.0669 4.7958 4.3532 4.2908 4.1520 3.8338 3.7385 3.7078 3.5617 3.5065 3.3885 3.3510 3.3022 3.1644 3.0998 2.9592 2.7631 2.5014 2.4487 2.4169 2.3799 2.3618 2.3324 2.2981 2.2432 2.1759 2.1609 2.0446	$\begin{array}{c} 11.5\\ 16.8\\ 9.6\\ 6.8\\ 2.5\\ 11.9\\ 7.8\\ 12.5\\ 4.6\\ 3.9\\ 9.1\\ 4.8\\ 5.9\\ 3.1\\ 0.9\\ 8.8\\ 8.0\\ 2.6\\ 0.1\\ 2.6\\ 1.2\\ 10.9\\ 1.2\\ 6.1\\ 2.5\\ 10.9\\ 1.2\\ 6.1\\ 1.2\\ 10.1\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1$	$\begin{array}{c} 11.67\\ 17.05\\ 19.18\\ 16.85\\ 25.98\\ 14.01\\ 11.37\\ 100.00\\ 78.57\\ 39.18\\ 16.54\\ 13.09\\ 8.02\\ 21.72\\ 17.05\\ 16.75\\ 14.11\\ 17.56\\ 13.29\\ 12.18\\ 25.29\\ 11.97\\ 0.13\\ 25.58\\ 12.79\\ 10.15\\ 9.13\\ 10.76\\ 10.25\\ 14.41\\ \end{array}$	Nontromite Montmorillonite Saponite Saponite Kaolinite Boehmite Gibbsite Kaolinite Halloysite Saponite Saponite Kaolinite Saponite Kaolinite Montmorillonite Gibbsite Beohmite Kaolinite Saponite Beidellite Montmorillonite Gibbsite Beidellite Boehmite Gibbsite Beidellite Boehmite Gibbsite Gibbsite Gibbsite Gibbsite Gibbsite Gibbsite Gibbsite Gibbsite Gibbsite		

•

Table - 47

VILLAGE - KARAMKUND (6 - 6.8 m)

X - ray data

^B(Sap)

2Q	d snacing	Inten	sity %	r1
			^I c	, Remark
5.3 8.9 11.4 12.4 12.4 12.4 14.0 50.4 6.5 20.4 6.3 22.2 22.2 22.2 22.2 22.2 22.2 22.2	16.673 10.915 9,9355 7.7617 7.1379 6.8624 6.1507 5.5391 4.7958 4.4394 4.3532 4.3114 4.3713 3.8338 3.7540 3.6187 3.5758 3.5201 3.5201 3.5201 3.3510 3.3520 3.3510 3.3022 3.2090 3.1754 3.1426 3.09988 2.96888 2.8756 2.6367 2.5565 2.4947 2.4682 2.4232 2.3860 2.3324 2.2432 2.1609 2.0446	70.4 32.1 28.0 55.2 18.0 55.2 18.9 379.8 379.4 300.2 45.3 21.0 10.2 10.4 21.0 15.0 21.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 15.0 21.0 21.0 21.0 15.0 21.0 2	71.91 32.78 28.70 26.55 56.38 26.76 18.89 22.48 100.00 32.48 81.00 49.35 20.48 81.00 49.35 20.42 7.35 20.73 25.12 20.79 15.62 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 10.53 20.42 15.62 20.42 10.53 20.42 15.62 20.42 2	Montmorillonite Montmorillonite Saponite Saponite Nontronite Nontronite Boehmite Nontronite Beidellite Beidellite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Maghemite Kaolinite Anatase Augite Montmorillonite Saponite Beidellite Kaolinite Maghemite Megnetite Maghemite Megnetite Maghemite Saponite Kaolinite Montmorillonite Kaolinite Kaolinite Montmorillonite Kaolinite Montmorillonite Beidellite Beidellite

V More

											1.	and the second	EHTALIA
												5	A URAL DAUNCALLY
	I IN MTS	0.50	5		E	17	1.9		7-6-		1	il.	
	DEPTH	8	0.05~	- 5-	21-	ž					Ĥ	· · ·	3
	Ŧ	20.11	34.30	42.15	26.79	19-61	56.19	17.27	48.12	Q			Iniversit
	5	H	60.12	24.15	146.29	198.75	120.52	427.16	143.04	121-11			
	A	H	н	н	н	F4	7.19	2.05	6.44		•		
	Cu Z	17.16	85.11	41.76	37.66	03.02	76.14 2		20-53	8. 5.	•		
	 >	07.00	42.67	85.16 1	1 13-06	10.04 1	90.12	11.71	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22:22	•		
SINGNETE	13	10.10	141.27 3	17.55 2	88.96 1	40.9	33.12	153.23	2 90*44				•
TRACE]	e.	ei Ei	25.05	13.42	11.16	4.93	ę.		н	Ę4			
	5	60.65	110.14	75.25	60.72	30.66	31.32	41.56	29,06	66.9		1	
	4	ы	3.62	7.52	6.31	<u></u> н	н	4.30	2.10	Ę4			
		5.02	11.25	4	F1	н	17.02	14.15	н	H			,
	8	89,26	110.55	140.12	95.96	30.12	80.95	111.09	11.251	ୟ ଅ			
_	205	60-0	0.07	0.08	0.13	0.13	0.11	0.2	0,18	0.24			
	A20 F	0.28	0.23	0.25	0.21	0.21	2.0	0.29	0.31	£4°0			- 1444g.
	2° 7	0.17	0.15	0.13	0.15	0.15	0.17	0.18	0.36	0-77			
	0 ^g W	0.38	0***0	0.38	0.11	0.10	0,21	0.19	0.28	1.09			
×		53.33	11.82	7.56	3.09	2.40	1.79	1.42	1-11	1-03			
ues n	8	0.13	0.15	0.15	0.13		0.11	. 12	0.12	0.12			•
MJOR 000	7102 M	1-08	2.0	0.98	1.19	1.32	1.17	1.06	0.90	1.00			
-	² 2 ⁰ 3	16.11	21.72	\$7.29	29, 15	30.71	23.97	28.63	24.11	19, 81			, ,
	1303	-	18.55	24.33	29.76	29.98	27.23	20.18	22.36	21.93		-	
	3102 A	49.27	36.18	29.34	36.08	35.19	45,11	45,68	50.23	5.2			۰,
	L	§	·•										

LAMBA

.

