Annexure-2.1

Nomenclature and Characteristic of Soils in the Study Area.

(After NBSS & LUP, 1994)

Map Symbol	Description	Taxonomy
027	Very deep, well drained, fine loamy, soils on gently slopping quartzitic, folded ridges and furrows with sever erosion; associated with very deep, well	Fineloamy, mixed hyperthermic fluventic ustochrepts
	drained, calcareous, fine loamy soils on very gently slopping lands with moderate erosion.	Fine loamy, mixed (calc) hyperthermic, typic, ustocherpts.
037	Shallow, well drained, clayey soils on moderately sloping basaltic hills and ridges with severe erosion & moderate stoniness assocciated with shallow, well	Clayey, mixed hyperthermic lithic Ustochreprts
	drained, loamy soils with severe erosion & moderate stoniness.	Fine mixed, hyperthermic vertic Ustochrepts
038	Shallow, well drained, clayey soils on gently sloping basaltic hills and ridges with severe erosional & moderately deep, well drained, fine soils on very	Clayey, mixed, hyperthermic lithic Ustochrepts
- 6 61 - 61 - 61 - 61 - 61 - 61 - 61	gently sloping lands with moderate erosion.	Fine mixed, hyperthermic vertic Ustochrepts
041	Moderately shallow, well drained, fine soils on very gently sloping basaltic hills & ridges with severe erosion and moderate stoniness, associated with very	Fine, mixed, hyperthermic vertic Ustochrepts
	shallow, somewhat excessively drained loamy soils with severe erosion & moderate stoniness.	Loamy, mixed hyperthermic lithic Ustorthents
042	Rocks outcrops, associated with shallow well drained, loamy-skeletal soils on moderately steep sloping basaltic hills & ridges with severe erosion & moderate stoniness	Rocky outcrops loamy-skeletal, mixed, hyperthermic lithic ustorthents
058	Moderately deep, well drained, fine soils on very gently sloping granitic interfluves with moderate erosion, associated with deep, well drained, fine	Fine, mixed, hyperthermic fluventic Ustochrepts
	soils with slight erosion.	Fine, mixed, hyperthermic Udic Ustochrepts
060	Shallow, well drained, clayey soils on gently sloping basaltic interfluves with moderate erosion, associated with moderately deep, well drained, fine	Clayey, mixed, hyperthermic fluventic Ustochrepts
	soils on very sloping lands with moderate erosion.	Fine, mixed, hyperthermic Udic Ustochrepts
	Very deep, well, drained, fine soil on very gently sloping quartzitic interfluves with moderate erosion associated with deep, well drained, calcareous fine	Fine, mixed, hyperthermic Udic, Ustochrepts
061	loamy soils with slight erosion.	Fine-loamy mixed (calcareous), hyperthermic Fluventic Ustochrepts

Map Symbol	Description	Taxonomy
063	Moderately deep, well drained, fine soils on very gently sloping basaltic interfluves with moderate erosion, associated with moderately deep, moderately well drained, fine soils with moderate erosion.	Fine, mixed, hyperthermic Udic, Ustochrepts Fine, montmorillonitic hyperthermic typic Chromusterts
067	Very deep, well drained, fine soils on very gently sloping basaltic interfluves with moderate erosion; associated with shallow, well drained, loamy soils with moderate erosion.	Fine, mixed, hyperthermic vertic Ustochrepts loamy, mixed, hyperthermic lithic Ustochrepts
070 _.	Very deep, well drained, fine soils on nearly level basaltic interfluves with slight erosion, associated with very deep, well drained calcareous fine soils on gently sloping lands with slight erosion.	Fine montmorillonitic, isohyperthermic Typic chromusterts Fine, montmorillonitic (calcareous) isohyperthermic Vertic Ustropepts
075	Very deep, well drained, calcareous caorse-loamy soils on very gently sloping dissected plains very severe erosion; associated with very deep, well drained, calcareous fine loamy soils with moderate erosion.	Coarse loamy, mixed (calcareous), hyperthermic Typic Ustifluvents Fine-loamy, mixed), hyperthermic fluventic Ustochrepts
077	Very deep, well drained, calcareous, coarse-loamy soils on very gently sloping dissected flood plains with very severe erosion; association with very deep, well drained, calcareous, fine-loamy soils with severe erosion.	Coarse-loamy, mixed (calcareous) hyperthermic Typic Ustifluvents Fine loamy, mixed (calcareous) hyperthermic fluventic Ustochrepts
104	Deep, well drained, calcareous, fine soils on very gently sloping alluvial plains with slightly erosion & slightly alksline, associated with very deep, imperfectly drained, calcareous, fine loamy soils with slightly erosion.	Fine, mixed (calcareous) hyperthermic, Fluventic Ustochrepts Fine-loamy, mixed (calcareous) hyperthermic, Udic Ustochrepts
105	Very deep, well drained, calcareous, fine loamy soils on gently sloping alluvial plain with moderate erosion; associated with deep, well drained, calcareous, fine-loamy soils on very gently sloping lands with moderate erosion.	Fine-loamy, mixed (calcareous), hyperthermic fluventic Ustochrepts Fine loamy, mixed (calcareous), hyperthermic Udic Ustochrepts
109	Very deep, well drained, fine loamy soils on very gently sloping alluvial plain with slight erosion, associated with very deep, well drained, fine soils on nearly level sands with slight erosion.	Fine-loamy, mixed, hyperthermic fluventic Ustochrepts Fine, mixed, hyperthermic, fluventic Ustochrepts

`

Map Symbol	Description	Taxonomy
114	Moderately deep, well drained, calcareous, fine soils on nearly level alluvial plain with slight erosion and slight salinity; associated with deep, moderately well drained, calcareous, fine soils with slight erosion	Fine, montmorillonitic (calcareous), hyperthermic, Vertic Ustochrepts Fine, montmorillonitic (calcareous), hyperthermic Typic Chromusterts
121	Very deep, moderately well drained, calcareous fine soils on very gently sloping alluvial plain with slight erosion; associated with very deep, moderately well drained, fine soils with slight erosion.	Fine, montmorillonitic (calcareous), hyperthermic, Typic chromusterts Fine, montmorillonitic hyperthermic Typic Chromusterts
122	Very deep, moderately well drained, calcareous fine soils on very gently sloping alluvial plain with slight erosion & moderate salinity; associated with very deep, moderately well drained, calcareous, fine soils with moderate erosion.	Fine, montmorillonitic (calcareous), hyperthermic, Typic chromusterts Fine, montmorillonitic (calcareous),hyperthermic Udic Chromusterts
127	Very deep, moderately well drained, fine soils on very gently sloping alluvial plain with moderate erosion; associated with very deep, moderately well drained fine soils on nearly level lands with slight erosion.	Fine, montmorillionitic, hyperthermic, Typic chromusterts Fine, montmorillonitic hyperthermic Vertic Ustochrepts
128	Very deep, moderately well drained, fine soils on nearly level alluvial plain with slight erosion; associated with very deep, moderately well drained, calcareous fine soils on gently sloping land with severe erosion.	Fine, montmorillionitic, hyperthermic, Typic Chromusterts Fine, montmorillonitic (calcareous) hyperthermic Typic Chromusterts
131	Very deep, moderately well drained, fine soils on very gently sloping alluvail plain with moderate erosion & moderate salinity; associated with very deep, moderately well drained calcareous, fine soils with moderate erosion.	Fine, montmorillonitic, hyperthermic Typic Chromusterts Fine, montmorillonitic (calcareous), hyperthermic Udic Chromusterts
135	Very deep, moderately well drained, calcareous, very fine soils on very gently sloping alluvial plain with slight erosion & moderate salinity; associated with very deep, moderately well drained, calcareous fine soils with slight erosion & slight salinity.	Very-fine, montmorillonitic (calcareous), hyperthermic Typic Chromusterts Fine, montmorillonitic (calcareous) hyperthermic Vertic Ustochrepts
137	Very deep, moderately well drained, very fine soils on very gently sloping alluvial plain with moderate erosion ; associated with very deep, moderately well drained, calcareous fine soils with slight erosion.	Very-fine, montmorillonitic, hyperthermic Typic Chromusterts Fine, montmorillonitic (calcareous) hyperthermic Tyic Chromusterts

Map Symbol	Description	Taxonomy
139	Very deep, moderately well drained, very fine soils on nearly level alluvial plain with slight erosion & slight salinity; associated with very deep, moderately well drained, calcareous, very fine soils with slight erosion.	Very-fine, montmorillonitic, hyperthermic Typic Chromusterts Very-Fine, montmorillonitic (calcareous) hyperthermic Udic Chromusterts
116	Moderately shallow, well drained, calcareous fine soils on very gently sloping alluvial plain with slight erosion & moderately well drained, calcareous, fine soils with moderate erosion	Fine montmorillonitic (calcareous), hyperthermic vertic Ustochrepts Fine montmorillonitic (calcareous) hyperthermic Typic Chromusterts
252	Moderately shallow well drained, calcareous fine soils on very gently sloping piedmont plains (with narrow valleys) with slight erosion & slight salinity; associated with moderately shallow, well drained, calcareous, fine soils with slight erosion and slight salinity	Fine montmorillonitic (calcareous), hyperthermic Vertic Ustochrepts Fine montmorillonitic (calcareous) hyperthermic Typic Chromusterts

.

.

•

.

					ŀ							-			- 11 - 11 - 14 -		
Village Well Temp. Well EC Type °C 'm' (μS/cm)	Temp. Well °C Depth pH 'm'	Well Depth pH 'm'	Ħ		EC (µS/cm)		(I/6m)	Na (mg/l)	Ca (mg/l)	Mg (mg/l) K	4 (I/6m)	K (mg/l) Hardness as CaCO ₃ mg/l	Calcium Hardness as CaCO ₃ mg/l	Magnesium Hardness as CaCO ₃ mg/l	Alkalinity HCO ₃ (mg/l)	Chloride (mg/l)	Sulphate (mg/l)
Sindhav BW 28.2 18 8.51 2550	28.2 18 8.51	18 8.51	8.51	1_	2550		1124	462.3	38.6	3.1	32	109	96	13	338	300	800
lara BW 27.8 8.28 849	27.8 8.28 849	8.28 849	8.28 849	849		7	420	69.3	21		5.1	238	52	186	188	100	500
BW 28.1 18 8.31 3560	28.1 18 8.31 3560	18 8.31 3560	8.31 3560	3560		9		621.2	53.8	-+	81.8	142	134	8	130	950	810
28.2 18 8.20 2580	28.2 18 8.20 2580	18 8.20 2580 75 8.32 3400	8.20 2580	2580	+		-+-	444.6	49.9	+	29.3	134	67L	01	154	450	720
asara RW 281 14 7.74 10400	28 1 14 7 74 10400	14 7 74 10400	7 74 10400	10400	╀	244	+-	895 4	310.6	+	511	2667	776	1891	180	679	2640
BW 28.1 91	28.1 91 8.10 4210	91 8.10 4210	8.10 4210	4210	╋	16	-	357.1	90.2	╋	5.6	525	225	300	152	850	730
HP 28 8.04 6090	28 8.04 6090	8.04 6090	8.04 6090	6090	$\left \right $	276	+	334.9	77.5	254	1.9	1239	194	1045	198	65	340
n BW 28.1 8.07 13500	28.1 8.07 13500	8.07 13500	8.07 13500	13500	$\left \right $	95		2699	370.6	$\left - \right $	13.1	1113	925	188	300	3799	5600
BW 28.2 45 7.96 8450	28.2 45 7.96 8450	45 7.96 8450	7.96 8450	8450	-+	42	-+	1060.4	224.6	\rightarrow	11.9	1323	561	762	166	2349	1250
HP 28.4 7.88 10900	28.4 7.88 10900	7.88 10900	7.88 10900	10900	+	3	-+-	1544	264.6	-+-	51.2	1220	661	559	1/6	800	5100
BW 20.3 0.31 344U	20.3 0.31 3440	0.31 3440	0.31 3440	3440	+	2	+	4/3./	43.0	╉	0.2 0.2	3/0	501	202	412	000	0001
28.5	28.5	8.10 40/0 20 8.24 8500	8.10 40/0	40/0 9600	+	407	+	480.8 1101 c	115 5	+	30.0	1008	132	100	72.0	25.40	800
BW 286 33 793	28.6 33 7.93 6010	33 7 93 6010	7 93 6010	6010	+-	35.32	+	967.2	84.6	╋	48.8	924	211	713	128	1699	2050
HP 286 821 1380	28.6 8.21 1380	8.21 1380	8 21 1380	1380	┢	695	+	154	217	┝	10	315	54	261	144	150	50
BW 28.6 8.07 8300	28.6 8.07 8300	8.07 8300	8.07 8300	8300	┢	4150	+	619	56.3	\vdash	60.5	504	141	363	236	700	1400
a BW 28.8 - 8.87 1570	28.8 8.87 1570	8.87 1570	8.87 1570	1570	-	744	t	243.3	29.2		2.2	294	73	221	348	250	400
HP 28.9 8.23 3260	28.9 8.23 3260	8.23 3260	8.23 3260	3260		1674	+	635.4	52.8		2.4	258	132	126	258	450	1000
BW 28.7 98 7.91 2350	28.7 98 7.91 2350	98 7.91 2350	7.91 2350	2350	$\left \right $	1622	-	1206.6	35.1		1.9	315	88	227	728	250	100
HP 28.5 8.43 2040	28.5 8.43 2040	8.43 2040	8.43 2040	2040		1076		445.8	28.1		2.3	363	70	293	268	150	350
28.7 61 8.11 1390	28.7 61 8.11 1390	61 8.11 1390	8.11 1390	1390		714		100.9	35.4	-	6.5	315	88	227	92.0	250	420
HP 28.4 61 8.19 1150	28.4 61 8.19 1150	61 8.19 1150	8.19 1150	1150	-+	796	-+	141.6	28.3	+	60.9	210	71	139	192	100	280
pura BW 28.5 8.12	28.5 8.12 1660	8.12 1660	8.12 1660	1660	-+	1128	_	137.2	23		0.8	462	57	405	230	150	940 1660
20.0 00 0.19 2430 28.6 4.7 8.01 2260	20.0 00 0.19 2430 28.6 4.7 8.01 2260	42 8.13 243U	0.19 2430 8.01 2260	2430	+	1100	+	31/1 0	36.3	+	3.6	252	601	300 161	041	500	2001
madi BW 28.5 76 8.21 2250	28.5 76 8.21 2250	76 8.21 2250	8.21 2250	2250	+	928		399.8	56.8	╀	3.9	324	142	182	72.0	850	1480
BW 27.8 36 7.97 1650	27.8 36 7.97 1650	36 7.97 1650	7.97 1650	1650	┢	758	+	96	21	-	0.6	431	52	378	102	200	640
HP 27.7 7.61 3100	27.7 7.61 3100	7.61 3100	7.61 3100	3100		1570		187.9	39.4		21.3	945	98	847	38.0	450	1480
BW 28.4 61 8.10 1690	28.4 61 8.10 1690	61 8.10 1690	8.10 1690	1690		80	-+	350.2	36.1		1.9	92	90	2	152	150	640
HP 28.3 55 8.15 1820	28.3 55 8.15 1820	55 8.15 1820	8.15 1820	1820	+	ω	-+	390.9	36.6	+	2.5	284	91	192	192	150	660
BW 27.7 73 8.12 2140	27.7 73 8.12 2140	73 8.12 2140	8.12 2140	2140	╉	÷ľ	-+	105	21	+	0.7	487	52	435	94.0	250	100
201 HP 27.8 8.02 1610		8.02 1610	8.02 1610	1010	-	δ	-+-	69.5	27.0	+	2 C 2 C	302	70	C47	102	00+	
2/ 0.42 1500 27 R 31 2060	26./ 2/ 8.42 1380 27 4 27 8 31 2060	2/ 0.42 1500 27 R 31 2060	0.42 1000 8 31 2060	0902	+-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	+-	320.4	18.5	+	0.8	92	00 46	07 46	80.0	300	600
BW 28.2 24 8.35 1060	28.2 24 8.35 1060	24 8.35 1060	8.35 1060	1060	+	5	+	202.8	26.0	+	0.8	105	65	40	220	50	175
HP 28.1 8.10 8100	28.1 8.10 8100	8.10 8100	8.10 8100	8100	┢	5	5192	1390.2	87.7		2.8	1313	219	1094	260	1300	7800
ai HP 28 21 8.34 2080	28 21 8.34 2080	21 8.34 2080	8.34 2080	2080		9	-	470.1	31.6		1.0	132	79	53	184	200	820
BW 28.3 42 8.24 1800	28.3 42 8.24 1800	42 8.24 1800	8.24 1800	1800	-	õ		309.4	32.2		-0	147	80	67	170	200	245
HP 28.3 27 8.10 2020	28.3 27 8.10 2020	27 8.10 2020	8.10 2020	2020	+	δ	-+	338.9	35	+	0.1	168	87	81	250	250	300
Kampura HP 28.1 36 7.69 2400	28.1 36 7.69 2400	36 7.69 2400	7.69 2400	2400	-	F	-+	216.4	57.7	+	2.4	588	144	444	150	009	920
HP 28.1 27 8.05 5060	28.1 27 8.05 5060	27 8.05 5060	8.05 5060	5060	-	3		1045	65.9	-	2.4	189	165	24	320	189	960
28.1 52 8.11 4280	28.1 52 8.11 4280	52 8.11 4280	8.11 4280	4280		18		174.3	51.2		57.9	336	128	208	188	400	1400
adi BW 28.3 8.27 2630	28.3 8.27 2630	8.27 2630	8.27 2630	2630		-		564.2	45.2		3.4	163	113	50	92.0	250	1390
HP 28.5 8.18 3260	28.5 8.18 3260	8.18 3260	8.18 3260	3260	┢─	-	t	593.5	47.8	45	2.6	305	119	185	50.0	500	890
a BW 28.5 36 8.15 3200	28.5 36 8.15 3200	36 8.15 3200	8.15 3200	3200	-	-	t	616.9	48.5	41	1.7	291	121	170	556	400	930
HP 28.5 27 8.19 4320	28.5 27 8.19 4320	27 8.19 4320	8.19 4320	4320	╞	L	+	773.5	57.8	39	2.7	305	144	160	192	600	1340
RM 28.2 8.4 1410	28.2 2 8 4 1410	8 1A 1A10	8 1 A 1 1 1 1 1 0 0	1410	+	1	+	0,000	37.6	S c	00	180	69	120	74.0	250	0.06
DW 20.3 0.14 DW 20.3 0.14	20.3 0.14	0.14	0.14 0.24		050		000	150 7	0.12	20		102	00	140	138	100	90.0
8.21 958 36 8.03 2070	29.7 8.21 958 20.1 36 8.03 2070	8.21 958 36 8.03 2070	802 2070 8.03 2070	2020	╋	1	-	120.2	23.9	133		613	60	549	100	300	550
BW 29.1 82 8.05 829	29.1 82 8.05 829	82 8.05 829	8.05 829	829	╋	2	+	152 2	23.8	10	14	102	59	42	106	100	105
faliya BW 28.9 61 8.07 1500	28.9 61 8.07 1500	61 8.07 1500	8.07 1500	1500		72	+	129.7	22.3	73	2.3	357	56	301	132	200	135

