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This paper documents three phases of folding within the Meso-Proterozoic Champaner Fold Belt
(CFB) located at the eastern part of Gujarat, western India. The first phase (F1) displays WNW
plunging F1 fold of moderately inclined nature in the schists of the Khandia Formation. The
second phase (F2) refolded F1 along a similar trend to produce folds of tight isoclinal nature in
the Khandia and Narukot quartzites. Additionally, these F1 folds depict second-order tight, and
F2 folds as first-order open type in the younger sequences of the CFB with varying amplitude vs.
wavelength ratio. The ratio for F1 folds ranges from 2:1 to 3:1, obtained along 3–4 m length across
3–6 m2 area, whereas for F2 folds the ratio ranges from 1:4 to 1:5 and is obtained along 1–2.5 km length
across 0.5–1.5 km2 area. The fold interference pattern developed on account of F1 and F2 folds has
resulted into Type-III or hook-shaped geometry regionally. The last phase of folding is characterised by
N–S trending F3 folds of open type over kilometre long limbs of F1 and F2 folds. The superposition of
F1−3 folds developed map scale Type-I or Dome and Basin geometry over Type-III superposed folds.
The overall compressional direction for F1 and F2 folds ranges from N–S to NNE–SSW and for F3 ranges
from E–W to ESE–WNW.

Keywords. Champaner Fold Belt (CFB); Narukot; interference fold pattern; hook shaped; dome and
basin.

1. Introduction

In any area, the existence of interference fold
patterns indicates refolding of earlier folds. A
derivative of these interference geometries ranges
from micro- to mega-scale (see, e.g., Platt 1983;
Ghosh 1993; Fossen and Holst 1995; Mamtani et al.
2001; Caritg et al. 2004; Tian et al. 2013; Fossen
2016). The interference geometries are important
as they provide significant clues on shortening
direction and decode the multiple deformational
events (Forbes and Betts 2004; Forbes et al. 2004).
A combination of such refolded folds on map scale

has been documented in the present work with the
aid of detailed fieldwork.

The area under investigation is the part of
Southern Aravalli Mountain Belt (SAMB) exposed
along the eastern fringe of Gujarat, India
(figure 1a). Rocks of this region belong to the
Champaner Group of Meso-Proterozoic age, form-
ing the youngest part of the Aravalli Supergroup
(Gupta et al. 1992, 1995, 1997). Initially, the struc-
tural history of the Champaner Group was thought
to be very simple with respect to the main Aravalli
domain. The idea proposed by Roy (1985, 1988)
and Merh (1995) suggests that the Champaner
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Figure 1. (a) Location sketch of the Champaner Group; (b)
lithostratigraphic map of SAMB, NW, India. Modified after
Mamtani and Greiling (2005). Red square indicates the study
area. Magnetic foliation data presented within Godhra gran-
ite is after Mamtani (2014).

Group represents one single phase of deformation
and possesses no superposed folds. Later on the
detailed work carried out by Karanth and Das
(2000) and Das (2003) in order to decode the defor-
mational history of the Pre-Champaner Gneissic
Complex in Chhota Udepur region gave a compar-
ative study about the deformational style between
Pre-Champaners and Champaner rocks. They illus-
trated two phases of folding within the Champaner
Group having orthogonal axial planes. However,
they did not comment on the existence of super-
posed folds within the Champaner Group of rocks,
unlike that in the Pre-Champaner Gneissic Com-
plex of Chhota Udepur region. In the light of
hitherto work, more research is needed in order

to address the structural complexity in the form
of interference fold pattern within the rocks of the
Champaner Group.

2. Geological setting

The Champaner Fold Belt, consists of the
Champaner Group, is a part of upper Aravalli
exposed along the southern most fringe of SAMB
in Gujarat (Gupta et al. 1992, 1995) (figure 1b).
The Champaner Group is characterised by Meso-
Proterozoic low-grade metasedimentary rocks and
are intruded by Neo-Proterozoic (955±20 Ma)
Godhra granite (Rb/Sr method; Gopalan et al.
1979). Lithologically, it comprises metasubgray-
wacke, phyllite, carbonaceous schist, quartzite,
gneisses and petromict metaconglomerate with
bands of dolomitic limestone and mangeniferous
phyllite (Gupta et al. 1980, 1997) (figure 2a).
Based on the homogeneity in terms of rock type,
strike persistency and occurrence of intraforma-
tional conglomerate, the Champaner Group has
been divided into six formations (Gupta et al.
1997) (table 1; Gupta et al. 1980, 1992). Green-
schist facies condition demarcates the regional
grade of metamorphism, whereas the contact meta-
morphic grade has reached up to the hornblende
hornfels facies (Jambusaria and Merh 1967; Jam-
busaria 1970; Gupta et al. 1997; Das 2003; Das
et al. 2009).