252

VARIATION OF MAJOR OXIDES IN THE BAUXITE FIG. 50 a PROFILE AT LAMBA VILLAGE (SiO2, A12O3, Fe2O3, TiO2)

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT LAMBA VILLAGE (MnO2, CaO, MgD, K2O)

253

FIG. 50 b.

VARIATION OF MAJOR OXIDES IN THE BAUXITE PROFILE AT LAMBA VILLAGE (Na20, P205)

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 50 d. PROFILE AT LAMBA VILLAGE (Sc, Y, La, Ce)

٠

VARIATION OF TRACE ELEMENTS IN THE BAUXITE FIG. 50 e. PROFILE AT LAMBA VILLAGE

(

256

.

۱ ۱

.

NET GAINS AND LOSSES OF MAJOR OXIDES AND TRACE ELEMENTS BASED ON A T1-RETAINED MASS BALANCE MODEL TAMPA

Depth $0.00 - 0.5m$ $0.5^{-1}.5m$ $1.5^{-2}.1m$ $2.1-3.1m$ Horizon $\frac{163.1}{510005}$ $0.5^{-1}.5m$ $1.5-2.1m$ $2.1-3.1m$ S102 -17.88 -10.78 -10.78 -46.11 -45.42 S102 -17.88 -10.78 -10.78 -46.11 -45.42 S102 -17.88 -10.78 -14.34 11.71 12.57 S102 -25.41 117.26 90.25 22.47 Mn02 0.266 15.69 27.49 -900 Mn02 0.2268 15.69 27.49 -91.52 Mn02 $0.2363.5$ 1470.6 $64a.28$ 15.67 Mn02 -79.56 -73.32 -82.78 -37.49 Ma20 -79.56 -73.32 -82.78 -37.46 Na20 -39.85 -26.90 -40.81 -54.55 L205 -82.78 21.16 14.38 -35.46 Y T	·in ·j1-4.1m Fer. · Box(fer.) .42 - 52.01 .47 16.32 .47 16.32 .60 - 30.58 .87 76.36 .52 - 93.05 .63 - 93.05 .52 - 93.05 .52 - 93.05 .55 - 93.05 .65 - 63.09 .55 - 59.03			8.1-9.4ш В(sap) 0.45 11.79 33.94 11.66 23.35 - 71.47 - 71.47 - 16.8 - 16.8	Remarks Mobile throughout the profile except the bottom horizon of gain in B(Sap) zone Gain throughout the profile Top horizon of losses with all the bottom horizon of gains. Top three and bottom horizon of gain with the mid-profile of losses. Top three and bottom horizon of gain with horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
Horrizon $\frac{(Ga)}{5tones}$ $Dox(Fer)$ $Dox(Fer)$ $Dox(Fer)$ $Dox(Fer)$ $S10_2$ -17.88 -10.78 -46.11 -45.42 $S10_2$ -17.88 -10.78 -46.11 -45.42 $S12_{03}$ -25.41 117.26 90.25 22.47 Fe_20_3 -25.41 117.26 90.25 22.47 $T10_2$ $ Mn0_2$ 0.268 15.69 27.49 $ Mn0_2$ 0.268 15.69 27.49 $ Mn0_2$ $0.2693.5$ 1470.6 648.28 151.87 $Mn0_2$ -3935.5 1470.6 648.28 151.67 $Mn0_2$ -79.56 -73.32 -82.749 -91.52 $Mn2_0$ -67.77 -42.21 -64.44 -91.52 $Mn2_0$ -79.56 -73.32 -82.78 -83.65 $Mn2_0$ -79.56 -73.32 -82.78 -99.05 $P2^{05}$ -88.44 -60.10 -66.04 -54.55 $P2^{05}$ -88.44 -60.10 -66.04 -54.55 $P2^{05}$ -88.44 -80.16 -75.28 -75.46 $P2^{05}$ -75.28 21.16 14.58 -75.46 $P2^{05}$ -75.28 21.16 14.58 -75.46 $P2^{05}$ $P2^{05}$ $P2^{05}$ $P2^{05}$ -75.76 $P2^{05}$ $P2^{05}$ $P2^{05}$ $P2^{05}$ $P2^{05}$ $P2^{05}$ $P2^{05}$ $P2^{05$	Fer) B _{ax} (Fer) .42 - 52.01 .53 2.20 .47 16.32 .00 - 30.58 .87 76.36 .52 - 93.05 .63 - 63.09 .55 - 63.09 .55 - 59.03	- 30.60 - 30.60 - 4.73 - 4.75 - 2.45 - 2.45 - 2.45 - 2.45 	- 22.43 - 22.43 - 22.43 - 5.69 - 5.69 - 21.27 - 77.95 - 36.52 - 9.73	, ^B (sap) 0.45 11.79 73.94 11.66 23.37 - 48.08 - 23.37 - 16.8 - 16.8	Mobile throughout the profile except the bottom horizon of gain in B(Sap) zone Gain throughout the profile Top horizon of losses with all the bottom horizon of gains. Top three and hottom horizon of gain with the mid-profile of losses. Upward increasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
$$10_2$ $ 17.38$ $ 10.78$ $ 46.11$ $ 45.42$ $A12_{03}$ $ 14.34$ 11.71 12.53 Fe_{03} $ 14.34$ 11.71 12.53 $T10_2$ $ T10_2$ $ T10_2$ $ T10_2$ $ Mn0_2$ 0.268 15.69 27.49 $ 9.00$ $Mn0_2$ 0.268 1470.6 $64.8.28$ 151.87 $Me0$ $ 67.73$ $ 42.21$ $ Me0$ $ 67.73$ $ 42.21$ $ Me0$ $ -79.56$ -77.52 $ -82.78$ -83.65 Me_2 -79.56 -77.52 -82.78 -83.65 -83.65 Me_2 -79.56 -77.52 -82.78 -91.52 -85.65 $P_0^{0}_{0}^{0}^{0}^{0}^{0}^{0}^{0}^{0}^{0}^{0}^$.42 - 52.01 .57 2.20 .47 16.32 	- 30.60 4.73 2.43 - 2.45 - 2.45 - 81.14 - 56.37 - 56.37 - 56.37	- 22.45 14.35 35.04 - 5.69 29.94 - 77.95 - 36.52 - 36.52	0.45 11.79 53.94 11.66 23.33 - 11.66 - 23.33 - 11.47 - 16.8	Mobile throughout the profile except the bottom horizon of gain in B(Sap) zone Gain throughout the profile Top horizon of losses with all the bottom horizon of gains. Top three and bottom horizon of gain with the mid-profile of losses. Upward increasing gain with a top borizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
	.53 2.20 .47 16.32 	4.73 2.45 2.45 2.45 2.46 48.40 - 81.14 - 56.37 - 56.37 - 60.88	14.33 35.04 - 5.69 29.94 - 77.95 - 36.52 - 9.73	11.79 53.94 11.66 23.35 - 71.47 - 48.08 - 48.08 - 16.8	Gain throughout the profile Top horizon of losses with all the bottom horizon of gains. Top three and bottom horizon of gain with the mid-profile of losses. Upward increasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.47 16.32 	2.43 - 21.68 - 21.68 - 81.40 - 81.14 - 56.37 - 56.37 - 56.37 - 56.37 - 1	35.04 - 5.69 - 29.94 - 77.95 - 36.52 - 9.73	73.94 - - 11.66 23. <u>3</u> 3 - 23.37 - 48.08 - 48.08 - 16.8	Top horizon of losses with all the bottom horizon of gains. Top three and bottom horizon of gain with the mid-profile of losses. Upward locreasing gain with a top borizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