Annexure-4.1

	Sulphats (mg/l)	658	556	1988	212	356	260	212	889	4922	3874	626	360	000	838	182	10770	1947	2672	1110	1676	322	2840	2369	206	- 1002	83	190	434	1276	1438	1216	741	314	962	546	554	1464	278	102	520	433
4.2	Chloride (mg/l)	87	185	.260	17	146	្រៃខ្	00	415	4349	1060	541		02V1	890	61	3499	1485	995 53	0171	1110	485	1014	504	105	782	154	1012	762	890	905	258	188	175	420	410	720	895	75	378	256	216
Annexure 4.2	Alkalinity (mg/l) CO ₃ HCO ₃	508.	424	216	172	470	648	514	279	225	654	272	444	720	180	329	549	248	526	0.20	112	492	712	720	116	228	356	268	284	430	380	428	355	508	768	400	316	412	144.	344	344	376 376
Anr	Alkalinit CO,	24.0	12	NH :	72.0	Z	48.0	0.02	26.0	IZ	6.0	16.0	16.0	10.0		6.0	16.0	ĪŇ	48.0 Mil		ZZ	64.0	16.0	0.8 N	Z	16.0	Ē	IZ Z	ĮŻ	8.0	īz,	16.0	Nil	8.0	E	Nil		ISA .	11N	24.0	iz :	16.0
-	Magnesium Hardness as CaCO, mg/l	512.8	170.3	- 2.9.5	0.1	84.6	66.4	0.0	1.99	633.4	747.0	123.9	303.6	11.0	5 215	334.8	341.3	07156	0.4	03.0	735.4	11.1	718.0	409.3	194.0	568.4	340.6	817.0	722.1	638.9	949.9	12.1	1070.3	107.1	107.6	1.400	6 253	853.4	· 107.3	295.4	296.6	298.3 386.3
	Calcium Hardness as CaCO, mg/l	47.2	1.61	. 200.5.	57.9	88.4	93.6	215.0	88.0	926.6	193.0	1.06.1	66.4	98.4	187.5	25.2	838.7	189.0	165.5	21.4	924.6	83.9	192.0	50.7	31.0	111.6	44.4	203.0	6'201	121.1	330.1	610	209.7	82.9	122.4	1016	1 1 1 1 1	106.6	37.7	84.6	73.4	53.7
-	Total Hardness as CaCO ₃ mg/l	560	250	45. 1	58	173	160	240	155	1560	940	230 .	370	011	062	360	1180	1120	166	130	1660	95	910	470	225	680	385	1020	830	760	1280	0/0	1280	061	230	100	orr UUS	096	145	380	370	350
oles		15.8	35.9	115	24.5	121.1		38.8	+. ×	12.2	692.8	5.7	:::	18.0	2.0	17.8	12.0	46.4	19.5	1.61	10.9	4.6	937.6	118.2	123	5.3	0.4	7.7	4	2.6	27	0.0	5.1	2.9	2.0	4.0	<u>;</u>	3.2	2.2	3.2	2.5	2.2
r saml	Mg Mg (mg/l)		+		$\left \right $	-+	-+		+-	+-	+		+	+	+	┿				+					+			+	+	H	230.8	0.001	260.1	26.0	26.2	1771	150.0	207.4	26.1	71.8	72.1	72.5
2 wate	a (mg/l)	18.9	31.9	80.7	23.2	35.4	37.5	23.4	35.6	371.1	77.3	42.5	26.6	39.4	75.1	10.1	335.9	75.7	66.3	C.02	370.3	33.6	76.9	24.3	12.4	44.7	17.8	81.3	43.2	48.5	132.2	10.2	84.0	33.2	49.0	18.2	41.0	42.7	15.1	33.9	29.4	20.7
of post mersoon 2002 water samples	Na (mg/l) Ca (mg/l)	275.3	210.7	706.8	197.1	209.5	369.2	217.0	1.207	0.22.0	536.4	400.5	196.5	436.1	7.61	252.2	798.0	657.1	1225.2	218.1	1976.0	335.4	460.0	285.7	117.0	348.3	181.5	277.1	214.5	445.6	170.6	1.001	629.3	267.7	605.2	1.676	728 6	330.6	44.4	270.0	215.3	168.7
	N SQL			$\left \right $	\vdash		-+	-+-			+		-+	+	+		+			+	-+			-	+-		\vdash	+		+		+	\vdash		-+	-	+-		+	-	-+	905 736
of post	Ec (mS/enu)	<u> </u>	┢	-	\vdash			+		÷			-+	- +-	+-	+			5820	+						+	$\left - \right $	+	+		+		$\left - \right $	+	-+	+	┿	+	+	\vdash	+	1350
		8.14	+	+ +	\vdash		3.6	-		+-	-		-	- -		+			8.6	+				7.20	+-	+	$\left - \right $	+	+	7.5	_	-	7.87	-	-	1.18	+			\square	-+	7.51
al ana	Temp	29	28	26	28	28	31	52	28	2.8	28	28	28	02	20	28	28	28	29	24	27	29	28	28	26	28	28	28	28	28	28	80	29	29	28	32	2	30		30	;	; ;
chemic	Depth (m)	12	14	17	-	:	8	=;	20	12	39	15	36	42	- 12	45	18	8	24	12	<u>.</u>	. 27	24	24	202	2 1	;	45	30	39	12	69 10	121	-	;	001	5	22	67	85	ſ	76
al and	Weit Type	HP	BW	BW -	ЧH	BW	BW	MO	wa Wa	MB	BW	BW	BW	dH H	TIL MM	dH	BW	HP	HP	MO	HP	BW	ЧH	HP ////	BW	BW	dH	BW	RW	BW	HP	A M H	BW	BW	H	BW	Ma /Ma	BW	BW	BW	Ηĥ	BW
Table 1 Detailed physical and chemical analysis	Village	Kaliarí	Sindhav	Kora	Kora	Nadiad	Kalak	Nadiad	Dabha	Dahha	Jambusar city	Machhhosara	Dadapor	Dadapor	Asnera	****	Keshwan	2	Janiadara		hakam	Saran	Manad	* 0	Vasdada	Paguthan	÷	Uparali "	Kavitha	Masar		Dhobikuva		Ambada		Darapura	Chorbhui	Karamadi	Kiya	Dhavat	11	Kanthariya
Lable 1 Det	Taluka						Jambusar	,,,, 4						, pour	- t -					Vagra						Bharuch	i k	. _ i	-				Padra					_	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Karjan [
L.	Sr. No.		2	5	4	5	9	- 6	•	01	11	12	13	4		17	18	19	20	17	23	24	25	26	28	29	30	31	33	34	35	11	1	39	\$	4	13	4	45	46	47	48

	Sulphate (mg/l)	016	366	1019	212	PC8	368	4433	71	92	4549	1382	242	78	1133	258	130	504	174	141	1100	147	179	63	7176	196	67	228	936	1620	60	9779	2290	146	511	69	114	170	1181	880	107	301	100		
	2	923	186	143	101	746	203	772	41	45	1085	<u>50</u> 2	1, 66	302	336	100	36	405	84	83	1318	109	140	20	0000	182	41	156	187	376	34	1000	585	55	288	43	45 .	55	167	273	101	154	1961		
	Alkalinity (mg/l) CO3 HCO3	330.	520	405	080		880	340	394	444	615	209	1000	380	187	360	344	339	195	184	424	460	364	190	130	479	264	444	859	809	150	±/0	20	280	1089	265	230	304	379	434	515 044	355	784		
	Alkalini CO3	IN	Z	Ē	EZ S		26.0	ĪŻ	36.0	36.0	EZ :	0.0	NII 160	NEI .	I	ĪZ	51.0	36.0	ĪN	0.0	10.91	N	46.0	Ī	iz iz	60	16.0	6.0	16.0	36.0	Ē	NR1	570	iz	36.0	IN	Nil	6.0	6.0	6.0	īZ.	ZII XII	INI		
	Magnesium Hardness as CaCO ₃ mg/l	779.5	95.4	417.8	1.19	1 224	1.00	284.2	507.8	166.6	1831.6	738.3	8.051	8 78	420.6	272.1	10.8	467.1	132.3	127.8	310.0	1:2.1	72.3	139.8	0.151	403.6	210.8	185.1	87.9	221.9	118.5	13.1	14.7	18.1	0.9	168.3	137.3	77.8	257.8	511.6	70.8	1.002	1 215	1.010	
- 7	Calcium Hardness as CaCO3 mg/l	190.5	84.6	47.2	98.9	10.45	685	165.8	52.2	62 4	508.4	61.7	54.2	53.7	1 02	57.9	59.2	42.9	37.7	32.2	0.000	62.9	67.7	25.2	0.95	06.4	34.2	6.69	122.1	143.1	31.5	140.5	165.8	619	129.1	46.7	42.7	62.2	67.2	63.4	59.2	20.7	5/./	- C-ED	،
	Total Hardness as CaCO, mg/l	970	180	465	160	0/2	010	450	560	230	2340	800	190	1 007	043	330	C1	510	170	160	1 015	165	140	165	170	0005	245	255	210	365	150	077	180	80.	130	215	180	140	325	575	130	310	545	1	
	K (mg/l)	4.4	2.3	2.1	1.0		100	3.1	*0.4	0.4	8	16.8	33.2	2.1	1.0	01	0.6	0.3	0.5	r5	0.0	0.9	0.9	1.3	E.E.	70.0	0.3	1.3	1.6	2.1	9.8	C.2	0.0	1.5	0.7	23	1.5	3.2	3.0	2.8	1:4	2.3	3.2	1.6	
	Mg (mg/h)	189.4	23.2	101.5	14.9	45.0	2.00	69.1	123.4	40.5	445.1	179.4	33.0	0770	1.12	1 99	2.6	113.5	32.1	31.1	1.02	24.8	17.6	34.0	31.8	8.244	51.2	45.0	21.4	53.9	28.8	9.71	5 5	44	0.2	40.9	33.4	18.9	62.7	124.3	17.2	61.5	69.8	0.0/	
	Ca (mg/1)	76.3	33.9	18.9	39.6	1.56	0.62	66.4	20.9	25.4	203.6	24.7	21.7	0.2	012	0.10	23.7	17.2	15.1	12.9	1.62	25.2	27.1	10.1	15.6	2.685	13.7	28	48.9	57.3	12.6	58.6	474 26 A	14.8	512	18.7	17.1	24.9	26.9	25.4	23.7	22.8	23.1	0.02	
•	Na (mg/l) Ca (mg/l)	324.2	289.9	172.0	366.8	277.3	4770	601.5	155.1	183.2	454.8	155.6	145.0	18.8	140.9	F C 7 1	204.0	142.5	144.1	218.7	C'761	235.9	267.9	35.7	34.1	0.1276	255	159.6	485.4	570.0	33.4	681.8	1.20/	7 611	773.6	68.1	184.2	138.2	143.4	120.1	259.3	230.9	120.8	140.641	
3	TDS (l/gm)	2420	878	820	1542	006	1360	20002	600	674	4988	1372 -	516	DOC 1	4/4	1400	572	9601	374	324	020	989	666	212	200	15094	28.7	728	1370	1852	200	1836 .	0007	N 17	1750	316	458	548	674	800	480	530	668	009	
• · ·	Ec (mS/cm)	3410	1620	1390	2020	1480	0/11	3500	566	1110	6120	2150	816	165	00/	0/61	879	1590	665	592	0701	1160	1270	415	439	19600	559	1240	2270	2970	418	3470	34/0	100	UCUE	54 K54	636	818	1280	1660	794	1060	1100	1940	
•	Hd	F.	7.4	7.2	1.7	- 22+			7.35 1	. 7.56	121	7.32	7.28	(+) 	17.1	14.1	8.04	7.45	8.08	2,43	15.8	7.5	7.56	7.15	7.61	7.13	67-1	7.4	7.8	7.6	7.5	7.4	0.7	7.8		12	7.8	7.77	7.6	7.5	7.8	7.6	+ 61.1	61./:	
	Cemp	29	28	28	1	1	-	: 1	:	1		ł	:	;	:	-		:	-		1 6	30	1	30	28	1	24	38	29	29	28	30	99	00	. 00	70	29	28	29	30	26	29	30	1	
	Depth (m)	73	1	;	36	58	,	76	26	61	61	61		61	4	00	<u>50</u>	; ;	61	24	24	48	41	1	36	27	10	47	16		30	1	19	17	0			1	91	42	82		-	19	
	Well Type	BW	BW	ΗP	BW	BW	N SI	RW	BW	HP	BW	HP	ЧЬ	BW	NSC NSC	JIL MO	HP	H	BW	HP	BW	AN MR	HP	НP	BW	Ĥ	AH MO	5	BW	HP	BW	HP	MB	HP DW/		Ma	HP		BW	BW	BW	BW	BW	BW	
	Village	Shankarda	Sewasi	2	City		Makarpura	Anthi	Amarapura	6	Gothada	2	Asoj	Manjusar		Nadaci.ncia	Nahra	i iani Bhadol	Khakharia	z	kamroi	Abhrammira	+	Nava Rampura	Falod		Corej	Raculmirra	Nariya	Anguthan	Dholar	=	Tarsana	Dhimmin	Dunnua "	Acodam	1	Tentalav	Nanahabipura	Mindhol	Vaniad	Mota Fofaliya	-	Surasamal	
	Taluka				Vadodara									. :	Savli								· .	Waghodia									Dabhoí								Sinor				
	Sr. No.	50	51	52	53	54		00	58	59	60	61	62	3	5	8	25	89	69	70	12	2 12	74	75	.16	11	8/ 02	80	81	82	83	84	85	80	/00	00	06	10	92	93	84	95	36	64	

