LIST OF FIGURES

	Page No.
Chapter 3	
Fig. 3.1 Origin of colour in gemstone where some of the light absorb and some of the light reflect.	16
Fig. 3.2 Excitation state of the electron in ruby.	17
Fig. 3.3 Schematic overview of energy levels in ruby and emerald.	18
Fig. 3.4 Photograph showing the Green colour in Emerald due to Cr^{3+} .	19
Fig. 3.5 Photograph showing Alexandrite gemstone which show blue-violet colour in incandescent light and blue colour in day sun light.	19
Fig. 3.6 An intervalence transition is also responsible for the blue colour of aquamarine. In aquamarine, adjacent Al3+ ions in beryl are replaced by an Fe2+ ion and an Fe3+ ion.	21
Fig. 3.7 Photograph showing colour change due to charge transfer in Aquamarine.	21
Fig. 3.8 Photograph showing colour due to charge transfer in Iolite.	22
Fig. 3.9 Photograph shows colour change due to charge transfer in Blue-Saphire.	22
Fig. 3.10 Electron color center in fluorite.	23
Fig. 3.11 Hole color center in smokey quartz.	24
Fig. 3.12 Schematic diagram showing Formulation of ametyst crystal Fe ³⁺ replacing Al ³⁺ and producing violet colour.	25
Fig. 3.13 Photograph showing the displays of orient: baroque freshwater cultured pearl and cultured Tahitian black pearl.	28
Fig. 3.14 Photograph showing Fire agate cabochon in a pendant and, a close up view of some fire agate colors.	29
Fig. 3.15 Photograph showing conchoidal fracture in aquamarine.	29

Fig. 3.16 Photograph showing Iridescence due to internal micro-cleavages: "rainbow calcite" and "iris quartz":	29
Fig. 3.17 Photograph showing Labradorite feldspar rough, Labradorite cabochons and Labradorite brooch.	30
Fig.3.18 Photograph showing the different Precious opals which show play of colours.	31
Fig. 3.19 Photograph showing Yellow common opal which show typical opalescent haze.	31
Fig. 3.20 Photograph showing different Adularescence in moonstone which shows white, blue and rainbow colours in moonstones.	32
Fig. 3.21 Photograph showing Girasol effect in opal and agate.	32
Fig. 3.22 Photograph showing Opalescent haze in common opal, milky quartz with pyrite inclusion, milky aqua and rose quartz.	33
Fig. 3.23 Photograph showing Shiller effect in Sunstone (copper platelets in feldspar) and in aventurine quartz (mica platelets).	33
Fig. 3.24 Photographs showing gemstone showing simple chatoyancy in tiger's eye, Charoite, serefinite, ruby in zoisite and sapphire.	34
Fig. 3.25 Photograph showing a close up of the parallel growth tubes in a rebellite tourmaline and the effect seen in that gem when it is viewed with proper lighting.	35
Fig. 3.26 Photograph showing Cat's eye effect in Cat'seye tourmaline and cat'seye moonstone.	35
Fig. 3.27 Photograph showing Asterism effect in Star stones like ruby, sapphire, white sapphire, rose quartz, (6 rayed), oonstone (4 rayed)	35
Fig. 3.28 Photograph showing Colour change effect in Alexandrite: incandescent (blue-violet), daylight (teal).	36
Chapter 4	
Fig. 4.1 Photograph showing alteration of Titanium inclusion by heating. (under 100 X magnification).	42
Fig. 4.2 Photograph showing alteration of rutile inclusion by heating.	43
Fig. 4.3 Photograph showing alteration of Zircon inclusion by heating.	46
Fig. 4.4 Photograph showing Alteration of black inclusion by heating.	44

Fig. 4.5 Alteration iron oxide fractures by heat treatment	45
Fig. 4.6 Alteration due to heat treatment in corundum.	45
Fig. 4.7 Photograph showing residue substance produced by heating treatment in corundum before and after heat	46
Fig. 4.8 Diagram showing UV-Visible region spectroscopic analysis (blue: before heating; red: after heating)	47
Fig. 4.9 Analysis using photoluminescence (PL) on zircon inclusion (blue: before heating; red: after heating).	48
Fig.4.10 Photograph showing Methylene iodide immersion coupled with magnification clearly reveals the difference between an SDTC and a sapphire heated in the normal way.	51
Fig. 4.11Photo shows a magnified view of a surface diffusion-treated sapphire.	53

Chapter 5

Fig. 5.1 Photograph showing irradiated color in natural white Diamond.	64
Fig. 5.2 Photograph showing Topaz treated by high energy electrons from a linear accelerator results in the Sky Blue color.	66

Chapter 6

Fig. 6.1 Photograph showing coated diamond.	71
Fig. 6.2 Photograph showing Coated diamond represent darker colour in front side.	72
Fig. 6.3 Photograph showing Coated diamond represent light colour film on backside.	72
Fig. 6.4 Photograph showing exfoliation of coating in Methylene Iodide (under microscope 100X).	73
Fig. 6.5 Photograph showing exfoliation of coating under microscope.	73
Fig. 6.6 Diagram showing morphology of natural and synthetic diamond.	77
Fig.6.7 Photograph showing Tatami structure Parallel to Growth Line.	78

Fig. 6.8 Photograph showing a few pinpoints were observed under 10X magnification in a tabular polished stone of CVD DiamondFig. 6.9 Photograph showing orange sheen in UV Light	78 79
Chapter 7	
Fig. 7.1 Photograph showing fracture filled diamond by laser drilling.	82
Fig. 7.2 A Photograph showing the flash effect is more predominant in the gemstone which is untreated.B Photograph showing the flash effect is negligible in the gemstone which is treated by lesser drill method.	82
Fig. 7.3 Photograph showing Diamond before fracture filled.	83
Fig. 7.4 Photograph showing diamond after fracture filled.	84
Fig. 7.5 Photograph showing lead glass treated ruby.	86
Fig. 7.6 Photograph showing Calcite inclusion in Burmish ruby.	86

LIST OF TABLES

	Page No.
Chapter 3	
Table-3.1 Colors in gemstone due to Transition ion impurities	20
Chapter 4	
Table 4.1 Changes induced by heat treatment with examples.	37
Table 4.2Basic condition for heat treatment in corundum.	41
Table 4.3 Conditions for heat treatment in Quartz	55
Table 4.4 Conditions for heat treatment.	56