T102 - <td></td> <td>- 21.68 - 21.68 - 48.40 - 83.54 - 81.14 - 56.37 - 56.37 </td> <td>- 5.69 29.94 - 71.27 - 77.95 - 36.52 - 9.73</td> <td>11.66 23.33 - 71.47 - 48.08 - 20.08 - 16.8</td> <td>Top three and bottom horizon of gain with the mid-profile of losses. Upward increasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile</td>		- 21.68 - 21.68 - 48.40 - 83.54 - 81.14 - 56.37 - 56.37 	- 5.69 29.94 - 71.27 - 77.95 - 36.52 - 9.73	11.66 23.33 - 71.47 - 48.08 - 20.08 - 16.8	Top three and bottom horizon of gain with the mid-profile of losses. Upward increasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
Mno2 0.268 15.69 27.49 $-$ 9.00 CaO 2893.5 1470.6 648.28 151.87 Mg0 $ 67.73$ $ 42.21$ $ 648.28$ 151.87 Mg0 $ 67.73$ $ 42.21$ $ 64.44$ $ 91.52$ K20 $ 79.56$ $ 73.32$ $ 82.78$ $ 83.63$ Ma20 $ 79.56$ $ 73.32$ $ 82.78$ $ 83.63$ Ma20 $ 79.69$ $ 40.81$ $ 59.05$ P205 $ 96.00$ $ 40.81$ $ 59.05$ P205 $ 98.44$ $ 66.04$ $ 54.55$ P205 $ 98.44$ $ 51.66$ 74.55 $-$ P205 $ 35.388$ $21.12.67$ 14.38 $-$.00 - <u>30.58</u> .87 76.36 .52 - 93.05 .65 - 85.25 .05 - 63.09	- 21.68 48.40 - 83.54 - 81.14 - 56.37 - 50.88 	- 5.69 29.94 - 77.95 - 36.52 - 9.73	11.66 23.33 - 71.47 - 48.08 - 20.08 - 16.8	Top three and bottom horizon of gain with the mid-profile of losses. Upward Locreasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
Cao 2893.5 1470.6 648.28 151.87 Mg0 -67.73 -42.21 -64.44 -91.52 k_20 -79.56 -77.32 -82.78 -83.63 Ma_20 -79.56 -77.32 -82.78 -83.65 Ma_20 -39.85 -26.90 -40.81 -59.05 P_20_5 -88.44 -66.10 -66.04 -54.55 P_20_5 -88.44 -60.10 -66.04 -54.55 P_20_5 -73.88 21.16 14.38 -35.48 Y T T T T T </td <td>.87 76.36 .52 - 93.05 .63 - 85.25 .05 - 63.09 .55 - 59.03</td> <td>48,40 - 83,54 - 81,14 - 56,37 - 60,88 </td> <td>2994 - 21.27 - 77.95 - 36.52 - 36.52</td> <td>23.33 - 71.47 - 48.08 - 20.08 - 16.8</td> <td>the mid-provide of losses. Upward increasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile</td>	.87 76.36 .52 - 93.05 .63 - 85.25 .05 - 63.09 .55 - 59.03	48,40 - 83,54 - 81,14 - 56,37 - 60,88 	2994 - 21.27 - 77.95 - 36.52 - 36.52	23.33 - 71.47 - 48.08 - 20.08 - 16.8	the mid-provide of losses. Upward increasing gain with a top horizon maxima Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
$ \begin{array}{llllllllllllllllllllllllllllllllllll$.52 - 93.05 .63 - 85.25 .05 - 63.09 .55 - 59.03	- 83.54 - 81.14 - 56.37 - 60.88 	- 21.27 - 77.95 - 36.52 - 9.73	- 71.47 - 48.08 - 20.08 - 16.8	Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
k_2 0 - 79.56 - 73.32 - 82.78 - 83.65 Na_2 0 - 39.85 - 26.90 - 40.81 - 59.05 P_2 05 - 88.44 - 50.10 - 66.04 - 54.55	.63 - 85.25 .05 - 63.09 .55 - 59.03	- 81. 14 - 56.37 - 60.88 	- 77.95 - 36.52 - 9.73	- 48.08 - 20.08 - 16.8	Mobile throughout the profile Mobile throughout the profile Mobile throughout the profile
	.05 - 63.09 .55 - 59.03 	- 56.37 - 60.88 	- 36,52 - 9,73 	1 16.8	Mobile throughout the profile Mobile throughout the profile
P205 -88.44 -50.10 -66.04 -54.55				1 1 16.8	Mobile throughout the profile
Sc - 35.88 21.16 14.38 - 35.48 Y T T T T I.a T T T T I.a T T T T Ce - 15.76 126.31 15.17 - 25.46 Pb T T T T Zr 12.13 112.87 9.49 - 13.76	1 1 1 1 1 1 1 1 1			8 1 8 1 8 1 8 1 8 1	
Y T T T T T T T La T T T T T T T Ce - 15.76 126.31 15.17 - 23.46 Pb T T T T T T T T T Zr 12.13 112.87 9.49 - 13.76	* 48 – 81.7 4	+13.44 -	- 16.15	18.32	Bottom and top horizon of gain with intermediate zones of losses,
La T T T T T T Ce - 15.76 126.31 15.17 - 23.46 Fb T T T T T T Zr 12.13 112.87 9.49 - 13.76		H 7	H	H	1
Ce - 15.76 126.31 15.17 - 23.46 Fb T T T T T T Zr 12.13 112.87 9.49 - 13.76	84 E4	Ħ	, FI	H	
Pb T T T T T T Zr 12.13 112.87 9.49 - 13.76	. 46 3.02	- 59.84	- 41.18	- 99.51	Top horizon of gain with underlying zmes of depletion.
Zr 12.13 112.87 9.49 - 13.76	н Н	H	EH	EI	
	.76 - 65.91	• 68 . 86	59.01	- 5.81	Top horizons of gains with underlying zones of depletion with a zone of gain in the bottom horizon.
V - 16.41 40.82 - 12.70 - 12.70	70 - 51-89	- 79.99	- 11.78	- 4.71	Losses throughout the profile with a mid profile horizon of gain in Box(Fer)zone.
Cu 30.17 39.90 73.58 38.81	1 . 81 - 6. 34	- 21.9	141.32	60.70	Toy four and bottom two horizon of gains gains with mid profile horizons of losses.
Zn T T T T	H	- 67.46	- 44.46	- 12.20	Bottom thr . horizon of losses.
Cr I - 34,11 '- 80,28 - 1,65	1.65 20.44	- 17.59	222.38	27.14	Top horizon of depletion with bottom horizons of gain.
N1 - 70.20 - 24.82 - 31.18 - 63.97	. <i>.97</i> - 76.15	- 23.15	- 73.93	- 14.45	Mobile throughout the profile