•

	Sulphate (mg/l)		1488	202	186	. 80	192	112	. 101	487	NC 1	444	7%	463	361	64	69	60	86	108	491	76	501	101	159	65	69	59	43	37	124	102	94	88	103	105	1093	601	429	234	517 -	71	188	VC7	11/	403	
	Chloride (mg/l)		426	22	102	- 27 :	58	322	375	7117	77	2 z	AA V		84	42	58	38	56	35	243	26	27.	*	5	21	24	24	24	27	241	25	32	33	32	53	. 6£	93	137	96	23	112	501	2	15	8	
			350	070	365	453	375	574	809	235	189		108	738	649	400	428	265	420	205	105	215	200	230	345	255	185	195	315	315	320	201	000	324	250	250	270	345	200	165	275	330	255	725	572	1 607	
	fi -		EZ	16.0		6.0	Ni	26.0	6.0	Ī	0.0	IN	20.0	Nil	16.0	Ī	ĪŽ	ĨŻ	Nil	iiz	ĩĩ	Nil	IZ	Nil		E	Nil	Nil	Nil	Nil	EZ :	IN ISA	152	6.0	ĪN	N:I	Nil	N	ΞŻ	IN	iz,	6.0	IJ.	HN.	N	IN	
	Magnesium Hardness as	CaCO ₃ mg/l	46.4	1.111	377.5	265.8	191.3	167.9	150.4	348.1	168.5	6.697	3 202	65 K	110.4	200.1	289.0	169.0	193.3	195.3	62.1	205.3	184.5	2252	1 202	228.3	173.5	148.3	219.5	285.3	163.8	102.0	101.8	222.8	152.5	257.8	232.5	43.6	357.4	43.3	101.3	262.0	166.1	350.1	241.1	267.8	
	Calcium Hardness as		113.6	15 5	22.5	. 49.2	48.7	102.1	119.6	56.9	19.5	1.06	88.4	C.01	500 6	49.0	41.0	31.0	46.7	24.7	57.9	24.7	15.5	34.5	15.0	21.7	16.5	21.7	15.5	24.7	61.2	0.05	12.2	27.2	12.5	42.2	22.5	68.4	92.6	46.7	78.7	18.0	6.19	53.9	699	28:2	
	Total Hardness as		160	181	400	315	240	270	270	405	188	360	130		730	036	130	200	240	220	120	230	200	290	047	0.50	061	170	235	310	225	195	215	050	165	300	255.	112	450	6	180	280	264	404	308	296	
	K (mg/l)	<u> </u>	2.5	22		4.8	1.5	1.8	1.5	9	1.5			4.10	0.1			8.0	8.0	0.6	1.0	0.7	1.1	1.2	0.0	0.5	6.0	1.0	0.3	0.3	3.0		0.7	0.7		2.1	1.8	1.9	0.6	0.8	0.5	0.3	4.6	2.9	2.9	0.3	
	Mg	(i/a)m)	11.3	0.72	1.00	64.6	46.5	40.8	36.5	84.6	41.0	65.6	10.1	<u>, 1, 1</u>	2.CI	48.6	70.7	411	47.0	47.5	15.1	49.9	44.8	62.1	65.9	13.0	42.2	36.0	53.3	69.3	39.8	40.1	13.2	1 1 12	371	62.6	56.5	10.6	86.8	10.5	24.6	63.7	40.4	85.1	58.6	65.1	
		<u> </u>	45.5	27.6	7.0	1 2 31	19.5	40.9	47.9	22.8	7.8	36.1	35.4	0.0	20.0	0.00	P 71	17.4	18.7	6.6	23.2	9.9	6.2	13.8		8 7	66	8.7	6.2	6.6	24.5	12	23.8	0.01	5.0	16.9	9.0	27.4	37.1	18.7	31.5	7.2	39.2	21.6	26.8	11.3	
	Na (mg/l) Ca (mg/l)		464.7	177.7	6 75	10/-1	84.8	399.4	569.7	76.2	16.6	311.9	292.6	10.8	390.8	1.000	08.0	50.0	108.8	1 0 12	168.4	18.9	17.9	35.7	22.3	24.8	1 01	18.2	22.7	19.2	187.6	44.2	190.4	63.4	102	42.5	30.8	212.3	30.7	118.5	223.5	18.0	21.9	23.3	41.2	59.9	
	Ne Ne	(n/Sun)	1300	+	+-	+	╋	-		\neg	-	+	+	+	+	ł		╉	+	+-	+		$\left \cdot \right $	+	-+-		┿	+-	+-	+		+	+	+	+	+	-	+			\square		\vdash	-+	-+		
*; 	Ec		2220	1100	50K	1010	813	2030	-2560	1190	418	1830	1240	569	10/0	1.70	108	676	000	(3) (3)	1030	518	486	715	639	862	077	445	565	708	1180	652	652	010	533	741	689	1050	1100	657	1340	654	954	746	766	746	
•	Hd		7.5	+	+-	+-	+	7.4	1	7.1		+	-+		+	·+-	1.1	+		+	7.5		7.4	+	+	7.5	+	+-	+	╞		-+	7.4		+	74	+	7.6	+		++	-1	7.6		$ \rightarrow $	7.3	
•	Temp	ې	30	8	67	g	20		;	29	;	:	29	28.5	30.1	67	17	07	4.62	2.02	29	28.5	26	28	26	28	0.07	787	28.6	24	28.5	26	78	87	976	28	26	28	28	28	28	26	28	26	28	28	
· ·	Depth (m)		33	3	77		14	45	1	36	;	-			150		- -	- -	17	-+- _!		61		!	6.	48	;	45	27	6	:	=	67	16			6	.65	27		1	;		1	;		
•	Well Well		BW	E C	AN MB	E.W	dH	BW	HP	BW	đ	EP.	HF	Ē	BW	۸g	A MO	S S	à à		4.1	EP -	CW	Æ	MO	HP	MO.	A di	- aH	MO	ЧЪ	ð	BW	Hr Hr	H MO	E AH	MO	BW	HP	HP	HP	MO	HP	- MO	.dH	HP	• •
3	Village		Anandpura	=	Wandarda	Rhadm ¹ i	1	Khunved		Ladhod	z	Sardarpura	Suryaghoda	Vajirai	Uchad		l arsat		Jitpur	Chandraine	Citatuputa	Ghatasa	•	Scngpur	1	Reliya Amba	A	Amoada	Gulvani		Piplej	=	Nani Takri		. "	Kataricant		Bediva		Chichva	Hafeshwar	-	Odhi	. . .	Ferquia	Nanivant	;
-	, Taluka	. »		'- -			- -	Sankheda	I	! -	L	d				l Hakwada			_1_	-d	_ !_		Naswadi			<u> </u>		I	Nandod	_ L		I	.				- L -	Chhotaudepur		_		L	L]			Pavijetpur	
-	Sr. No.		86	66	001	60.	101	104	105	106	107	108	601	011		7	511	114		117	81	611 .	120	121	122	123	124	961	127	128	129	130	131	132	661	- 321	T	Т	1-		140	141	142	143	144	145	
																							-																								

-	-	Annexure-4.3	Nitrate Fluorido mg/ mg/	10.5 0.62	╞			4	+	-			+	+	_	+	ŀ		_	+	-			_	+	+		_	+	+	+	+	╞		-	_	-	8.1 0.54	+	+	+	2.0 0.9		
		~~ ∾∽	Sulphute mg/l	720	555	775	262	440	20/	360	- 3975	167	480	(33	400	15.00	006	467	833	212	450	7300	100	1200	1400	400	2750	975	400	197	300	240	512	212	364	1338	1200	425	000	811	8871	475	.	
			Chloride mg/l	121	407 407	239	64	187	27	102	4099	652	225	620	220	215	0601	222	1050	80	170	1550	48	1795	3219	340	666	2340	657	\$	432	125	530	72	727	1474	742	225	141/	1 12	100	351		
			Alkalilaity (mg/l) CO ₃ HCO ₃	490	2440	345	240	390	310	300	205	265	590	585	310	422	200	410	200	240	430	535	304	200	105	130	715	160	215	200	470	505	315	215	265	375	445	480	212	212	usv	620	-	
	ور ، دور ومساحر الله			UN S			10	20			N.	20	40	30	20	22	20	20	Ē	Z	20	30	Nil	40		10.01	60	Nil	20	20	IN IN	102	20	10.0	10.0	152	0	IN N	N2			IN		
	<u>.</u>		d. Mg Hard. 33 as CaCO3 mg/l	294	÷	+-	Ļ		+		ŀ				-	+	-	╞		_	-	-	-		+	+	╞		-	+	+	+	+	ŀ			+	+	+	-	-	+	7	
	• •		rd. Ca Hard. 33 as CaCO3 mg/l	82	+				+	+	-	-			+	+	+	+		+	+	+			+	+-	-		+	-		+-	+	-		-+	-	+	+	+	+	+		
			Total Hard. as CaCO3 mg/i	376		+			_	+	-				_	+		-	\square	-	+	╞			-	+	-		-	_	-		-	-			_	_	-		+	+	_	`.
	·		Mg K mg/	71.5 6.9		+	L_		33.5 31.5	+	1-	1			-		286.8 2.86	92.3 116	\square			0.1 41.2			158.1 11.8	_	+		\rightarrow	-		+	+	-	-	\square	_	81.5 1.3	_		1	-		
		les.	und Ca	29.2	+	╉	+-	\vdash	+	-†-	+	+	t		+	+	+-	+	Н	+		+	╈		+	+	+	+		+	-+	+	+	+		$\left \right $	\vdash		÷	+	+	-	-	
		ter samp	s A mg/l	-++	+	╋	+	Н	+	÷	+-	+	\vdash		+	+			+-		+		+-	\vdash	+	+	+-		-		_	+		+		++	-	8 195.6		+	+	-	-	
	•	2003 wa	Cond. TDS µS/cm mgA	1500 77	-+	1700 004	904 45	\vdash	+	+	+	+				+	6740 48(+-		+	+	+-	+	Η	-	╈	╈	$\left - \right $	$\left \right $	\neg	+	+	1	+	\uparrow	\mathbf{H}	$\left \right $	1680 928	-+	-	+	+	-	
		monsoon	, Nd		+	8 07	+-	$\left \right $	+	+	+	+				+	7.57	╀	+		+	+	╞	\mathbb{H}	7.57	+	+			-	+	-	+	+-	┝	\vdash	$\left \cdot \right $	7.63	+	╉	┥	╉	4	
		sis of pre	Temp. *C	30.5	29.7	32.8	30.6	30	28.8	05	28.4	29.3	29.5	29.5	29.4	30.2	30.	28.9	30.3	9.05	29.6	30.2	31.8	31.6	29.5	29.8	29.6	29.7	29.8	29.7	29.6	29.4	500	30.2	30.4				,	;	;	,		
		cal analy:	Depth 'm'	18	8	210	18			36	70	121	15	15		30	-50	2	73	45	20	26	12	10	6		24		÷	33				36	39	48	12	121	45	-	:::	8	<u> </u>	
	· .	d chemic	, well	- H	BW	Ma		$\left \right $	-	+		-i-		-	Н	-+	BW	+	-	$\left \right $	+	+	┢		$\left \right $	+	+	-	\square		+	+	-	+	+	-	$\left \right $	a BW	-+	BW	╉	╉	-	
	- 	ıysical an	Village	Kaliari	Sindhav	Kora	Kota	Nadiad	Nadiad	Dabha	Dabba	Machhhesa	Machhhesa	Machhhcsa	Dadapor	Dudapor	Asnera	Ashera	Dora	Dora	Kcshwan	Laniadara	Janiadara	Kalatn	. Kalam	Vachhnad	Manad	Sarnar	Deorol	Vasdada	Parkhet	Paguthan	Paguthan	Linarali	Kavitha	Masar	Masar	Dhobikuva	Dhobikuva	Ambada	Ambada	Darapura	Sarsavan	
	, -	Detailed physical and chemical analysis of pre monsoon 2003 water samples.	Sr. Taluka No.		7		T	6 Jamousar	7		~	2 -	1	13	14	Amod	91		61	0	31	315	24 Vagra	25	9	27	00		31	. 25	33 Bharuch	34	2	11	38	6	40	-	Padra	43	T	2	10	
		, m	<u> </u>	· 1 1	<u>. 1</u>	1		ــَــــــــــــــــــــــــــــــــــ	ĿĹ			1	17	17		_1	-1-				1	1	10	12		<u>. 1</u> .	1	1.			<u> </u>			<u>''</u>	1	1	.• •	4		41.	41.	4	<u>_</u> 1	