.

258

•

FIG.51.

X - RAY DIFFRACTION TRACES OF VARIOUS HORIZONS OF BAUXITIC PROFILE AT LAMBA

~

•	Depth in Mtr.	Horizon	Dominating minerals	
	0.00- 0.50m	Gaj Limestone	Calcite, Quartz Kaolinite, Goethite, Illite Maghemite Montmorillonite	Muddhin man Muder
,	0.50- 1.5m	^B (ox) Ferricre- te	Nontronite Montmorillonite Maghemite, Lepidocrocite,Kaolinite Goethite, Calcite, Ilmenite	in within the within the
	1.5- 2.1m	^B (ox) Ferri- crete	Nontronite,Maghemite Montmorillonite, Kaolinite, Goethite	with the strain the strain of
	2.1- 3.1m	^B (ox) Ferri- crete	Maghemite,Montmorillonite Illite, Geothite, Quartz, Fayalite, Ilmenite	· Mm M. M.
	3.1- 4.1m	B(ox) Ferri- crete	Nontronite,Kaolinite Maghemite, Illite Gibbsite	when the man when the second
•	4.1- 6.1m	^B (sap)	Nontronite,Kaolinite Beidellite, Maghemite,Quartz, Calcite, Gibbsite	Mullium Junion Junion
	6.1- 8.1m	^B (sap)	Kaolinite, Maghemite, Hemalite Calcite, Boehmite, Quartz, Gibbsite	and and a stand and and and and and and and and and
	8.1- 9.4m	^B (sap)	Saponite,Montmorillonite Kaolinite,Maghemite Calcite, Ilmenite	in the way of the states
	9.4- 13.2m	C (Basalt)	Augite, Quartz, Ilmenite Sphene, Maghemite` Forsterite	A Land Marken Marken Lin

259

.

.

VILLAGE - LAMBA

X **-** ray data

(0.00 - 0.5 m)

29	d spacing	Int	ensity %	Remark
	7 2	I I _o	I, ^I c	i i i i i i i i i i i i i i i i i i i
4.8 7.6 9.0 112.6 22.2 23.4 25.8 1.0 6 4.2 9.8 6 2.4 9.4 1.2 20.4 21.2 22.2 22.2 22.2 22.2 22.2 22.2 22	18.409 12.109 10.281 9.8254 8.0430 7.1379 7.0251 5.8288 5.1552 4.8742 4.3532 4.2908 4.1500 3.8338 3.6479 3.4930 3.3264 3.2903 3.1865 3.0178 2.6827 2.4813 2.4551 2.4169 2.3738 2.6827 2.4469 2.0849 2.0446 1.9852	$\begin{array}{c} 22.0\\ 18.5\\ 13.0\\ 10.0\\ 9.5\\ 11.5\\ 11.0\\ 27.0\\ 14.0\\ 88.5\\ 29.5\\ 16.0\\ 9.0\\ 10.0\\ 6.5\\ 27.0\\ 10.0\\ 5.0\\ 10.0\\ 91.5\\ 11.0\\ 10.0\\ 14.0\\ 14.0\\ 5.5\\ 10.0\\ 14.0\\ 10.0\\ 6.0\\ 9.0\\ \end{array}$	$\begin{array}{c} 24.04\\ 20.21\\ 14.20\\ 10.90\\ 10.38\\ 12.56\\ 12.02\\ 29.50\\ 15.30\\ 96.72\\ 32.24\\ 17.48\\ 9.38\\ 10.92\\ 6.55\\ 7.10\\ 29.50\\ 11.47\\ 37.15\\ 100.00\\ 7.65\\ 21.31\\ 12.02\\ 6.55\\ 1.09\\ 8.74\\ 15.30\\ 5.46\\ 4.91\\ 4.37\\ 10.92\\ 6.55\\ 9.83\end{array}$	Nontromite Illite Illite Illite Saponite Kaolinite Maghemite Montmorillonite Montmorillonite Montmorillonite Montmorillonite Maghemite Kaolinite Saponite Kaolinite Quartz Lepidocrocite Calcite Geothite Geothite Geothite Meghemite Meghemite Maghemite Illite Quartz Ilmenite Montmorillonite Maghemite Kaolinite Kaolinite Maghemite Kaolinite Maghemite Kaolinite Kaolinite Maghemite Kaolinite Kaolinite Maghemite Kaolinite Kaolinite Kaolinite Kaolinite

1

Gaj Limestone

Table	- 51	٠
-------	------	---

-

VILLAGE - LAMBA X - ray data B_{ox} - Ferricrete

.

(0.5 - 1.5 m)

,

28	l l	d spacing	Inte	nsity %	i Bemark
	1		Ι _ο		
6.7 9.85 12.766 13.48 202.22 222.22 222.22 222.22 222.22 222.22 222.22 222.22 222.22 222.22 223.33 33.366 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.664 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64 9.64		13.1920 9.0250 7.0810 6.4634 6.0669 4.7702 4.3532 4.2908 3.9864 3.6187 3.5617 3.5065 3.3386 3.2903 3.1644 3.0178 2.7466 2.6367 2.5495 2.4880 2.4422 2.3738 2.3324 2.3738 2.3324 2.2758 2.2325 2.1560 2.0402	30.5 13.0 17.5 10.5 98.0 54.5 12.0 14.0 12.0 14.0 11.8 12.0 5.0 5.5 5.0 12.0 14.0 11.8 12.0 5.0 5.5 5.0 12.0 12.0 14.0 5.5 5.5	$\begin{array}{c} 31.12\\ 13.26\\ 17.85\\ 10.20\\ 7.65\\ 100.00\\ 55.14\\ 12.24\\ 8.16\\ 14.28\\ 12.24\\ 8.16\\ 11.22\\ 8.16\\ 21.934\\ 5.04\\ 5.08\\ 12.75\\ 18.75\\ 18.75\\ 18.75\\ 6.12\\ 4.08\\ 3.06\\ 4.08\\ 9.18 \end{array}$	Nontronite Montmorillonite Nontronite Augite Boehmite Quartz Kaolinite Maghemite Diaspore Kaolinite Montmorillonite Montmorillonite Lepidocrocite Nontronite Calcite Ilmenite Maghemite Ilmenite Goethite Goethite Kaolinite Kaolinite Sphene Maghemite Montmorillonite Gibbsite

262

Table - 52

VILLAGE - LAMBA

X - ray data B_{ox} - Ferricrete

.

(1.5 - 2.1 m)

.

4

20	d spacing	Intensity %		r Remark
1		<u>^o</u>	<u>, C</u>	1
5.8 9.2 10.1 17.3 20.2 21.5 221.5 227.4 25.8 27.4 25.8 27.3 35.7 35.7 35.7 35.3 37.2 8 41.2	15.237 9.6122 8.8450 5.1257 4.7958 4.3959 4.1907 4.1329 3.6479 3.5617 3.2090 2.6827 2.5149 2.5014 2.4169 2.2648 2.1910	15.0 24.0 22.0 40.0 33.0 28.0 30.00 35.0 27.0 27.0 28.0 34.0 32.0 35.0 38.0 26.0 27.0	37.50 60.00 55.00 100.00 82.50 70.00 87.50 67.50 67.50 67.50 80.00 85.00 80.00 82.50 95.00 65.00 67.00	Nontronite Nontronite Maghemite Montmorillonite Illite Montmorillonite Kaolinite Illite Kaolinite Maghemite Geothite Kaolinite Montmorillonite Montmorillonite Montmorillonite Kaolinite

VILLACE - LAMBA (2.1 - 3.1 m)

,

X - ray data

B_{ox} - Ferricrete

.

4

20 1	d spacing	Inten:	sity %	Remark
12.6 13.6 18.6 20.1 20.8 21.6 25.2 27.2 28.3 29.0 29.7 35.2 29.7 35.2 36.8 38.0 38.8 39.5 40.4 41.6 44.4	7.0251 6.5107 4.7703 4.4175 4.2704 4.1140 3.5339 3.2784 3.1534 3.0789 3.0079 2.5495 2.4813 2.4422 2.3678 2.3208 2.2813 2.2325 2.1708 2.0402	39.0 20.0 58.0 19.0 36.0 23.0 15.0 24.0 21.5 4.5 2.0 2.0 9.0 6.5 11.0 12.0 6.5 2.0 1.0	67.24 34.48 100.00 32.75 62.06 39.65 25.86 41.37 37.06 7.75 3.44 15.51 15.51 15.51 15.51 15.51 11.20 18.96 20.68 11.20 3.44 1.72	Meghemite Maghemite Quartz Illite Illite Illite Fayalite Sphene Montmorillonite Maghemite Goothite Goothite Beidellite Maghemite Quartz Maghemite Sphene Gibbsite

268

•

-

,

Table	- 54
-------	------

X - ray data

÷

B_{ox} - Ferricrete

· .

VILLAGE - Lamba (3.1 - 4.1 m)

.

20	d spacing	Inter	nsity %	- Remark
12.5 18.6 19.9 20.6 21.6 25.1 28.1 25.1 28.1 33.5 35.1 35.0 43.4 43.4 44.8	7.0811 4.7703 4.4615 4.3114 4.1140 3.6187 3.5477 3.1754 2.6749 2.5565 2.4946 2.1859 2.0849 2.0490 2.0229	24.5 31.0 22.0 24.0 23.0 21.5 21.5 18.5 28.5 18.5 30.0 19.0 18.5 18.5 20.0	79.03 100.00 77.41 70.96 74.19 69.35 69.35 59.67 91.93 59.67 96.77 61.29 59.67 59.67 59.67 64.51	Nontronite Gibbsite Kaolinite Gibbsite Illite Kaolinite Beidellite Fayalite Kaolinite Kaolinite Kaolinite Maghemite Gibbsite Maghemite

26	5

Ta	bl	е	-	5	5
----	----	---	---	---	---

VILLAGE - LAMBA X - ray data $B_{(Sap)}$ (4.1 - 6.1 m)

29	1	'd' spacing	· · ·	Inte	ensity %	-1 Bemark
W-115	1 1		1	I _o	l ^I c	1 Incindi K
12.5 16.4 19.5 22222 233 35 5 6 4 4 4 4 4 4 4 4		7.0811 5.6802 5.4049 4.7958 4.5521 4.4175 4.1329 3.8338 3.5617 3.0178 2.8756 2.6826 2.5565 2.4946 2.3324 2.2868 2.1961 2.0490		38.0 10.5 11.0 13.0 19.5 21.0 30.5 11.0 5.5 10.5 12.5 15.0 11.0 7.0	100.00 27.63 22.36 28.94 34.21 50.00 53.94 55.26 28.94 78.94 14.47 28.94 27.63 32.89 19.73 39.47 28.94 18.42	Nontromite Nontromite Nontromite Kaolinite Beidellite Kaolinite Kaolinite Calcite Maghemite Geothite Kaolinite Kaolinite Kaolinite Quartz Kaolinite Gibbsite

24 266

X - ray data

.

.