	Fluoride	l/gm	61.0	0.26	87.0	61.0	0.26	0.19	0.33	0.54	0.4	0.60	1.05	0.62	0.54	6.0	0.26	0.69	0.69	0.33	0.4	0.4	19.0	0.98	0.69	0.9	1.2	C0.1	0.48	0.48	0.4	1.05	0.83	0.83	1.48	0.9	0.26	0.13	1.05	0.26	0.48	0.61	5.4 K 45	5.6	0.19	0.11	0.26	0.26	0.83	0.76
	Nitrate	/3m	2.0	2.0		22.5	+ 0121	4.5	0.5	240.0	<u>.'</u>	15.0	10.5	35.0	0'11	4.9	4.8	15.0	17.0	16.0	15.5	9.2	+.1	31.9	120	3.2	3.2	4.1	8.5	4.5	1.3	4.9		3.0	1.0	9.5	0.2	215.0	40.0	10.2	1.9	7.9	3.5	15.0	5.3	5.0	10.0	10.0	2.6	2.9
	Sulphate	l/âm	433	575	422	-055	425	300	388	1270	4600	240	1500	360	613 -	302	1367 .	150	114	2850	600	289	081	567	967	280	250	051	525	240	162	116	5671	220	001	1175	40	1061	0001	190	750	1404	889	1100	1092	340	240	240	120	120]
		l/ĝm	. 869	472	702	180	18/	170	533	1745	210	710	111	137	260	175	1260	32	45	863	E1	- 6	7K	288	152	50	75	32	155	140	77	72	507	230	11	456	52	7684	252	-93	656	405	185	100	140	175	260	061	67	67
	1	исо,	310	195	305	007	330	375	325	1064	395	015	490	425	405	775	470	410	445	555	330	325	260	480	415	350	365	350	587	240	210	390	160	515	415	535	175	502	595	230	340	560	605	200	UPL UPL	345	395	398	285	320
	Alkatinity (mg/l)	ŝ	NI NI	ĨŽ	EZ S	VGI		NIN IN	Ni	ĨŽ	Ī	JU I	i i	ž	iz	20	Ē	Ž	Nil	ĪŽ	īž	ž	IZ I	, interest	- IIX	ΪŻ	Ī	Z	iz z		II.	11Z	. IN	IN IN	30	20	N.	Nil Nil		Nil	20	30	130	50 77	Not the			IN	lin	. IIN
-	Mg Hard.	s cacus mg/l	. 656	216	597	242	200	121	438	3553	116	10	400	20	383	0	1076	224	148	1536	315	233	166	358	185	143	46	-	220	1 561	125	114		001	0	61	124	103	236	288	253	58	95	191	-102	140	479	365	83	96
· · ·	Ca Hard.	as cactus as mg/l	164	132	183		83		126	L67	189	114	100	175	125	64	H	56	64	324	61	51	38	2	- 19	61	20	58	40	2 4	51	0,	143	50	69	139	36	57	124	. 192	171	166	- 1 <u>1</u> 3 -	50	14/	68 KI	69	67	57	09
		as CacO3	820	348	780	344	436	400	564	3850	1160	130	4/0 4	174	508	54	1420	280	212	1860	376	284	204	70.	252	204	116	58	260	768	176	184	143	0,40	69	200	.160	160	. +on1	364	424	224	208	296	548	122	548	452	140 -	156:
-		ng/l	2.3	3.7	3.1	4.0	EE .	+"7 2 K	3.7	2.1	3.2	3.1	7.1			0.5	22	0.3	0.3	90.2	0.5	0.3	3.0	0.6	0.8	1,7	0.7	0.5	0.4	50	0.5	0.6	1.5	8'0	200	2.3	1.0	3.1	0.7 608 7	21.4	2.5	1.7	51	₽ ,,	6.1	2.0	2.8	2.6	- []	13
	Å	mg/l	159.4	52.6	145.0	59.5	- - - %	100	106.5	863.4	235.9	3.9	0.00	a., 00	016	00	261.4	54.4	36.0	373.3	76.5	56.6	40.3	5.11	45.0	34.7	1.1	0.0	53.5	40.0	30.4	27.6	0.0	5/.2	0.0	14.9	30.2	25.1	41.1	1.07	61.4	14.2	23.1	46.3	48.9	67.1	116.5	93.6	20.2	23.2
	Ū	l/gm	58.7	47.1	65.6	35.4	- 35.0	1.03	45	106.2	67.7	40.6	1.4.2	0.00	4. 1	1 24	123.1	20	22.9	115.7	21.9	18.2	13.6	14.8	010	21.9	25.2	20.6	14.2	7.12	18.2	25.2	51.	30.2	24.5	49.6	12.8	20.3	0.26	27	61.2	59.2	40.4	37.7	52.4	24.5	24.5	23.9	20.3	21.6
	R	l/ĝiu	253.9	313.6	335.8	274.1	253.6	117 3	274.4	412.6	220.1	378.2	2002	01.0	2.02 S	587 2	540.8	157.6	183.2	444.8	9C.4	87.5	34,1	0,00	6 061	154.5	208.8	195.4	53.6	0.00	54	178.2	741	280.4	295	518.6	32.9	63.6	175.0	47.3	465.2	597.9	494.8	324.5	109	1.661	1.107	206.6	2132	205.9 .
-	, ur	l/gm	+	++	-+		1230	+	+	+	-	+	+	+	+-	+	+	+-	+				+	+	+	+		-+	-	+	+	+	-+	+	+	+		+	+	+	+	+	\vdash	+	+	+	1000	+	+	520.
-	Cond	µS/cm	2760	2050	3030	1940	000		2340	7580	3220	1780	000	0571	0121	0.001	0101	1040	1140	5870	1230	1060	668	814	1480	925	1060	850	732	1910	625	1040	3110	1610	1350	1860	451	581	09/6	10001	2870	2910	2270	1890	2910	1400	1011	1460	815	809
		Ħ	7.46	7.81	7.43	7.72	7.54	0.00	7.55	7.13	7.06	7.61	1.33	20 4	11 2	1 0.1	112	7.65	7.53	7.26	7.40	7.61	7.60	7.72	20.1	7.70	7.58	8.02	7.68	cc./	7.82	7.61	7.72	7.66	8 22	7.73	16.7	7.74	7.64	7.35	7.43	7.34	7.86	7.73	7.69	7.77	05 5	. 7.33	7 89	7.75
~		Temp. °C	31.4	30.4	30.1	30.1	30.6	30.0	32.3	30.8	32.1	31,4	30.8	30.5	C.UC	1.10	20.4	30.7	29.3	29.4	30.5	28.6	31.8	32.1	21	27.6	31.6	31.4	30.4	51	31.4	31.2	31.7	31.5	1 2 0 5	30.7	1	29.8	31.7	295	1	;	1	;		30.7	2.14	30.4	20.8	314
		Depth 'm'	1	76	-	67	85	3 5	38	1	73 .	f	:	74	5	1		76	19	1	19	61	61	45	85	24	48	67	76	55	24	24		48	÷ I	;	:	39	12	74	19	42	16	:	1	16	C2 75	213	52	68
, .		Type	BW	BW	ЬW	ME 1	BW	MI	HW H	ΗÞ	BW	BW	£	N S	A 1	A P	Ma	BW 1	dH	BW	BW	HP	ΒW	BW	RP 4	MO	BW	ЧÞ	BW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dH	BW	dН	BW B	Ma	dH	ЧЬ	BW	HP H	AN A	BW	ЧH	BW	BW	E H	BW	h h	HWH H	RW -	BW
	{	Village	C. w shur	Karamadi	Karamadi	Kiya	Jhavat	V Almariya	Rarod	Rårod,	. Shankarda	Sev. Isi	Scvasi		Mark and	Malconter	Ankhi	Amarandra	Amarapura	Cothada	Gothada	Gothaela	Maniusar	Manjusar	V adachicle	Kadachhcla	Natira	Nalıra	Moti Bhadoi	Molt Bhadol	Khakharia	Kamrol	Kamrol	Abhrampura	ADRIAIDUTA	Juna Rampura	Nava Rampura	Falod	Falvi	- Constil	Rasulpura	Rasulpura	Nariya	Anguthan	Anguthan	Nanahabipura	Mimiliol	CHINANA	Vahiad	Vaniad
		Taluka		-		;	Karjan	-					,	Vadodara			-								Savli		•		_							Waghodia					1.5		Dabhoì					Sinor		
	ţ	e N	47	48	49	<u>8</u>	20	7	2	S	56	57	3	Т	-	5	3 3	3 3	59	3	67	68	69	2	- 6	12	74	75	26	1	10	80	81	S 1	2	T	1-1	87	8	88	26	92	93	94	56	85	6	88	ž je	3

Annexure-4.4

. ب

.

. v⊁ - ¢

.

_	um Mangencse	,		+	╞	╀	+	╉	+	+	ŀ	╀╴	-			T	+	╞	\vdash		+	+	$\frac{1}{1}$	-	QN	-		+		-	+	-			+	╀	-	-	╉	+-	+		
	Strontium				+	+	+	+	+	+	+	-	Ļ	-		+	+	+-				+	+.	+	0.45	-	+	+		_	-	+			-+	+	╞		+	+	╀	0.4	1
	Silica		4.004	9.43	5	100 4		>	2.40	C# 14 2	10.0	5.96	5.14	8.03	3.61	2.8	1.44		6.86	6.15	5.34	-8.65	20.5	8.26	5.82	3.79	5.13	21/0	5.75	7.21	7.18	8.27	6.62	8.97	8.15	50.0 C 7 F	7.06	4.53	15.27	2.69	4.26	4.1	11 2
	Soron	à	0.78	0.55	14.0	1.30	C2.4	0	CC/0	*C.0		6.84	1.15	0.89	2.32	4.0	0.74		0.52	0.58	0.59	0.45	0.44	50.0	0.48	i.76	0.48	0.0	0.42	0.41	0.44	6.4	0.49	0.38	0.51	40.0	0.74	0.89	0.77	0.78	0.84	0.93	000
	Nitrate	Å	6	16.5		4 01		ŝ	4			15.5	5.7	95	3,2	61	91	2°	-	- 15	14.5	80	70	245	165	0.2	- 6	120	1.3	0.6	6.0	0.4	9.5	0.9	3.7		2.6	13.5	15	4.5	2	14	
	Fluoride maî ^r	1810	2.1	0.26	70	00.0	1.65	0.25	11	0.40	cf.0	0.47	0.89	0.44	3.8	0.1	0.76	112	0.56	0.5	1.07	0.22	0.31	0.78	0.69	0.15	0.45	0.43	0.59	0.38	0.44	0.5	0.5	0.32	0.32	0.12	0.32	0.44	0.14	0.74	50	1.14	40
	Sulfate	1 2 2 2 2	767	100	2101	/101	600	00/	120	R	2650	003	4000	2600	50000	167	801	1422	550	1500	1250	220	833	8000	500	295 -	380	0011	09	200	375	101	813	130	760	240	700	2200	1350	220	055	825	OUT V
_	Chloride	iĝ.	158	105	10	097	761	121	P/ .02	107	85	12	4024	695	59189	33	340	170	320	1989	1075	130	\$50	1000	1350	147	80	1530	80	152	162	111	732	245	707	06	752	1570	406	135	227	402	1.17
. in	T	HCO,	500	502	342	+ 712	412	430	266	208	2/5	205	228	668	250	366	200	1264	474	156	234	442	180	2/7	338	322	352	205	268	316	422	286	226	382	404	282	298	294	368	450	440	692	
Albaliated	Vâu	°C ⁰	20	ĪN	Z	Ē	Ĩ	EN	58	E.	EZ S	NIN IN		17	ΞN	IIZ	•	iz °	Nil o	Nil	Nii	EZ	Ē		EN.	16	24	z	12	20	Z.		202	BN	EN.	Z		IN	Nii	32	201	52	
	Mg Hard. as CaCO ₃	1/Sm	22.7	354.1	2.84	180.7		127.4	00	50.5	95.6	7 840	1723	176.7	830.8	198.3	40.0	120.9	3.9	698.2	93.5	202.1	370.1	1 146	59.2	78.9	128.9	1.767	44.9	193.6	943.6	1 8 1	493.7	493.8	753.2	341.5	706.7	164.2	749.1	67.2	17000	23.2	
	Ca Hard. N as CaCO ₃ a	hgu	157.3	109.9	3.1.61	C.6/1	139.3	136.6	70.2	168.5	92.4	200.5	1537.7	583.3	5269.2	71.7	220.0	1.601	1.911	541.8	216.5	113.9	499.9	0 208	805.8	109.1	95.1	6.121	85.1	86.4	106.4	0 11	186.3	70.2	176.8	38.5	2033	805.8	540.9	132.8	148 5	206.8	
_ 	Total C. Hardness as	l/gm	+-	+	+	+	+	+	+	+	+	+	╀	┢	F	+	+	+	+-	-	\vdash	+	+	+	865		\vdash	+	+	$\left - \right $	+	+	+-		\vdash	+	╀		\mathbb{H}	+	+	+-	╀
	K H		1	53.1	+	+	-	4	4	+	+	+	+	+-	\square		+	+	+-	╞	$\left \right $	-		+	10.5	\square	-	+	1.4		-	+	+-	-	Н	-	+-	+	Ц	-	╉	2.1	+
	Mg		+-	86.1	+	+	-	+	÷	-+-	+	+	╋	╋	\vdash	$\left \right $	+		+	–	$\left \right $	-	+	╋	14,4	\square	-	+	-	$\left - \right $	-+	+	╇			+	248.2	┝	$\left \right $	-	+	5.6	$\frac{1}{1}$
	ű		-	-+	-	+	4	-	4	-+	+	-	+	╞	\square	$\left \right $	4	+		-	\square	-		+	322.7		\vdash	4	+	$\left - \right $	-+	+-	4-	_	$\left \right $	-+		╞		+		+-	4
	Na	-	╋	\vdash	+		+	+	-+	+	+	+	+'	+	+	-	-+	+	+-	┝	-			+	865 3		\vdash	+	+	+	+	+-	+	+	$\left \right $	-	÷	+-	+	-+-	+	+	+
\vdash	TDS		+	-+	+	+	-+	+	+	+	-	-	+	+-		-	+	+	+-	-	$\left \right $	-	-	+	8888	-	-+	+	+-	$\left \cdot \right $		-	+-		+ +	-	+	╋		-	╇	+-	+
╞	22		\mathbf{T}	1460		+	-1	+	006	-1	+	D011		+-	1			+	0100	+	1		-+-	-	12800 8	1-1	++	-+	825	+	1	-	+	1-	2830 1	-	+	+		-	+	0682	t
	pil I		┝		+	+	+	+	+	+	+	+	╋	+-	+	H	-†	+		╋	\vdash		+	+	7.84 1	\vdash	$\left \right $	+	8.22	Н	+	+	+-	┢	\mathbb{H}	+	╀	+	Н	7.33	╉	8.48	╉
	Temp	ې ۲	ł	30	+	+	+	+	+	÷	+		╋	+-	+		28.2	+	+-	╉	\mathbb{H}	-	29.4	+	+	\vdash	25.6	+	28.7	Н	29.1	+	+-	29.3	\mathbb{H}	+	+	┼	28.2	+	+		+
┝	Depth		╀	$\left \right $	+	╉	-	27	+	+	;	:: t		+- :;;		$\left \right $	+	-	+	╀	Н	-	+	+	27		$\left \cdot \right $	+	27	Н	+	+	+-	╀	$\left \cdot \right $	-	+	+	Н	+	┽	┿	
	Well		BW	dH	MO	BW	BW	ыW.	E C	BW	NO	- Dell	Ma	Ma Ma	BW	BW	BW	3W	HP H	BW +	HP	0W	BW		HP.	MO	M0	BW	BW	BW	ЧЪ	AND MB	RW	HP	BW	HP	- MB	BW	HP.	BW	BW	, dH	
	Village	••••••••••••••••••••••••••••••••••••••	Kaliari	2		Sindhay	Kora		-	Nadiad		Da ha	Daths	City	Nada	Machhhcsara'	-	Dadaper		Asneri		=	Dora		A.CSRWan		Janiadara	Kalam	Vachhnad	Manad	2	Samar	Pacrithan	n n	Uparali		Kavitha "	M.5. ar	4	Dhobikuva		PDPOIIIV	
	'faluka	: ; ;		L <u></u> i	<u> </u>		I	1	Jambusar -			1_		-			1			Amod	<i>ل</i> ــــا	!			1	<u> </u>	Vagra	_ _	_		L£		 i	Bharuch -	<u> </u>			ţ,	Ļ		Padra		1
Γ	i y	.041	í-	2	-	4	2	9			6	2 =	-	1	4	5	9		0	20	57	22	2	ţ, ¥	38	27	28	67	215	32	2	* *	36	37	38	39	₽₩	42	4	\$	¢ ¥	P 5	Ţ

r

.

۰.

- - -

- 5

·.

-

.