^B(Sap)

VILLAGE - LAMBA (6.1 - 8.1 m)

20	d spacing	Inter I _o	nsity %	- Remark
9.04 220.43 221.53 221.53 221.53 221.53 225.62 864 504 43.0 43.0 43.0 443.0 443.0 443.0 444.0 3	9.8255 7.1380 4.4394 4.3532 4.1713 4.1329 3.6627 3.5617 2.6983 2.6671 2.5495 2.5081 2.3324 2.2868 2.2272 2.2012 2.0849 2.0578 2.0446	13.0 14.0 25.0 23.5 23.5 23.5 23.5 23.5 23.0 23.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	44.82 48.27 86.20 79.31 81.03 81.03 81.03 72.41 79.31 96.55 74.13 68.96 100.00 65,51 56.89 55.17 63.79 56.89 48.27	Illite Kaolinite Kaolinite Kaolinite Kaolinite Hematite Kdolinite Hematite Sphene Ilmenite Calcite Boehmite Quartz Saponite Maghemite Maghemite Sphene Gibbsite

VILLACE - LAMBA (8.1 - 9.4 m) X - ray data

^B(Sap)

29	d spacing	Inter Io	nsity % Ic	Remark
5.3 5.6 7.1 8.8 10.9 11.9 12.6 19.4 15.6 9.4 15.6 0.2 23.5 5.6 7.1 19.4 19.4 19.4 20.1 22.2 35.6 7.4 3.9 42.9	16.6736 15.7810 12.4500 10.6525 8.1916 7.4367 7.4367 7.1380 5.6802 4.8217 4.4615 4.3532 4.1713 4.329 3.7697 3.5617 2.9495 2.5081 2.4551 2.3860 2.3441 2.2924 2.1080	$\begin{array}{c} 10.5\\ 11.0\\ 16.0\\ 19.5\\ 22.5\\ 21.0\\ 13.5\\ 20.5\\ 13.5\\ 206.0\\ 15.5\\ 9.5\\ 5.5\\ 9.5\\ 1.4\\ 3.9\\ 4.2\\ 4\\ 12.4\\ 12.4\\ \end{array}$	46.66 48.88 71.11 86.66 53.33 100.00 93.33 57.77 28.88 82.22 88.88 71.11 60.00 84.44 66.66 17.77 42.22 51.11 20.00 15.55 40.00 20.00 53.33 20.00	Saponite Saponite Illite-Montmorillonite Montmorillonite Montmorillonite Saponite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Kaolinite Illite Ilmenite Calcite Maghemite Kaolinite Illite Calcite Montmorillonite Calcite

)

1

267

.

X - ray data C - Basalt

VILLACE - LAMBA (9.4 - 13.2 m)

.

.

20	d spacing	Intensity %		Remark
	r E	¹ 0		1
5.1 7.7.1 17.1 221.3 2222222222222222222222222222222	17.3270 11.4811 8.7577 4.9828 4.4175 4.2104 4.1713 3.8667 3.7385 3.5617 3.4795 3.2549 3.2784 3.2784 3.2549 3.2090 3.0685 3.0079 2.9592 2.8937 2.7063 2.6143 2.5565 2.3324 2.2980 2.1708 2.1174	$\begin{array}{c} 14.0\\ 18.5\\ 8.0\\ 19.0\\ 10.5\\ 13.1\\ 12.5\\ $	29.16 38.54 16.68 29.16 39.566 21.82 23.954 10.05 28.954 100.54 25.00 38.008 37.562 37.562 8.3546 25.23 15.62 8.562 8.562 15.62 8.562 15.62 8.562 15.62 2.08 15.62 15.62 2.08 15.62 1	Saponite Maghemite Maghemite Montmorillonite Nontronite Sphene Kaolinite Calcite Illmenite Kaolinite Nontronite Quartz Sphene Augite Maghemite Nontronite Augite Maghemite Augite Forsterite Beidellite Kaolinite Calcite Augite Augite Augite Augite

268

.

DISCUSSION ON THE MOBILITIES OF VARIOUS MAJOR OXIDES AND TRACE ELEMENT IN THE SECTION BASED ON T1- RETAINED MASS BALANCE MODELS.

 $\frac{\text{SiO}_2}{\text{below.}}$: - The mobility of SiO_2 shows a varied behaviour as given

Downward increasing mobilities at Mota Asota, top and two bottom horizon of losses with a mid horizon of gain at village Virpur, top and bottom horizons of gain with a mid-profile zone of losses at Mahadevia, losses throughout the profile with a bottom horizon of gain at village Mewasa, upward increasing gain throughout the profile with a bottom horizon of loss at Buddhadhar, top two horizons of gain with three bottom horizons of losses at Bhopamadhi, top horizon of gain with downward increasing losses at Karamkund, mobile throughout the profile at village Ran, upward increasing mobilities at village Bhatiya, upward increasing gains with a top horizon maxima at Khakharda, upward increasing gains at Kenedi, mobile throughout the profile except the bottom horizon of gain at Lamba.

The increased mobility of SiO_2 in the B_{ox} zone can be indicative of freer drainage conditions. Further, minimum mobility is observed at some places in the near bottom horizon i.e., B_{sap} , indicating that quite a lot of silica must be going into the reconstitution of the neo-formed mineral assemblages and that the drainage must have been sluggish in contrast to the freer drainage conditions in the upper horizons. According to Okamoti et. al. (1957), the presence of Si and Al in small amounts would cause immediate co-precipitation. This indicates that the removal of Si predates Al accumulation in the profiles. It could also mean that Si and Al are not both in true solution. If Al is for example, organically bound, it could be simultaneously mobilised with Si in solution (Mcfarlane, 1989).

 $\underline{A1_{2}O_{3}}$:- The behaviour of $A1_{2}O_{3}$ in the weathering profiles is not constant. Mid profile gains but bottom and top horizon of substantial depletion at Mota Asota, downward increasing gains at Virpur, top and bottom horizons of gain with a mid-horizon of substantial depletion at Mahadevia, downward increasing gains at Mewasa, upward increasing gains at Buddhadhar, upward increasing gains at Bhopamadhi, top and two bottom horizons of gains with a mid-profile zone of substantial depletion at Karamkund, mid-profile gains with bottom and top horizons of substantial depletion at village Ran, upward increasing gains throughout the profile at Bhatiya, gains throughout the profile at Khakharda, upward increasing gains at Kenedi, gain throughout the profile at village Lamba.

 Fe_2O_3 : The behaviour of Fe_2O_3 is also erratic. Two top horizons of gains with two bottom horizons of losses at Mota Asota, two top horizons of gains with two bottom horizons of gain with two bottom horizons of substantial depletion at

271

Virpur, two top and four bottom horizons of gain with a midhorizon zone of losses at Mahadevia, top and bottom horizon of gain with a mid-horizon zone of losses at Mewasa, upward increasing gains at Buddhadhar, top three horizons of gains with two bottom horizons of losses at Bhopamadhi, top horizon of losses with a bottom horizon of gains at Karamkund, top and bottom horizons of gains with a zone of depletion in the mid-horizons at village Ran, top and bottom horizons of gains with two-mid-horizons of substantial depletion at Bhatiya, top two horizons of gains and bottom four horizons of losses at Khakharda, upward increasing gains at Kenedi, top horizon of losses with bottom horizon of gains at village Lamba.