-

-

	Mangenese mg/l	0.16	0.084	÷50	ov s	ND	QN	QN	QN	Q	Q	ŝ	2	<u>g</u>	9	QN	QN	Q	Q	0.098	QN	QN	QN	QN	QN	0.042	0.018	610.0	410.0	G	GN	QN	0.024	DN	QN	QN		ON SI		EX.	QN	QN	0.018	QN	0.012	0.065	0.018	0.059	0.06
	Strontium N mg/1	0.46		0.22	0.094	0.047	0.39	0.38	0.35	0.049	. 0.47	0.074	0.039	2.93	0.18	0.16	0.2	0.18	0.1	0.53	0.13	0.21	0.45	0.58	0.21	0.28	0.31	0.14	0.0	0.17	0.079	0.41	10.49	1.01	1.5	0.13	0.15	0.076	1.04	1.16	0.7	0.69	0.26	0.39	0.34	0.25	0.08	0.19	0.26
	Silica ng/l	\$6.9	7.16	7.43	131	4.18	3.85	2.69	6.32	:59	3.85	8.82	9.14	6.47	6.08	2.37	4.9	3.85	7.02		4.95	4.85	9.53	11.4	5.02	3.43	3,49	6.29	18.0	11.5	4 0.5	2.64	2.69	6.05	3.54	4.17	4.34	3.8 8.0	2 00	2 64	3.05	3.15	2.85	3.74	2.98	4.97	6.97	7.09	5.95
	Boron ng/l	0.71	0.76	69.0	0.63 ·	0.66	0.69	0.68	0.67	0.82	0.79	. 0.56	0.58	4	0.54	0.53	0.51	0.53	0.61	0.66	0.59	0.56	0.55	0.56	0.51	0.18	0.37	1.75	10.0	0.7	0.83	0.18	1.22	0.58	1.52	0.37	0.45	550	78.0	1 05	0.65	0.43	1.59	72.0	1.17	0.4	0.28	0.28	0.25
	Nitrate ng/l.	2.3	14.5	22.5	5.2	1.0	22.5	20.5	. 14.5	4.5	3.2	17.5	[6	15.5	1.6	0.6	2	0.3	. 325 -	120	4.8	8.1	17.5	4.7	3.7	0.8	4.9	2.9		1.0	10	2 -	295	1.2	1.2	0.9	9	3.2	2.6	0.0	12	-	12.2	2	1.4	5.3	8.4	01	3.1
	Fluoride mg/l	032	0.32	0.38	0.38	1.42	0.5	61	0.62	3.8	0.44	0.74	0.74	č	0.62	0.2	0.56	0.32	0.88	0.62	1.14	-	0.5	0.56		0.44	1.34	0.88	6.88	0 88	70.0	0.44	0.88	0.94	0.82	2.8		0.74	7.7	.76	0.94	86.0	1.14	0.82	13	0.32	0.38	0.38	0.58
-	Sulfate mg/	440	1350	650	240	1000	650	875	788	240	3300	2	140	4400	300	110	011	110	800	2800	225	130	860	590	220	120	225	2750	202	170	1125	80	3200	2050	14000	1575	1300	400	200	1000	11001	2009	2200	75	640	380	305	275	90
•	Chloride		385	\vdash	+	+	+	+				-	+	-	-	-	┢	┢	ŀ	┢	┢	┢	t	┢	÷		+	+	+	+	+	+	+	+-	┢		+	+	+	+	╈	╈	+	+	\vdash	184			
-1	6	326	396	975	388	418	190	514	440	936	374	426	464	576	336	186	288	216	506	286	376	346	374	466	210	158	434	816	472	197	828	80%	· 512	668	536	528	620	482	248	1 10	500	486	768	426	1076	402	454	432	332
	Alkalinity ng/i CO, HC	IN	N	i til	Z	25	I.N.	i N	Ę	IN	N	38	20	ĒΝ	Nit	IN	IN	IN	EN N	EX	24	02	IN	Nil	BN	τN		2	Z	IIN C	NII NII	EN .	EN.	EN	N	32	ĪN	īz	N.	4 1 1 1		E	32	IIN ·	40 -	İN	HN	ΡN	Ē
. •	Mg Hard as CaCO ₃ mg/l	0.065	678.2	:1.7	334.3		1.5.8	108.2	456 9	14.1	80.2	200.1	62.4	1073.5	212.1	61.9	71.1	188.0	251.5	76.7	61	0.0	5.9.6	263.3	105.6	82.3	80.6	0.2	142.9	10.40	1.0	1 1 1 1 1	223.7	131.8	564.3	18.5	95.4	150.4	14.0	- 101	104. 8 D	98.7	0.0	44.9	0.0	279.9	428.8	.366.1	75,1
	Ca Hard. N as CaCO ₃ a mg/	220.0	541.8	1.73	61.7	1.08.1	418.7	161.8	103,1	57.9	579.8	87.9	97.6	626.5	67.9	94.1	72.9	40.0	168.5	1 896	1.521	90.4	96.4	216.7	\$5.4	53.7	99.4	166.2	117.1	+.001	2 181	65.9	2416.3	228.2	1115.7	167.5	160.6	105.6	103.4	181.2	1000	133.3	219.2	95.1	186.0	116.1	83.2	93.9	88.9
	Total C Hardness a	+-	1220	++	3.6	1 1001	\$44	270	560	72.	660	288	260	1700	280	156	144	228	420	1045	12.	90.4	656	480	192	136	180	167	260	F07	701	00	2640	360	1680	186	256	<u>3</u> 2	220	717	124 8CC	132	219.2	140	186	396	512	460	164
	H Y Varg		3.8	+,+	+	+	+	╀─	┼─	┝			-	-	-	┝	┢	$\left - \right $	┢	┝	11	┢	╞	0.3	-	-	+	┥	╉	+	╉	+	25.4	┝	-	3.4	~	1.5			- - - -	+	╀	+	\square	3.2	\vdash		-
	ч ^о йе	143.4	164.8	7.4	81.2	C.02	30.6	26.3	111.0	3.4	19.5	48.6	39.5	260.9	51.5	15.0	17.3	45.7	61.1	18.6	50	0.0	136.0	64.0	25.7	20.0	19.6	0.0	34.7	4.5	/	20.2	54.3	32.0	137.1	4.5	23.2	36.5	27.9	1.4	01	24.0	0.0	10.9	0.0	68.0	104.2	89.0	18.3
	mg/i	88.1	217	55	24.7	83.0	1 5 6.91	64.8	41.3	23.2	232.2	35.2	39.1	250.9	27.2	37.7	29.2	16	67.5	187.8	107	36.2	18.6	86.8	34.6	21.5	39.8	66.8	46.9	5.54	1.00	26.4	967.7	91.4	446.8	67.1	64.3	42.3	42.2	17.1	0.100	1.00	87.8	38.1	74.5	46.5	33.3	37.6	35.6
	ng Na	234.3	362.5	243.1	93.4	+	450 0	184	587.7	310.0	623.3	112.9	172.1	387.9	9.9T	30.4	83.2	12.6	1116	2010	101 8	192	108.4	140.6	89.1	51.6	177.7	657	223.6	210.1	0.000	5 TL	2881	131.8	1440	506	376	219.2	341.7	473	185	290.7	802	193.2	697.2	145.5.	124.6	140.2	144.1
	LDS Ngm	1546	2346	1120	612	2140	1680	1072	1020	1320	2140	602	806	3290	498	168	446	202	1478	76.26	680	510	980	1630	420	274	684	1800	924	000	NWN -	046	10465	2014	4350	1538	1200	716	1266	1242	0470	880	2104	548	1663	750	800	860	\$52
15	EC µS/cm	2640	3880	1890	1150	0121	1080	1790	06/1.	2240	3630	1030	1150	4720	106	448	673	470	UP:C	\$550	1020	880	1630	2680	19.3	474	0011	3120	1480	1200	02/1	407	15700	3190	7250	2570	2020	1390	2210	2190	1500	0000	3720	1060	2770	1340	1570	1400	814
	R.	7.68	7.64	122	17.8	1.1	00.2	757	1. L .	7.86	1.67	8:42	74	7.57	8.01	. 7.82	17	7.4	7-6	1 57 6		1		1.5	7.55	7.75	8	8.08	8.01	c0.8	77.0	1 63 7	747	8	7.31	8.15	7.3	7.6	7.35	C6.1	1.1	75.1	7.4	7.6	7.8	7.55	7.4	7.42	7.68
	"C up	29.1			30	30.1		28.1	28.3	28.3	:	-			1		:	,					:	:	31.4	29.1			-	:	-	, ,					30.6	29.1	30.4	30.2	20.67	28.5	28.5	30.1	28.9	30.9	30.1	1	31.6
	Depth Tr	3	73	85	92	85	,	19	27		76	76	61	61	15	,	45	19	37	8	24	63	9-	3	19	24	24	1	48	41	-	1 92	18	. 19	55		61	42	36	-	: 17	5 5	21	19	42	16	45	61	82
	Well Type	BW	BW	BW	BW	Ma	10	BW	BW	dH	BW	BW	ЧP	BW .	BW	MO	BW	BW	MU	dH1	Ma	đ	BW	dH	BW	HP	BW		_1	4H	201	Ma	dH	dH	BW	BW	BW	ΗP	BW	BW	hr	WB N	HP	BW	1 4	BW	1 1	1	
	Viltage	Chorbhui	Karamadi	Dbavat	Kannariya	, Dilahkaruu Seweri	~	City	Makarpura		Ankhi	Amarapura	=	Grihada	-	-	Maniusar	-	Kadachhrls		Nahra	1	Moti Bhrdol		Khakharia	:	Kamrol	-	Abl:rampura	0	Juna Nampura	Falout	1	Corei	Nimeta	Khervadi	Rasulpure		Nariya	Anguthan	Turvana	1 arsana	11	Bhimpura	н	Nanahabipura	Mindhol	Surasamal	Vaniad
	Taluka		Karian	Infina		-	-	Vadodara -	ـــــد ب	•			ا			·	. .		Savli	+	<u>+</u>	1		1	4						Wanhadia	-	.	1	<u> </u>			l			Dabhoi	 -	_L ر		- *		یکست ۱	Sinor	u de

																									-															
-		0.40	74		8	0.38	0.4	0.02	52	4.	0.44	7.94	0.05	0.76	0.05	0.38	0.46	0.58	0.58	2.62	0.5	0.52	0.02	6.04		2.18	70.0	0.1	1.82	0.16		24:58	0.86	0.6	1.28	0.02				
•	ЬЕ Н	31 6 0		1	+ t	4	3.1	-+	26.1 1.	1	4	51.7 7.	-1 0			19.7 0.	13.3 0.	39.4 0.	6.92 0.		9.62 0	30 0.	-+	2	m	-				5	9.1 1:	28.6 24	25.3 0.	40.6 0	33.1 1.	0.82 0.				•
• •	Ba	19 1 3	+-	+	-+-	9.16 4.	-		- <u>i</u>		5.08 53.		10.95 2			6.76 19	5.2 13	4.28 39	34.26 6.				+				-+				5.24 39.	29	4 29		42	56		~		
	Sb		╪	-+-		·+		\rightarrow	-+		0.1 5	-				0.1 6	0.1 5	0.4 4		0.1 3.	0.1	0.7 6	-+				-	-+	+	-	0.1 5	0.2 0	0.1	0.1 3	0.1 3.	0.1 3.	÷			
•	Cd	0	+	+	+	_†	-+		0		0.1			0		0.1	Į	0.1	<u> </u>	0.	0	0.1		-+	\pm	-+-	-+			- 1	0	0		0	0	0.1				
	Mo	¢ †	<u></u>	00.2	2.00	2.74	3.22	0.1	2.32	0.92	0.54	7.06	0.15	0.96	0.25	1.92	0.76	1.3	2.22	2.64	0.9	0.88	0.2	0.56	1.76	2.22	1.38	0.2	105.7	0.94	6.26	7.52	1.02	1.12	3.54	0.1				
· · · ·	Sr	ere.	020	20.0.02	202.70	60.96	154.36	110.2	149.92	355.4	J2.82	147 58	69.65	64.52	44.9	151.96	357.34	37.14	30.34	184.46	178.66	425.48	11.4	29.64	42.5	67.72	252.02	163.9	738.84	103.32	36.7	20.02	18.12	24.78	84.68	21.64				
۰ ۸	As	3 56	-+	-+-	-+-		2.56 1					3.72 1	3.2.6	1.46 €	2.5	1 18 1	0.94 3	2,12 3		1.46 1	2.02 1			1.82	+	-+	-	-+		1.9 1	1.76	.42 2	28	1.56	1.72 8	1.28 2			-	•
•	Zn	ppb			2				6		_		_	_	21.8	22.6		25.7 2	<u>+</u>	19	51.6	16			<u> </u>	+	-+-		4.96	17.6	4.5	3.44	7.26	7.14	8.1	15.1				
	Cu	Concentration in			-				-			13.6		5.86	2.7	<u>.</u> 1	+	<u>}</u>	- .	7.78	4.04	3.2		9.78	-+	<u>`</u>	-+	+	_	6.78	8,12	7.54	3.4	4.22	6.54	1.06		· .		,
	N	centrat	001.00		2.200	1.92	1.040	5.32	1.520	2.48	2.5:0	1.66	5.3	1.920	3,95	4.200	2.64	1.660	6	1.760	1.92	1.620	1.98	12	1.160	0.78	1.580	14.2	1.280	1.16	0.66	0.840	0.76	1.04	0.940	2.14				
		S	+	-1-	-		;; ;;	0.1	0.1	0.1	C.1	C.1	0.1	0.1			+	+	+	0.1	0.1	0.1	0	0.1	-+	+	-+		0.1	0.1.	0.1	0.1	ن- ۱- ن	0.1	0.1	Ō				,
· · · ·	Бe		1.100	0, 160	456.58	439.16	442.26	348.68	419.74	441.18	417.54	420.04	806.65	413.24	828.7	435.22	426.56	401.6	417.68	411.02	438.56	447.12	319.7	384.12	383.88	398.06	428.96	1724.8	362.2	376.14	360.42	363.16	378.46	404.32	384.7	336.16				
· · · ·	Mn	\vdash	\pm		5				7.880 4	9.16 4	8.960 4	7.74 4	16.5 8	8.360 4	├	6		1		<u>† </u>	8.6 4	6.640 4			-	+	-	-	5.860	6.88 3			┢─	-						
~ 5 <u>7</u> 14	5	L	+		_+			5.34 7			1.1 8.	2.5 7	3.4 1		ļ	1	i			<u> </u>							_				5.1 6	–	<u> </u>	<u> .</u>	_					
		Ľ	4			-		2.64 5.	7.04 6.	L	-	<u> </u>	5.75 13	24.2 8.		F	F	10	-	E	21.1 5	7.7 5	2.72 5	28.3 16	<u> </u>				31.2 6.	5.32 8.	Ľ	Ľ	1	1	Ľ					
•	A		et l	-+-	+				10.76 7	14.64 8	9.76 1	-		5.54 2	1	{	+	+	1	+	26.62 2	10.52 1							53.3 3	63.5 5	78.78 1	+		+	_	+				•
		F	+	-+	+	-				 		-		-	-	+-	1		+	+	 	1-			-1	-+	-	_				+	1-	+	+	+				
4 \$		4	-+-	<u>_</u>	_	_	_	0.843	0.538	 	0.488	<u> </u>	0.514	0.277	_	Ļ.	0.331		1	+	<u> </u>	0.526	0.461	1.075		_	_		2.665	ļ	3.939	Ł	_	<u>}</u>	_					
	B	-	-+		-	0.04		1 0.06	0.0	0.32	C8	0.1	0.00	0.00	0.05	0.1	10	0.14		+	0.04	0.1	0.02	0.00	0.14	0.04	0.14	0.6	0.14	0.28	0.1	0.00	0.04	0.00	0	0.02				
	Weil	Type	∑ ∑) N B	₹	BW	B'N	BŴ	B'V	BW	Ħ	BW	BW		BW	BW	BW	ЦЦ	BW	BW	ЧH	BW	BW	ġ			BV	₽ Ŧ	ЧH	BW	BW	BW	1	1	BW			•	. '
	Villane		Cnorbnul	Karamadi	Kiya	Dhavat	Kanthariya	Shankarda	Sewasi	City	Makarpura	Makarpura	Ankhi	Amarapura	Gothada	Gothada	Maniusar	Kadochhcla	Kadachhcla	Nahra	Moti Bhadol	Moti Bhadol	Khakharia	Kamrol	Kamrol	Abhrampura	Juna Rampura	Falod	Falod	Gorej	Rasulpura	Anguthan	Anguthan	Nanahabipura	Mindhol	Vaniad				
•	Taluka		-	^ .	Karjan				•••••••••	and and all all all all all all all all all al	Vaucuara							:	Savli			.					Waghodia					Dabhoi	2		Sinor					
				ĩ																																				
																		•				ť											-					_		

BHARUCH PAUKA NAKJAN VAUCUANA SAVEL					SAVIT		1 2	MACHODIVA	DARHOI	Vauouara DI SINDR	SANKHEDA	Titakwada	Jetpur -	Nsawadi	Chhota	Kawant	o a	Study Area Average
	>	VAGRA B	BHARUCH	-+		VADODARA	SAVLI	WAGHODIYA	DABHOI		SANKHEUA	1 IIakwada 713 50	pavi	INPMPSNI	udaipur	,	- <u>6</u>	781
1				952.5 1010 F	753.9	872.29 COF C	- 000	731 1	879.1		1097	674.6		983	1024.8	,		763
404.7	14	416.6 850.8	6.719	1359	776.79	1003.39	1094.6	913.39	702.09	823	941.7	917.99	F	823.3	1082.5		725.2	901
06.59	1	918.1	1290	1502.5	1106.2	842.1	728	865.59		1127.09	776	621.79		775 70	802.38 667 29	402.0	534.2	618
355		339.59	605.1	858.1	634	510.6	720.2	512.1	750.4	712.69	920.7	652.9		696.4	696.69	220.9	689.8	637
581	+	541.2	576.3	739.6	119.79	1040 5	005	- 14.4	1223.59	889	1201	1121.8	,	1251.39	1112.8	220.9	1339.19	975
757.79	+	773.79 coc 10	181.2	808	5291	555.09	456.5	424.5	753.7	695	739.29	1223.09		599.6	766,89	101	930.99	631
	╈	681 79	645.09	1091	930.8	1078.8	,	1444	720.5	1054	1250.59	1662.69	,	1277.89		1263	-	1043
1079	╈	1502.5	1440.29	1719	1282.49	2160.59	•	1570	1676.99	1446	1824.39	1740.59	-	1838.29	1585.5	441		808
<u>i</u> [2	+	611.4	613.4	1162	834.49	676.3	-	822.8	993.499	723	995.79	1059.99	•	814./9 777 A	818	441	764.3	571
ŝ		328.2	340.09	401	656	380.2	425.1	634.7	10.10.00	946.59	121	1814 70	1474 00	1202	1423	1297.1	1294.99	1181
8		752.2	862.99	1173	922.09	1227.59	1018	1455.1	1342.69	1140.05	1400	61.410	500 70	660 59	425	693	463.5	440
2		372.29	117.39	311.09	230.39	303.9	559.59	400.59	139.9	429.09	430 4087 80	1536 20	837 1	1079.2	767	856.6		1001
	991	903.8	682.7	602	1017	812.9	1745	897.58	840.28	1408.4	50' 1001	7587.70	0.028.0	2200.20	1778	1381.9	1938.5	1699
	F	1110.3	219.5	1421.7	1352	1730	2688.7		86.10/1	1988	2021	2007.23	1505.7	1114 10	1462	779	1160.1	1211
		742.59	577.5	1181	1416.5	1070.6	2003.49		1051.49	1485	1407	1277 60	000	888 49	1105	1205	975.6	1062
		767.8	758.6	1251.09	1212	1074.09	1009.3	1034,20	02 200	1230	720 5	1207 10	802 4	849	866	863.9	1154.7	848
		570.59	592	864	1254.6	620.8	636	817.19	800.19	1010	34.7	771 8	817.30	689.69	696.1	498.5	580.8	747
•	532 4	454.39	397	1099	991.29	940.49	736.39	1246.09	1202 40		041	1775 5	1406.3	1186.6	2008.09	526.1	1175.4	1133
		782.89		748	931	810.3	812.79	COLL	202.13	736	830	833.1	441	585.09	743		585.39	657
1	0	433.49		668	856.6	644.39	613	131	C.421	1	1209 69	1267.89	466.89	1127.1	1524.6	656.8	1132.59	1074
- 1	903	998.1	596.79	8071	000	13/0.03	222	582 G	1082 6	066	920	1195.69	1413	875	921.49	586	857	786
	-	597.49	604.4	700	870	632 40	202	629.2	775.3	894	405.5	869.19	421	432	528.79	286		590
	-	8.125	0001	224.2	404	303 49	303.09	429.99	588	674	386	583.4	448.49	408.19	526.59	262.1	455.89	453
	582	201.00	1017 5	4123	320	393.6	286	341.4	438.89	315	496.39	479.49	353.9	553	625	202	518.79	415
	520	689	1671	1018.5	1059	1003.5	1099	987.5	1411.1	829	1061	1140.3	1177.79	-+	1276	740	1054.4	0101
	534.1	575	1306	825	1131.29	856	967	461.09	828.8	748	1010	1043	970.6	870	R711	000	1100 2	610
	598	487	439.4	1476	1084.4	779.69	1027.1	780.8	1211.8	585.5	1479	1159.5	1522.5	9771		202	02020	300
	384	255	231	777	1022	700.29	726	753.4	585	485	1041	856	746.5	22	000	797	630.4	710
	451	909	769.5	962	741	754.6	695	516	802	670	1120	695	820	140	100	732	4.000 020 G	838
	637	413	459	826	1036	806.49	786	749	786	702	1348	0027	314.U	030	1353	831	1038.3	1115
	792	612	913.5	935	1222	1350.7	1217	1090	260L	(30	1300 011	808	746		729	495	720.2	663
	349	297	635	445	1039	10.00	1151	000	840	725.29	2077	1259.4	1497	₋	1215	1267	939.4	989
	389	475	967	/00/	1876	1170	1164	971.5	757	618	1736	1715	1261	1372	1070	1142	1020,19	1058
	100	400	1760	ARG	1912	1154	1174	1116	1760	988	1345	1448	1045	1233	1256	686	1146.89	1165
	- 100	25.4	597	146	716	350	533	398	314	1581	776	582	443	528	338	383	625.39	202
1	270 F	361	541	229	890		606.29	315	480	40	464	405	236	308	5/2	101	400,4	280
_	695	685	926	482	572		734		,	795	1213	596	935	846.5			064 MD	767
1	861	936	1092	375	933.5		661	685.5	745	201	846	809		G.CU/	C.LAC	020	801.08	1006
+	1016	1153	947.5	438	-		1102		1516		1345	9/11	1049	410	-+-	4	802.18	RER 99
1	+	620.01	777.35	838.30			893.90	867.10	930.56	904.31	1083.20	1081.70	-+	_			_	1699 50
1.	+	1502.50	1760.00	1719.00	+		2688.70		1760.00		2077.00	2582.29	-	67'6072	2000.03			389.79
		182.00		146.00		303.49	286.00		314.00	+	386.00	405.00	236.00	_		1280 90	1	1309.71
		1320.50		1573.00		1857.10	2402.70	1796.50	1446.00	<u> </u>	1691.00	R71112	-+-	_	_			277.91
1	262.28	286.69		377.92		366.93	506.81		416.10	406.15	456.44	442.09	600.88		403.04	334.14	1441.01	
	41.41	46.24	52.24	45.08	35.28	42.78	56.70	48.51	44.71	44.91	42.14	40.87	61.63	43.96	48,89	58.80	49.54	Q\$'79
														Source: Data Centre (Gandhinagar)	ita Centre (Gandhinag	ar)	

.

Annexure 5.1

					,					-																														
ſ	CD	080	115	0.04	-0.32	-0.58	044	50	0.23	0.17	-0.16	0.21	-0.28	1.0	18/	1	10.1	001	1.01	145	170	1.62	1.31	0.83	0.32	0.50	0.52	0.86	0.42	570	0.62	0.29	0.45	0.68	1.03	0.62	0.07	-0.05	-0.17	000
Antexum 1.2	b CD CD	60.05	0.1	11	0.28	0.26	0.14	120	273	0.06	0.34	80.0	-0.49	110	88.0	+	0.24	10.0	110	0.36	0.25	-0.08	0.31	-0.47	0.52	0.18	0.02	0.14	0.24	0.17	010	0.23	0.15	0.23	0.36	0.42	0.55	613	0.12	0.17
		TT	1010	1	Т	s' I	60'0-	1			-0.45	-	+	+	+	. 1.	+	+	+	a/0	+	$\left \right $	┝	-		-0.25	+	600	0.14	120	200	┞	╞	$\left \right $	0.30	_		-0.44	+	Η
	KEVADIA D CD		0,0	1	╞	1	0.50	+	.,		-0.14	1	+	4	-	+	+	╉	+	╉		╀	-	L.,	_	_	-	4	\downarrow	1	1	1	4	0,14						
	e B	H	+	-0.28	t	Ħ	Ft	2.74	19	t	-2.75	-	- 17 -	+	-+-	-+	-+	-+	+	+	t	t	-0.33	F-	5	-1	-1.65	Ť	-1.67	T	60.1-	t	-0.96	М			-0.96			0.00
	Kawant		+	+	┝		$\left \cdot \right $	4	-033	┢	Η		-+	-†	-	-†	-1	1	t	1		112	0.57	-0.61	-0.70	0.11	-0.12	0.18	0.0	-0.27	N	96 0	0.90	0.71	0.48	-0.43	-0.76	0.51	•	0.45
	udalpur CD		0.07	+	╀	$\left \right $	-0.30	+	0.15	ŀ	$\left \right $	-	τ ι τ	+		+	-	+	0.53	+	+	╀	150	╞	-	+		1.31	+	0.91	+	╀	╀	1.44	\vdash	\vdash	Н	Η	0.00	
1	Chhota uda	41	4	+	+	┢	0.16	÷	+	0.04			-0.56	+		+	+	-0.10	+	+	1.43	200	0.45	0.45	0.35	0.33	0.18		-0.28	0.11	1.14	0.74	0.26	0.11	0.31	0.65	0.71	Η	-0.38	
	\square	\mathbb{H}	+	5.5	+	∔	-0.23	4	0.86	0.75	0.61	1.03	0.75	0.04	2.37	2.95	2.93	+	2.62	7.92	/07	277	AC 6	1.69	1.30	1.05	1.12 .	1.47	1.26	96.0	850	191	1.06	1.57	1.92	1.50	0.84	Н	Ļ	ŀ
•	NASWADI D CD	+	0.08	+	+	023		+	1 02	010	-0.15	0.42	-0.27	0.19	1.43	0,59	20.0-	20.02	-0.24	020	97.70	10.04	159	-0.55	62.0	-0.24	0.07	0.35	120-	-0.30	0.02	20.0	0.75	0.51	0.35	-0.42	0.66	-0.07	-0.22	-0.54
	PUR PAVI	†	4	•	. .	.		•	•		ł	9 0.46	H	4 0.14	1.16	3 1.78	-	8 1.62	6 1.46	1.90	2 1.36	70'n 7	7 0 77	t	64 -0.46	1 -0.25	Η	6 0,30	3 0.07	900	6 - 4.15	0.01		120	7 1.27	5 0.72	6 -0.04	4 -0.05	•	0.00
	1413r	Τŀ	, 2			0	36 .	. 2			┝	16 0.46	\mathbb{H}	16 -0.14			9 0.02	-	5	3 0.4		+	0 + 0 42	+	9	Η	Н	-	+	9 -0.16	2 1 0.0		30 0	6 02	0.0	4 0.5	1 -0.7	7 -0.0	. 60	0.08
	TILAKWADA	+	+	+	+	╀	4 -1.86	-+	4 -1.19	╀	9.6	0	\square		6 0.93	-	-		-	+	+	+	2.20	+-	┝	-		7 1.15		+	6 0.75	20.0		0	4 1.7	6 1.2	3 0.6	5	50	0000
		-0.34		+	+	╀	Н	+	0.54	+	0	2 0.4		5 0,42	-	-	_	1 0,12	-	-	+	+	0.0	+	0	6 0.05	3 -0.0	7 0.0	9	7 -0.36	0			2 0 0	1 0.3	0	20.0	Q D	4	0.09
idy Area	SANKHEDA	+		0.12	+	+	+	-	1.16	+		┝	\vdash	-			-			-	3 -0.44	+	+	╀	-23	2.2	7 -2.3	-1.97	4 -2.0	1.1.9	11	88.0	╉	+-	╀	643	╞	£0.03		+
ige Station Located in the Study Area		+	-	+	+	+	╞		0.15	+	5E.0- 1 4	┞		_	-	-	-	_	-	4 0.36	+	+	1.0	+	┝		-	5 0.37	B -0.0	2 0.0	0 0.2	8.0		76'0 b	8 1 0.24	102	-02	5 0.12	Ľ	ł
ocated h	SINOK		+	+	+	+	-	H	10 0 21	+	+	┝	\square	\vdash	ŀ	-	-	12 2.76			+	62 3.48	75.6 50	+	0.65 2.65	-	-	.35 2.05	-0.46 1.5	.26 1.3	22 1.1	50 21	30 10	00 + 00		75 09	56 0.3	12 0.2	0.45 -0.1	10 0 00
itation L	\mathbb{H}		90.0	-,	-	-			71.0 1 0.17	1	1	1-	0 09		, _	0, 13 0.	1.23 0.	0.19 0.	0.06 -0	0.80	0.38	0.61	0.16	T	4 54 4	+	9.16	t			0, 18	+	╉	+	-0 th	+	1.25 -0	φ ,	╀	0 82
s abenbi		-	30.0-	-0.25	133		0.31	-0.19	0.23	200	-0.7B	0.44	0.50	60.0-	0.83	0.13	0.10	-1.05	-0.24	0.61		0.04	3	100	140	0.52	-0.11	5 1		-0.14	-0.16	210	020	2 9	0.80	A RE			-0.20	
Departure and Cumulative Departure from Mean Annual Rainfall of Raingua	WAGHODIYA			5 -0.11						20.0		8 0.02						6 0.95	4 1.44				3 0.90	+	1 15	+	+	0 0.49	3 0.36		4 -0.05	+	-+-	-+	+	+	+	+	+	10.0
ll Rainfa	HT.	а 3	0.01 -0.1	0.23 0.05	0.0 0.00	-0-101-0-1	0.47	2.0- 36.0-	. 0.67	-	1 48 0.2	1.34 0.6	1.72 0.5	0.77 0.0	1.24 1.4	2.48 0.3	2.61 0.7	2.32 0.0	2.15 0.4	2.17 0.3	1.85 -0.1	1.97 0.1	1.69 -0.3		0 14 -0.61	0.37 0.1	0.45 -0.4	0,60 -0.1	0.41 -0.1	0.19 -0.4	0.07 -0.1	0.43 0.2	0.03 0.2	0.82 0.13	0 0 0 0 0 0	10. 123 0	0.21 -0.6	0.03 0.4		
n Annua	SA!	<u>ه</u> .	18 0.01	01 0.22	03 -0.19	54 D 60	32 0.08	67 -0.49	•	·	0.50	0.14	0.13 1-0.37	17 0.95	39 2.01	17.1 1	9 0.13	10,29	11 -0.18	36 0.02	1 -0.31	1 0.12	4 -0.29	990		6 0.23	6 0.08	7 0.15	02 -0.19	14 -0.22	20 -0.12	19C 0 96	6E-0- Z	1 0 10 10 0 10 0	10 31	1000 31	20.00	08 -0.18	-0.26	0.77
rom Mea	VADODARA	0.0	-0.20	0.17			0.22	-0.35 -0	0.26	1 70 1	950	0.23 0.	-0.65 0.	-0.15 0.1	1.02 5.(0.25 1.	0.25 1.5	-0.28 1.	0.10 1.4	-0.06 1.:	0.25 1.	0.61	0.18	0.00	0 22 0	0.17 0.2	0.00	0.09 0.0-	0.18 0	-0.12 -0.	-0.06	0.57 0.	-0.26 0.	010 30 0	0.35 1.1	1011	-	-	-0.06	··· •
oarture fi	KARJAN	0.14 0.14 21 521 007 0	3 -0.44	9 -0.62	9 -0.46	1 1 1 1	26.0- 6	5 1.40	2 -1.43	90'- 6	121	191-2	6 -2.31	7 -2.25	2 -1.83	8 -1.35	1 -1.08	1 -0.76	4 -0.72	2 -0.75	0.65	9-0.49	3 0.62	107- 0	000	1 -1 91	1.73	1.59	7 -1.52	2 -1.74	3 -1.66	1.38	621-6	202	140	920	020	010) ç	2000
tive Dep	RA K	0.14	0.35 -0.2	0.98 -0.1	1.01 1.1	1.13 -0.3	1.82 0.0	1.60 -0.4	1.90 -0.0	F'D 267	2 2 1 2 2	321 -0.0	2.590.7	2.67 0.0	3.36 0.4	377 04	4.26 0.2	4.30 0.3	4.61 0.0-	4.50 -0.0	4.30 -0.1	4.80 0.3	4.45 0.1	10 01 0	2 0 0 0 C	3.19 0.1	3.18 0.1	3.94 0.1	3.86 0.0	4.01 -0.2	4.00 0.01	4.11 0.2	3.64 0.09	10.0- 0.05	101 101	2 10 01 0	146 0.0	1 03 -0.40	0.48 -0.0	
l Cumula	H PADRA	0.14	21 0.21	26 0.62	0.79	2 1 1 1 2 1	3 0.14	7 -0.22	0 0.30		10 V.33	070 0	56 10.63	78 0.08	02.0 0	75 0.41	78 0.49	0.0 10	50 0.31	-0.11	-0.20	74 0.50	36 -0.34	222	120 02	57 0.21	1 -0.02	12 0.76	13 -0.07	14 0.15	54 -0.01	37 0.12	55 -0.47	5		5	24	0.43	-0.55	94.0
ture and	ARUC	83 · 0	-3.21 -0.	0.15 -0.1	0.66 0.6	0 22.0	0.01 0.	0.04 0.1	0.17 0.0	0.85 0.6	10 32 0-	0 11 0 1	-1.85 -0.1	-0.12 -0.	-0.72 -1	-0.26 -1.	-0.02 1-1	0.24 -2/	-0.49 -2.		,	-0.23 -2	-6 22 -2	2 24 0	1 26.0	1.15 -0.	0.68 0.0	-0.43 -0.	-0.70	0.01 1.	-0.41 -1.	0.18 -1.	-0.18 -1.1	- 041- CNU- 670- 6	1 2 1	20.0		-1 37 0 19 -0.63	0.40 -0.	10 000
Depar	VAGRA	g .	33 -0.53	37 0.04	18 0.52	000 00	25 0.68	Q4 0.64	0 0.74	21.2 7.0	47 1 5.13	1 80	40 . 49	1.95	19 2.74	20 2.94	24 3.17	08 3.09	27 2.83	26 3.09	30 2.79	51 3.40	04 3.36	10.2 01	1 4 7.01	11.17	07 1.70	21 1.49	59 0.90	02 0.87	33 0.54	01 0.53	52 0.91	C2 -0.20	110	19	37 - CP	0 137	-0.86	007 90
	H	0.03	-0.39 -0	-0.23 0.	0.67 0.	0 15 0	0.34 0.	0.08 -0.	0.31 0.		201	1 78 0	1.25 -0.	1.82 0.	2.50 0.	2.68 0.	2.83 0.	3.32 -0.	3.16 -0.	3.57 0.	331 -0.	3.74 0.	3.41 -0	202	1 20 00	1.50 0.	1.34 -0	1.29 0.	0.89 0.0	0.60 -0.	0.61 -0.	0.86	0.41 -0.	0.70 0.13 -0.23	10 100		2 20 2	0 96 0	0.000	0.00
	H		0.20 0.36	0.16	16.0	14 -U.44	6 0.20	11 -0.26	55 0.23	0.0	0.00	1 0.35	1 -0.53	13 0.56	7 0.68	0 0.18	3 0.15	7 0.49	6 -0.16	0 0.41	8 -0.26	4 0.43	6 -0.33	10070-1-20	100	7 -0.16	1 -0.16	1 -0.06	0.09	3 -0.29	10.01	M 0.25	10.45	BF 1- 11	0.00	1 0 20	A 10 66	7 0 10	4 0.36	000
		5	ę	0		56	0 43 0.7	0.34 0.4	0.14 0.5	0.44	20 C 20 C	0 22 06	0.60 0.0	0.02 0.0	0.84 0.8	0.23 1.1	0.13 1.2	-0.06 1.1	8.1 95.0	-0.06 1.5	-0.02 1.4	0.65 2.1	-0.38 1.7	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 103 0	0.32 0.7	045 1.2	0.23 1.4	-0.11 1.3	-0.10 1.2	0.29 1.5	0.53 2.0	-0.21 1.8	1936 -0.3/1 1.4/ -0.3/ 1.0/2 -0.3/	0.01	0.0 0.0		131 00	00 000	
	YEAR	1961	1962	1963	1961		1967	1968	1969	0/61	1021	1073	1974	1975	1976		1978	1979	1980	1981	1982	1983	1984	2021	1001	1988	1989	1990	1991	1992	1993	1994	1995	1996	1001	1220	SCE1	2004	2002	2002