In accordance with laboratory leaching experiments, Fe and Al are inseparable. This could be due to that adequate leaching and other organic conditions were not amenable for the leaching of either Fe or Al, during the formation and stabilization of these sections.

MnO₂ :- MnO₂ is generally speaking, enriched in the top horizons with a few exceptions. Top horizon of gain with three bottom horizons of losses at Mota Asota, top and two top and two bottom horizons of gain and mid-horizon losses at village Mewasa, top four horizons of gain with a bottom horizon of losses at Buddhadhar, top four horizon of gains with bottom horizon of losses at Bhopamadhi, mobile throughout the profile at Karamkund, downward increasing gains at village Ran, top two horizon of gains and two bottom horizon of losses at Bhatiya, upward increasing mobilities at Khakharda, top four horizon of gains with bottom horizon of losses at Kenedi, top three and bottom horizon of gains with mid-horizon of losses at village Lamba.

This points towards a general oxidizing environment (Burridge and Ahn, 1965). Further, although a high humus content of the surface material favours loss of manganese (Heintze, 1946) plants may under certain circumstances be responsible for its uptake and accumulation in the soil (Tiller, 1963). This is an indication of the presence of vegetal cover during the process of lateritization.

<u>CaO</u> :- CaO is also enriched in the top horizons with a few exceptions. Upward increasing gains at Mota Asota, top two horizon of gain with two bottom horizon of substantial depletion at Virpur, top and two bottom horizon of gains and mid-horizons losses at Mahadevia, increasing throughout the profile at Mewasa, upward increasing gains at Buddhadhar, top four horizon of gains with bottom horizon of losses at Bhopamadhi, mobile throughout the profile at Karamkund, mobile throughout the profile at village Ran, downward increasing mobilities at village Bhatiya, top five and bottom horizon of gains with mid-horizon losses at Khakharda, top horizon of losses with three bottom horizon of gains at Kenedi,

272

upward increasing gains at village Lamba. The top horizon of gains can be attributed to downward percolation from the overlying Gaj limestones.

<u>MgO</u>:- MgO shows a varied behaviour with downward increasing mobilities at Mota Asota, mobile throughout the profile at Virpur, top two horizons and bottom horizon of gains with mid-horizon losses at Mahadevia, top four horizons of losses with a bottom horizon of losses at village Mewasa, top horizon of gain with bottom four horizons of losses at Buddhadhar, top three horizon of gains with bottom two horizons of losses at Bhopamadhi, mobile throughout the profile at Karamkund, mobile throughout the profile at village Ran, mobile throughout the profile at Bhatiya, upward increasing gains at Khakharda, mid-profile gains with bottom and top horizon of substantial depletion at village Kenedi, mobile throughout the profile at Lamba.

 K_20 :- K_20 is mobile throughout the profile at Mota Asota, mobile throughout the profile at Virpur, mobile throughout the profile at village Mahadevia, top four horizons of losses with a bottom horizon of gain at village Mewasa, downward increasing mobilities at Buddhadhar, top and three bottom horizons of losses with mid-horizon gain at Bhopamadhi, mobile throughout the profile at Karamkund, mobile throughout the profile increasing downward at Ran, upward increasing mobilities at Bhatiya, top five horizon of losses with a bottom horizon of gain at Khakharda, top three horizons of gains with a bottom horizon of losses at Kenedi and is mobile throughout the profile at village Lamba.

<u>Na20</u>:- Na20 shows downward increasing mobilities at Mota Asota, mobilities throughout the profile at village Virpur, upward increasing mobilities at Mahadevia, top four horizons of losses with a bottom horizon of gain at Mewasa, downward increasing mobilities at Buddhadhar, top and bottom three horizons of losses with mid-horizon gains at Bhopamadhi, top two horizons of gains and four bottom horizons of losses at Karamkund, downward increasing mobilities at village Ran, upward incfeasing mobilities at Bhatiya, top four horizons of gain with a bottom horizon of losses at Khakharda, top two horizons of gain and bottom two horizons of losses at Kenedi and is mobile throughout the profile at Lamba.

 $P_2O_5 := P_2O_5$ shows top three horizons of gain with a bottom horizon of losses at Mota Asota, top and two bottom horizons of losses with mid-horizon gains at Virpur, top four horizons of gain with bottom three horizons of losses at Mahadevia, top two horizons of gain with bottom three horizons of substantial depletion at Mewasa, mid-profile gains with bottom and top two horizons of substantial depletion at Buddhadhar, top and three bottom horizons of gain with mid-horizon losses at Bhopamadhi, top two and bottom horizons of losses with a mid-horizon gain at Karamkund, downward increasing mobilities at Ran, alternate gains and losses in the profile at Bhatiya, top horizon of gain with intermediate and bottom horizons of losses at Khakharda, upward increasing gains at Kenedi while its mobile throughout the profile at Lamba.

Trace Elements

Sc :- Sc exhibits top and two bottom horizons of losses with a mid-horizon of gain at Mota Asota. top three horizons of gains and bottom horizon of losses at Virpur. top and two bottom horizons of gains with mid-profile horizon of losses at Mahadevia, top four horizons of losses with a bottom horizon of gain at Mewasa, top four horizon of gains with a bottom horizon of losses at Buddhadhar, top two horizons of gain and bottom three horizons of losses at Bhopamadhi, top and bottom horizon of gain and intermediate zones of losses, at Karamkund, downward increasing mobilities at Ran, top three horizons of gain with a bottom horizon of losses at Bhatiya, top two and bottom three horizons of gain with a mid-profile horizon of losses at Khakharda, upward increasing gains with mid-profile zone of substantial depletion at Kenedi, top and bottom horizon of gain with intermediate zones of losses at Lamba.

 \underline{Y} :- Y occurs in trace at Mota Asota, Virpur, Buddhadhar, Bhopamadhi, Ran, Bhatiya, Khakharda, Kenedi and Lamba and shows losses in the upper portion with a lower portion of gains at Mahadevia and upward increasing mobilities at Mewasa.