s ₋	قّ 			4	_		-		1 14.1	6 15.3	18.7			2 24.9		_	_	_	_	_	_	4	_	_	00.0	-	_				_	_	-	_		_			_			51.0	3 75.8
	Decadal Avg.	_	-+	-	-	-	_		18.2 15.1	12.1 10.6	8.7 7.3		-		15.6 16.0				19.1 17.2	-	-		+	+	0.6 7.71	+	+	11.0 9.4	6.7 5.1	10.3 7.4	-		-+	_	-+	-	_			9.8 11.3	9.6 7.9	6.8 4.3	10.8 8.3
· -		╧┥	_	6.88 1		j	_	2.00 5		10.85 1:	~		13.20	- 5		- 2			_	_	_	10.83	_	_	1 01./	+	+	<u> </u>	4.48 6		_			_	_	19.83 2		_	0.59 2			_	9.57 11
	2003			12.05 6	-+	6.28 3		5.30 2	;	-			3 95 13	•	;	-	11.08 8	_		+	7.05 1	<u>=</u> 	1		12.50	- 00 -	+-		1	;						25.78 19	1		1.58 0			7.26 3	-
	1	Nov	6.43					2.80	1	12.08	,		13.09 1	-	-	1	9.24 1	-				19.50				00.5	. 	+	7.98	 i	•					22.13 2	•	-	0.96	1	7.40	4.77	11 78
	2002	May	6.15	;	ار ا	5.92	1	4.86	1	,	,	8.26	17.20	•	1	1	11.38	•	17.10		10.40	18.95	1		-+-	26.0	7.60	1	7.89	11.23	1		18.30	19.15		24.83	,	'	0.62	1	9.23	1	12 54
	2001	Nov .	6.85	;	-		16.35	2.30	1	10.15	12.35	L	15.60	•	ł	1	9.88	18.80				16.20	_ 1	1		24.0	0.45	10.65	6.83	-					_	20.13	1	,	1.23	1	10.23		11 48
	5			5 12.82			0 18.00	5.60	:	,			0 16.90	•	1	1	0 10.60	•	0 17.60		10.55	Ļ				0.50	+	+	1	1	10.15			5 20.00		3 25.53	•	1	2.89	8.75	11.28	+	12 02
	2000	y Nov	h	12.05			18.10		}	0 11.80		0 6.70	0 13.80	,	1		0 10.10	0 22.10	0 17.80			14.92			_	CU.8 0			5 7.82	;		17.00		5 18.75		3 22.63	۰	1	1.07		0 8.92	!	0 0 0 0
	_	Nov May	6.95 7.10	1			16.20 15.02			11.05 13.10		6.10 11.20	12.30 16.50	, ,	. I 	05	10.20 10.80	17.00 22.00	17.60 18.10	12.30 13.35	05 12.10	13.35				20.2 0/		+	17 7.25	-	90 9.20	11.23 -		05 18.85	0 23.00	63 23.73	20 -	- 09		-	02.6 00		10 201 14
	1999	May No		10.33		5:60 4.00	16.35 16.		┢	11.90 11.		9.80 6.1	12.00 12.		10	25.48 26.05	10.40 10.	17.35 17.		11.20 12.					-+	N.C CC.C	+		+	9.22	7.85 7.90	7.55 11.		17.70 8.95	9.30 9.10	21.56 20.63		12.30 11.60	1.	- 06.11	8.68 8.00	 	-
		Nov M		8.90 10		9.02 5:		1.	+	-f	+	+	10-01	1	16.151 10.18	25.46 25	10.00 10	10.60 17						+					-	7.97 9.	0.60 7.	5.00 7.	7.15 12	14.82 17	5.10 9.	16.16 21	1	7.40 12		11.40 11		3.57 5.	°
gar)	1998	May	 	8.68 8	6.53 5	10.30 9	16.50 1		1			1		17.83 16	15.41 10		11.73 10		17.65 1	10.97 7		13.01 8		í.	-+	2.10			1	+	7.76 0	7.65 5		17.93 14	6.75 5	21.64 16	1	10.80 7	1	+	+	+-	<u></u>
Source: GWRDC, Gandhinagar)	1	Nov				12.80 1	£		+			3	12.36 1			26.80 2		11.90 1	1	8.35 1					-+	-	02.0			+	3.80			17.85 1	1	20.63 2				+	<u>i</u>	1	⊢
C, Gai	1997	May	7.46	11.73	9.75	11.34	16.80		18.30	12.35	9.45		15.55	20.96	16.18	29.50	11.75	18.17	18.25	13.20	7.05				11.45	6.25	10.85	11.47	6.04	10.20	7.87	13.10		19.20	10.30	21.93	18.90	12.80		9.35			
GWRL	1996	Nov	£1	8.75	9.75	11.70	15.60	4	1			Ł				29.ju			16.80					3.20	. L.	_	0.75		Ł	1.	1.72	1	00'6	18.10	6.95	19.81		3.55		10.68		1 ·	
source:	-	/ May	1. 1	0 11.95	0 9.75	0.01 8	0 15.95	6.30		7 12.05	9.45	11.15	5 15.50	6 21.16	8 15.63	0 27.60	8 12.93	5 21.20	0 20.90	17 14.15	0 7.25	13.85			_	5 9.15		11.50		1-	+	5 11.51		70 19.55	5 18.05	0 23.73	75, 19.90	55	6 2.58	+-	6 10.35	+	1-
-	1995	Nov Nov	2 5.71	10.85 9.40	8 0.00	6 (TO - 0	85 14.3	0 3.72	78 16.3	11.55 10.4	0 6.90	0 8.40	55 14.5	01 17.8	1.6.1	05 29.5	28 12.2	75 17.5	20.55 20.70	20 13.1	5 6.10	97 0.00	Ē	2 5.40	-		00.0	75 9.20	4.50	93	5.3	7.5	ų.	17	8.6	93 17.80	18.	Ξ	12		102	4	0
Study		Nov May		9.04 10.	5.60 8.48	96.6 1.00.	12.97 14.85	1.50 3.60		9.25 11		<u> </u>		15.60 19.01	16.18	6.03 27.05	12.40 12.28	11.37 17.75	16.60 20.	10.60 13.20	2.85 7.15	10.35 13.97					CP./ CC.C	8.20 10.75		- 13.80	1.80 8.75	5.28 10.84	10.90 15.69	18.70 19.20	8.43 10.85	17.93 23.93	16.80 18.90	9.92 14.20	0.95 2.34	+	7.75 9.42	+	÷
on the	, 994	May N		11.8 9.	8.1 5.	11.6 11	1-	1	1	11.8 9	+	1	1	\square	1	\mathbf{t}	+-	t	1-	1	7.4 2.		++	-+	+	+	0 2 0 0.0	+	1	1-	9.4 1.	11.8 5.	16.9 10	19.3 18	12.3 8.	22.4 17	+	- 9	2.8 0.	F	1-	+	t
Data fr		Nov M	$\left \cdot \right $	10.32 1	6.40 8	11.10 1	ļ	1_	-	+	+-	┿	-	 	+	 	4_	15.80 2	-	 				5.30 8		+	0 561	+	+	4.00	 	_	12.62 1	<u> </u>	 		–	13.50	 	+	1	-	╀
tuation	1993		+		-		\vdash	+	┝	+	+		÷	+	+	+	+	┢	+	┢─	$\left - \right $				+	+	+-	+-	+-			12 5.92	┝		+	78 20.01		<u> </u>	┢	┢	+	┼	+
el Fluc		May		11.90	8.00	12.40	16.65	4.68		12.10	X.70	\vdash	+	21.56	15.40	28.06	15.28	22.08	21.23	16.80	7.15	16.66	1	11.02	10.01	7.70	10.1%	┽	+		-	11.42	16.81	1_	L	22.78	19.80		3.16		9.34	L.,	Ļ
Vater Lev		vinage	Bhadkodra-	Dahegam	Kalak	Kavi	Sarod	Tankaria	Amod	Varra	Bharuch	Sankhwad	Chansad	Amla	Masor	Asoi	Atladara	Sokhda	Dashrath	Vameme	Bapod	Tundav	Gothada	Rasulpur	Vadala	Jarod	Uoraj Vandha	Rhanivara	Saidal	Karamasiya	Amreshwar	Vega	Chhatral	Dharampuri	Sathod	Sinor	Sänkheda	Manirol	Bodeli	Makni	Alladour	Govindpura	Dide
Seasoanal Water Level Fluctuation Data from the Study Area		I MUKA				Jarrychar	•		Amod	Vian		10 Eharuch	-	· • •	Padra				Vadodara				Cerdi					Vaghodia					Dabhoi.	-		Sinor				Sankheda			-

¢

Elevation	(m)	46.3	49.2	66.8	110.1	107.8	1.66	151.1	132.5	87.8	115.3	99.5	117.9	260.7	129.!	103.7	- 6 9	129.6	113.4	69,8	72.1	225.3	91.4	167.2	199.0	127.6	222.2	167.2	197.8	168.3	176.1	261.1	162.2	151.3	345.7
l Avg.	Nov	, 10.2	28.2	15.0	6.4	3.2	4.6	6.4	. 6.1	4.2	5.3	6.5	4.5	4.0	6.2	6.6	8.2	5.7	4.6	5.8	5.5	3.6	6.4	9.1	9.8	5.9	3.7	80,00	.5.5	6.0	10.8	5.5	: 8.6'!	4.8	5.8
Decadal	May	いたい	30.1	16.1	7.9	4.4	5.4	10.3	.6.6	7.2	8.4	9.7	4.8	7.3	8.6	3.4	9.8	9.3	6.9	7.1	6.1	5.5	8.0	11.5	11.3	8.3	6.1	11.3	7.6	10.3	12.5	7.2.	12.2	7.1	10.6
	2	24.22	,	17.90	3.38	2.98	4.19	5.38	6.65	2.70	5.90	6.10	,	2.90	5.50	7.40	6.28	3.00	3.96	5.65	5.30	2.70	4.25	8.45	9.30	4.19	3.00	6.50	4.90	3.12	,	;	5.70	4.30	4.60
2003	·····	<u> </u>			8.81	6.13	1	 .	•	3		10.65		5.90	۰	•	10.13	9.07	9.03	9.50	-		9.17	1	1	9.65	6.60	4	8.10	15.18	1	:	13.70	9.60	9.92
02	ļ	31.67			6.85	4.35	5.01	10.18	7.09	5.Ì0	- 1	8.38		3.40	•	•	10.30	7.23	4.80	5.70	5.40	6.70	7.40	11.44	1	7.95	4.46	11.75	6.58	6.88	12.10	1	8.75	4.80	9.03
2002	May		,	,	7.34	1	;	12.95	8.05		8.75	10.70	4	7.35	,	•	10.68		5.97	7.35	8.10	6.70	10.38	12.50	1	8.82	6.95	1	8.73	8.07	13.13	;	12.82	8.35	9.85
2001	Nov				10.26	+	7.21	8.63	6.35	6.10	7.50		-	3.50	5.50	8.70	_	1	5.03		5,60	3.20		11.03	10.95	7.30	4.60		6.50	6.58	11.65	6.38	7.80	5.80	
1 21	May	+	-		9.54	+	+		8.05	,		0 10.75		8:70	•		10.70	_	:	5.30	7.30	1	10.20		1	ł	8.50	0 12.82	9.10	1	1	1	0 13.10	8.88	
2000	VON V	130.93			0. 8.15	÷		3 12.03	<u>.</u>	01.4.			_	9 8.30	•	7.70	1		 	+	<u> </u>		6 8.85	0 11.18	0	9.64	8.40	0 12.70	7.70	0 14.45	5 13.21	1 6.65	L	+	
	v May	÷	06.03 090		4 8 60	+	4	3 12.53		0 5.50				0 8.70		-	3 10.48	+		+	÷	+	3 9.85	0 12.20	7 10.90	1 9.10	0 8.40	0 12.80	0 8.45	5 16.30	5 12.75	; 	0 14.70	0 9.25	+
1999	V Nov	_				+	+	+-	+	i —	0 6.00		-		1	00.6	+	+	+	1	 			25 10.70	2 11.17	2 9.41	0 5.10	0 8.30	0 6.80	9 8.05	11.85	+	50 10.10		
	v May		10 30.50			+	+	+	+	+			-	0 6.85	5 9.20	+	6 8.51	+	+	+	-	<u> </u>	7 6.15	0 11.25	1 11.22	8 8.72	5 5.60	5 9.80	2 6.10	5 8.49	00 12.05	0 8.53		+	+
1998	May Nov			13.85 13.00	36 5 80	+	+	+	+	<u> </u>	10 1.80	8.10 4.40	87 2.46	4.55 3.50	75 5.35	+	+	+	╈	┿	–	 	7.10 4.57		11.00 9.51	52 4.08	94 2.55	11.28 7.15	95 3.62	43 4.25	12.41 10.00	53 5.10	+		+-
-	Nov M	+-	1			+	+-		+	+	3.15 6.10	6.35 8.	5.56 2.87		+	+	1.	-	+	+	+	<u> </u>		<u> </u>	-	4.60 8.52	2.65 4.94	7.85 11	4.95 6.95	5.30 9.43	10.75 12	+	+	+	
1997	Mav	1				1	+-	+	+	<u> </u>		9.35 6	4.16 5			+	+	+	+-	+	+	+	ł		10.93 9	1	5.00 2	11.00 7	6.90 4	9.17 5	13.85 10	-	+	1	9.57 4
9	ò	+.	_		_	+	+	+-	+	╂──	<u> </u>	S.77 9	4.41	3.10	 	+	+	+	+	+	┝		┼──	÷	t	4.10	1.70	7.15 1	4.20 (+	+	+	_	+
1996	Mav	-			-	+	+	- - -		7.45	╂──		6.51	1	⊢	+	+-	+	+	6.75	+	┾╌	<u> </u>	<u> </u>	1	8.42	5.50	11.10	7.45	_	<u> </u>	<u> </u>	+		+
1995	Nov	100 2	28.90	15 40	8 46	2 5 8	4 56	6 28	5.35	4.22	4.57	6.90	4,16	3.95	6.00	4.80	7.95	6.53	5.22	5.70	5.08	2.85	4.70	8.86	10.00	5.28	2.50	8.80	5.65	5.48	10.27	5.01	8.00	3.50	5.67
10	Mav	-					4 40	_	4	6.20	5.70	8.90	.4.00		+	8.50	9.62	9.32	5.93	6.50	5.50	5.10	7,28	11.13	11.18	7.35	4.75	10.75	6.80	10.00	11.85	6.32	10.80	5.05	
7001	Nov	T -	+	-	2 84	5 6	2 41	172	5.88	1.93	2.40	5.82	3.89	.3,00	5.63	3.77	7.26	3.35	1 99	5.50	5.30	2.75	6.68	6.85	8.72	3.50	2.70	6.18	4.12	3.37	10.6	4.80	7.55	4 50	3.06
10	Mav		30.0	17.8	2-1-	4.5		001	6.9	8.3	10.5	10.2	5.0	7.3	1.6	8.5	10.9	8.6	2.5	7.3	6.0	5.3	8.2	11.2	11.0	8.0	5.5	11.5	7.5	9.0	12.1	6.7	0.11.0	55	11.7
1	Nov	7 6.0	30.10	15 40	\$ 08	1 44	4.63	6.48	6.16	4.58	. 4.57	6.45	4.76	3.78	6.15	5.65	8 36	5 13	61 P	6.80	5.52	2.98	7.00	8.76	9.88	4.63	2.95	9.00	5.58	4.10	10.03	4.65	7.50	\$ 00	8.10
1001	Mav		30.47	17 60	8 55	84.6	15 2	10.73	6.81	7.85	10.30	10.15	4.94	8.60	8.58	8 75		9 58	6 04	8.40	5.88	5.28	6.69	11.11	10.90	7.50	5.20	11.07	7.40	9.22	11.79	+		6 20	11.78
	Villag.	P, tietha	1 Itavli	Namaria	Debugal	Davi	Suckal	Rar	Gutanwad	Labugam	1 (1 m m m	Karali	Uchapan	Duedha	Sarinani	Tanakhla	Vadiva	Senonur	Wenhach	Navanara	Chhindianura	Survani	Ferkuva	Joih	Chisadia	Asala	Ambala	Zoz	Kevdi	Panwad	Baladeam	Vaeudan	Dungaroam	Nalvant	Raisinepura
	Taluka		Tilstwada						- Jetnur Paví	•		1			-		Nasvadi	· ·	- -		Nandod	· · · · · · · · · · · · · · · · · · ·		.	.	Chhotaudepur Asala			.		-		Kav	 -	<u> </u>
0	Ż			t ž		1		\$ Q	5	5	52	53	54	55	95		22	\$ \$	3	3 3	8	3	64	65	8	19	68	69	2	1.7.	192		24		24

Summary of the Thesis Entitled

APPLIED HYDROGEOLOGICAL STUDIES ON THE ALLUVIAL DEPOSITS BETWEEN LOWER REACHES OF MAHI AND NARMADA RIVERS, GUJARAT

Submitted to

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

For The Degree of

Doctor of Philosophy in Geology

by

SUMIT TRILOKCHANDRA DABRAL

Department of Geology Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara – 390 002

October, 2009

INTRODUCTION

Development of any area to a large extent depends upon the utilizable water resources present and its development potential. Rapid pace of industrial and agricultural development coupled with population growth has necessitated to look in the intricacies of hydrogeological regime with a view to reexamine the role of natural processes that affect the natural water resources in terms of quality and quantity. Further, to explore the possibilities of tapping deeper water resources and aspects of conjunctive use.

The Study Area:

The Gujarat state is bestowed with a wide variation of geo-environmental conditions. Its rock formation, from present day to 2500 million years displays wide variety of rock types. Out of the state's total area of about 1,96,000 km², nearly 80,000 km² (~40%) is covered by hard rocks and about 82,000 km² (~60%) is occupied by alluvial plain (Merh, 1995). Groundwater in the state occurs in all geological formations. The unconsolidated and semi-consolidated formations being porous and permeable constitute ideal repositories of groundwater. Whereas in hard rock (consolidated formations the occurrence of groundwater is restricted within the weathered and fractured zones.

The study area constitutes a part of Mahi - Narmada interstream (Doab) region. It has a distinct physiographic boundary and is bordered by the Gulf of Cambay in the West, the rocky uplands in the East, Mahi River in the North and Narmada River in the South and sprawl in about 11,000 sq km. The area lies between 72° 30' E and 73° 43' E longitudes and 21° 40' N and 22° 53' N latitudes, falling in 46/ B, C, F G, J & K topographic sheets of the Survey of India. The alluvial tract being part of "Gujarat alluvial plains" comprises huge thickness of marine, fluvial and aeolian sediments deposited during the Quaternary period. These sediments consists of intercalations of sand, silt, clay and gravel fractions with the perceived development of clacretised bands. These unconsolidated sediments and serve as repository for groundwater in unconfined, semi-confined and confined conditions. The Eastern part of the study area is covered by hard rocks consisting of Deccan Trap, Granite, Gneiss, Quartzite, Phyllite, Slate, Schist, Marble, Sandstone, Dolomite and Limestone.

1

Objective and Scope:

The study aims at carrying out an in-depth study on hydrogeological aspects of Mahi-Narmada Interstream area with the following defined objectives:

- 1. To work out the various hydrogeological environs through understanding the role of quaternary processes.
- 2. Hydrogeochemical study of the groundwater with special reference to seasonal changes in ionic content and its characterization in terms of potability and toxicity.
- 3. Isotopic study of the groundwater delineates the regions of groundwater recharge and its pattern.
- 4. To work out various geochemical facies, to identify groundwater characteristics and source (recharge) area.
- 5. To envisage water resource management model through identified ground water recharge sites using Remote Sensing and Geographical Information System (RS & GIS) techniques.

Approach and Methodology:

To achieve the above cited objectives a multi - disciplinary approach has been adopted. The envisaged methodology has dealt with following aspects.

- 1. Geological Framework:
- Physiographically the study area constitutes a part of Mainland Gujarat. This area is geologically represented by the rocks of Precambrain Crystallines, sedimentaries of Cretaceous, Deccan Traps and Sedimentary formations of Tertiary and Quaternary periods. The Cambay Graben is one of the three major marginal rift basins in the western margin of the Indian Craton and situated in Gujarat (Biswas, 1982). Mesozoic rocks and Deccan basalts in the Cambay basin forms the floor over which Cenozoic sediments have been deposited. The thickness of Quaternary and Tertiary sediments tends to varies in Cambay basin. The Eastern Cambay Basin Bounding Fault extends almost N-S across the middle of the Mainland broadly separating the Quaternary deposits from older rocks. The structure is reflected in the topography which typically shows progressive stepping down from south to north along E-W faults and from east to west along N-S faults (Maurya et al., 2000).

2

2. Field work and Geochemical Analysis:

The prime objective of the study was to work out various hydrogeochemical environs of groundwater. This was achieved through groundwater sampling on seasonal basis. For this entire area was divided into 10 x 10 km grid. From the grid, center point was picked up as the nodal village for water sample collection. From each village one open well sample, one hand pump sample (considering it as a shallow aquifer) and one tube well (considering it as a deeper aquifer) sample was collected for pre and post monsoon seasons. The water samples were collected for a period of two years i.e. pre- monsoon period of the year 2002 to post monsoon period of the year 2003. Details on groundwater sampling is given in Table No-1

Sr. No.	Season	Total No of samples collected	Identified objectives	Remark
1	June 2002	52	Major Cations and Anions	Samples from Bore
2	Oct-Nov 2002	145	Major Cations and Anions and Isotope ¹	well, Hand pump and open well collected
3	May-June 2003	101	Major Cations, Anions and Trace elements ²	mainly from open area and agricultural field
4	Oct-Nov 2003	101	Major Cations, Anions and Trace elements ³	· · · · · · · · · · · · · · · · · · ·

Table-1 Pattern of Groundwater Sampling in Study Area.

For isotope samples analysed at PRL, Ahmedabad

For Trace elements samples analysed at NGRI, Hyderabad

For Trace elements samples analysed in RSIC at IIT Powai

- Representative water samples were collected from in air tight, high density polyethylene bottles (HDPE); each bottle was previously washed with diluted hydrochloric acid and distilled water.
- For isotopic measurements, 15ml glass bottles were used to collect water samples. Moreover, for trace element analysis 100ml high density polyethylene air tight bottles were used for groundwater sample collection. These bottles were also previously rinsed with distilled water and diluted hydrochloric acid to minimize contamination.
- Infield measurements of parameters like temperature, electrical conductivity (EC, μS/cm at 25°C), Total Dissolved Salt (TDS) and pH were carried out using portable field measurement instruments. The analysis was carried out as prescribed in the manual

3

'Standard Methods for the Examinations of the Water and Waste Water, 20th edition'. The chemical parameter like alkalinity, total hardness, calcium hardness, magnesium hardness, chloride was done with titration method. Major cations like Na⁺⁺, Ca⁺⁺, K⁺ were analyzed with systronics 128-Flame Photometer. While parameter like sulfate, nitrate and fluorite were analyzed with UV- Spectrophotometer. Trace element analysis was done in ICP-MS and ICP-AES while isotope analysis was done at PRL. Oxygen isotopic analyses were done using a Stable Isotope Ratio Mass Spectrometer (GEO 2020, PDZ Europa U.K.) with automatic water equilibration system.

3. Preparation of Thematic Maps:

Various thematic maps viz. Geology, drainage basin, hydrogeomorphological, slope, Digital Elevation Model (DEM), Landuse, cross-section profiles, water table contour map, geochemical maps, contour maps of variable geochemical parameters like pH, Total Dissolved Solids, Electrical conductivity, Chloride, Nitrate, Sulphate, Fluoride, Trace element and oxygen isotope etc were prepared using SOI topographic sheets (on 1:250,000 and 1:50,000 scale), satellite imageries, administrative maps, secondary data like scientific publications, government reports and information available on internet. Maps of pre and post monsoon have been developed and compared on GIS environment. For working out secular changes on groundwater regime, GWRDC and CGWB data have been used.

4. Remote Sensing and GIS:

In the present study, integrated remote sensing and GIS techniques have been used to generate groundwater potential map and prediction of recharge zones in the study area. Various information like geology, geomorphology, soil, structures, landcover/landuse, and other relevant information have been extracted from satellite data, Survey of India (SOI) topographical sheet and aided by field checks. Spatial information of groundwater chemistry water table conditions, rainfall data have also been considered to prepare various thematic maps and subsequent analysis. Coral Draw-12 and AutoCad 2004 for map drawing, Plotchem for geochemical analysis, Arc GIS-8.6 for GIS and ERDAS Imagine 8.6 software were used for generating thematic maps. All the thematic information layers have been digitized and analyzed in GIS environment to derive composite maps for identifying suitable zones for construction of artificial recharge

structures. Based on the study prima facie it appears that the eastern parts of the study area are the potential zones of groundwater recharge.

Results and Discussion:

Hydrogeomorphology Characterization

In order to study the subsurface geology of the Quaternary sequence some of the available bore holes logs were studied in greater detail. The central and western part consists of Quaternary deposits having intercalated sediments of sand, silt and clay, which host the aquifers mainly in semi-confined and unconfined conditions and at few places in confined state. Well lithologs of eastern part were also studied to know the rock type and depth of weathering.

Hydrogeochemistry

Chemical hydro geological investigation has been carried out with a view to characterize groundwater for its domestic and irrigation suitability. The average range of constituent ions in groundwater samples of pre and post monsoon periods indicate minute but noticeable change in their ionic content. The average difference indicate an overall decrease in pH, TDS, Ca, Mg and Sulphate whereas increase in total hardness, chloride and nitrate concentration from pre to post monsoon season. The pH level of the ground water fall in alkaline field and most of them are well within the range. Categorizing water in accordance with the drinking water standards has established that majority of samples have either one or two constituents in higher concentration making it unfit for drinking. δ^{18} O isotopic concentration of groundwater sample shows considerable variation in stable isotopic values ranging between -3.16 to 1.06‰. Pieper's Trilinear plot has been used to determine the genetic classification of water. Overall ground water facies in the study area is Na-Mg-Ca-K: SO₄-Cl-4CO₃ type. The Gibb's plots indicate that evaporation is a main geochemical process occurring in the study area which is trending towards rock water interaction.

The correlation coefficient among various chemical variables shows pH –ve correlation with most of the parameters except alkalinity. The correlation between the Ec and other parameters is significantly positive except K; TDS, Na, Ca is strongly co-relatable with most of the variables except alkalinity; alkalinity is slightly negative correlatable with Mg, K, and TH, whereas

significant with Ec and slightly correlatable with other parameters. Cl is significant with Ec, TDS, Na and Ca while slightly negative with pH, alkalinity; SO_4 is significant with Ec, TDS, Na, and Ca while negative with pH.

Therefore, overall groundwater quality tends to deteriorate from eastern hilly zone to western coastal plains which follow the ground water gradient direction.

Groundwater Behaviour and Resource Potential

The study area receives rainfall due to SW monsoon and is limited to the period between June to September. The period is further extended upto November due to retreating monsoon. The rainfall data for 42 years i.e. from 1961 to 2003 from 18 rain gauge stations located within the study area is used. The average rainfall for the study area stands at 858.99 mm.

The water levels from the year 1993-2003 for nearly 76 wells have been studied for its pre and post monsoon fluctuations. The fluctuation values were compared with the corresponding rainfall to deduce the sensitivity of the aquifer to rainfall. As the recharge to the aquifers is rainfall dependent, overall water levels are lowest in the month of May (Pre-monsoon) whereas higher in November (Post-monsoon). In order to develop clear understanding of seasonal behavior of water levels for litho-specific aquifers, the author has constructed observation well hydrographs by considering 1993-2003 pre and post monsoon water levels. Almost all well hydrographs show strong correlation with the rainfall input.

The groundwater resource potential assessment for any area is carried out using standard approaches that utilizes mainly replenishable component of recharge on annual basis. There exits several approaches for evaluation of groundwater recharge which in turn depends upon the factors influencing infiltration variables and their attributes. The author, for estimation of groundwater recharge has adopted Water Level Fluctuation and Specific Yield Approach and Rainfall –Recharge empirical methods as suggested by different workers. The groundwater recharge estimated by various approaches is summarized in table given below.

Sr No.	Approach	Rock Type	Area (km²)	Percentage Normal Rainfall (859mm)	Recharge (MCM)	Total Recharge (MCM)
1	G'water over Exploitation	Alluvial	7488.194	20	1286.472	1597
1	Committee	Hard Rock	3613.297	10	310.382	1377
2	Sulthiin	Alluvial	7488.194	8	514.58	608
	Sukhija	Hard Rock	3613.297	3	93.11	008
2	Specific	Alluvial	7488.194	*2.1-2.7	2052	22(1
3	Yield Approach	Hard Rock	3613.297	*1.68-2.56	209	2261

Table 7.1 Comparison of Groundwater recharge in the Study Area by Various Approaches.

*Water Table Fluctuation/Specific Yield Approach

Water Table Fluctuation and Specific Yield Approach would provide the most dependable estimates on the groundwater storage. Hence, the author has considered 2261 MCM as recharge for the study area.

Remote Sensing and GIS

- Overall characterization of the study area based on various adopted approach it can be concluded that the poor recharge zone constitutes 26.1%, moderate zone 37.2% and good recharge zone is 36.7% of the total study area.
- In the present study an integrated remote sensing and GIS based methodology has been used to identify the area suitable for recharge. This has been presently cross checked with the water table fluctuation data for this area. It has been found that the zones identified through GIS approach actually show increase in water table after monsoon which is quite higher from the other areas.
- After getting the final overlay map, the TDS contour map has been superimposed on it to identify the area suitable for groundwater development in terms of its quality also..
- The result of this study is useful for identifying potential zones for recharging shallow aquifers, while for deeper aquifers further details like sub surface information and aquifer characteristics are required along with field inputs.