La: - La shows a top horizon of gain with three bottom horizons of losses at Mota Asota, top horizon gains and bottom horizon of losses at Virpur, top horizon gains with mid-horizon losses at Mahadevia, mobile throughout the profile at Mewasa, increasing gains throughout the profile at Buddhadhar, top horizon of gain with mid horizon losses at Bhopamadhi, top horizon of gain with an underlying zone of depletion at Karamkund, top two horizon of losses with gains in the mid-profile zones at Bhatiya, top three horizons of gain with the bottom two horizons of losses at Khakharda. it occurs in a trace at Ran, Kenedi and Lamba.

<u>Ce :-</u> Ce exhibits top and bottom horizons of losses with mid-profile gains at Mota Asota, increasing gains throughout the profile at Virpur, mixed behaviour with alternate horizons of gains and losses at Mahadevia, top four horizons of losses with a bottom horizon of gain at Mewasa, top four horizons of gains with a bottom horizon of losses at Buddhadhar, top two horizons of gains with bottom three horizons of losses at Bhopamadhi, top two horizons of gain with bottom four horizons of losses at Karamkund, upward increasing mobilities at Ran, downward increasing mobilities at Bhatiya, mid-profile gains with top two and bottom horizons of substantial depletion at Khakharda, upward increasing gains except a midprofile horizon of substantial depletion at Kenedi, top horizon gains with an underlying zone of depletion at Lamba.

<u>Pb</u>:- Pb shows a top horizon of gain with a bottom horizon of losses at Bhopamadhi, mid-profile losses at Karamkund, downward increasing mobilities at Bhatiya, and occurs in traces at Mota Asota, Virpur, Mahadevia, Mewasa, Buddhadhar, Ran, Khakharda, Kenedi and Lamba.

<u>Zr :-</u> Zr shows top two zones of gain with bottom two zones of losses at Mota Asota, top two horizons of gains with bottom two horizons of losses at Virpur, two top and bottom horizons of gains with mid-profile losses at Mahadevia, mobilities throughout the profile at Mewasa, top three horizons of gains with bottom two horizons of losses at Buddhadhar, top two horizons of gain with bottom three horizons of losses at Bhopamadhi, top two horizons of gain with bottom four horizons of losses at Karamkund, downward increasing mobilities at Ran, top three horizons of gains with a bottom horizon of losses at Bhatiya, top three horizons of gains and bottom three horizons of gains with underlying zones of depletion with a zone of gain in the bottom
last horizon at Lamba. Generally, it is enriched in the upper reaches of the profile.

V := V shows a top horizon of gain with three bottom horizons of losses at Mota Asota, increasing going throughout the profile at Virpur, two top horizons of gain with fine bottom horizons of losses at Mahadevia, mobilities throughout the profile at Mewasa, top three horizons of gain with bottom two horizon of losses at Buddhadhar, top two horizon of gains with bottom three horizon of losses at Bhopamadhi, top two horizons of gain with bottom four horizons of losses at Karamkund, mobile throughout the profile at Ran, top and bottom two horizons of losses with a mid- profile horizon of gain at Bhatiya, top three and bottom two horizons of gains with a mid-profile horizon of losses at Khakharda, upward increasing gains at Kenedi, losses throughout the profile except a mid profile horizon of gain at Lamba. It is also generally, enriched in the upper horizons of the profile.

<u>Cu</u>:- Cu shows top and bottom two horizons of losses with mid-horizon gain at Mota Asota, increasing gains throughout the profile at Virpur, two top and two bottom horizons of gains with mid-profile losses at Mahadevia, mobilities throughout the profile at Mewasa, top three horizons of gains with bottom two horizons of losses at Buddhadhar, top two horizons of gain with bottom three horizons of losses at Bhopamadhi, top three horizons of gain with bottom three horizons of losses at Karamkund, losses throughout the profile with a mid-profile horizon of gain at Ran, top two horizons of gains with bottom two horizons of losses at Bhatiya, three top and bottom two horizon of gains with a mid-profile horizon of losses at Khakharda, upward increasing gains at Kenedi, top four and bottom two horizon of gains with a mid profile horizon of losses at Lamba.

<u>Zn</u>:- Zn exhibit a top horizon of gains at Mota Asota, losses in the upper and lower portions with mid-profile gains at Virpur, top and two bottom horizons of gains with mid-horizon losses at Mahadevia, mobilities throughout the profile at Mewasa, top two horizons of gains with a bottom horizon of losses at Buddhadhar, top horizon of gain with mid-horizon

losses at Bhopamadhi, gains in the top horizon with midprofile losses at Karamkund, bottom two horizons of losses at Bhatiya, top and bottom horizons of losses with an intermediate zone of gains at Khakharda, downward incfeasing mobilities at Kenedi, bottom three horizons of losses at Lamba.

<u>Cr</u>:- Cr exhibits top two horizons of gains with bottom two horizons of losses at Mota Asota, increasing gains throughout the profile at Virpur, top two and bottom two horizons of gains with a mid-profile losses at Mahadevia, top and bottom three horizons of losses with mid-horizon gain at Mewasa, upward increasing gains at Buddhadhar, top two horizon of gains with bottom three horizons of losses at Bhopamadhi, top four horizons of gain with the bottom two horizons of losses at Karamkund, top horizon of gain with two bottom horizons of losses at Ran, top two horizons of gain with bottom two horizons of losses at Bhatiya, top three and bottom two horizons of gain with mid-profile losses at Khakharda, upward increasing gains at Kenedi, top horizon of depletion with bottom horizon of gain at Lamba. Cr is generally enriched in the upper reaches of the weathering profile.

Ni :- Ni shows two top and bottom horizons of gain with mid-horizon losses at Mota Asota, upward increasing gains at Virpur, top and bottom three horizons of gains with midprofile losses at Mahadevia, top three horizons of losses with bottom two horizons of gains at Mewasa, top two and bottom two horizons of gains with mid-horizon losses at Buddhadhar, top four horizons of gains with bottom horizons of losses at Bhopamadhi, top two and bottom horizons of gains with mid-profile losses at Karamkund, top two and bottom horizons of losses with a mid-profile horizon of gains at Ran, top and mid-profile losses with bottom and mid-profile gains at Bhatiya, three top and two bottom horizons of gains with a mid-profile horizon of losses at Khakharda, top two and bottom horizons of gains with a mid-profile horizon of losses at Kenedi, mobile throughout the profile at Lamba.

280

In conclusion, it is very noticeable that not a single element shows steady behaviour in the weathering profiles, and do not confirm to any text-book geochemical laws. So any distinct genetic implications from just the behaviour of the elements in the weathering profiles cannot be deduced.

281