3. Structural setup

The existing structural set up of the Champaner
Group suggests that the rocks are polydeformed
forming a regional ‘S’ shaped pattern consist-
ing two major anticlines and synclines (Jam-
busaria 1970). Two phases of deformation have
been recorded so far, viz., D1: E–W trending F1

folds of tight/isoclinal upright nature; and D2: N–S
trending F2 folds with N plunging open warps with
kink bands (Jambusaria and Merh 1967; Gopinath
et al. 1977; Shah et al. 1984; Srikarni and Das
1996; Karanth and Das 2000; Das 2003; Limaye and
Bhatt 2013; Limaye 2016a, b; Patel et al. 2016). F1

and F2 folds are also affected by numerous axial
planar slippages depicting radial pattern (Jam-
busaria and Merh 1967; Yellur 1969; Jambusaria
1970; Joshi et al. 2018). The axial planar slippages
scattered in a radial pattern show signatures of
sinistral/dextral faults (figure 2a). Moreover, there
also exists signature of top-to-east cross-sectional
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Table 1. Proterozoic stratigraphic succession of Gujarat and south Rajasthan; after Gupta
et al. (1980, 1992).

reverse shears within the rocks of the Narukot
Formation (figure 2a) (Joshi et al. 2018). A com-
bination of F1 and F2 folds along the E margin
of the Champaner Group has generated interesting
dome structures at Narukot and Poyli areas (Jam-
busaria 1970). One such dome situated at Narukot
within the Khandia and Narukot Formation has
been worked out in detail, which provides sig-
nificant insight in terms of overall deformation
undergone by the Champaner Group of rocks.

Regional-scale fold mapping carried out at the
‘Narukot dome’ differs from the existing structural
set up presented by the earlier workers. Dome
appearance at Narukot is composed of the com-
bination of F1 to F3 folds regionally (figure 2b).
In order to carry out the structural analysis the
area has been divided into sub-areas, i.e., I, II,
IIIa and IIIb, representing F1, F2 and F3 domi-
nated regions, respectively. Sub-area I represents
F1 fold with an axial trace dipping due WNW
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Figure 3. (a) L2 (S2–S0) intersection lineation in schist of Khandia Formation (camera faces southern direction);
(b) sub-parallel relationship between S0 and S1 in quartzite demarcated over the outcrop with black pen markings. Discrete
secondary cleavages can be appreciated over S0 (camera faces southeastern direction); (c) steep F3 fold axes preserved in
quartzite (camera faces southern direction); (d) second-order tight F1 folds in phyllite of Shivrajpur Formation (camera
faces western direction); (e) second-order tight F1 folds within the right limb of first-order open F2 fold in quartzite of
Shivrajpur Formation (camera faces western direction); (f) second-order tight F1 fold in quartzite of Lambhia Formation
(camera faces western direction); (g) first-order F2 fold in quartzite of Rajghar Formation (camera faces eastern direction);
(h) N–S trending Kink band in phyllite of Narukot Formation (camera faces northern direction); (i) field photograph after
Joshi and Limaye (2014), showing discordant relationship between intruding coarse-grained granite into fine-grained granite
(camera faces eastern direction); (j) xenolith of schistose rock within granite (camera faces western direction); (k) xenolith of
fine-grained granite in coarse-grained granite (camera faces northern direction); (l) sharp intrusive contact between granite
and the Champaner metasediments (camera faces eastern direction); (m–p) top-to-east ductile shear along the cross-section.
S schistosity fabric dipping steeper than the C-plane. Photograph (n–p) after Joshi et al. (2018).

in Khandia schist located at the eastern part of
the dome. F1 fold has resulted due to folding
of S0 bedding plane by generating S1 schistosity
plane. Due to the manifestation of F2 over F1, S0

shows sub-parallel relationship with S1 and axial
planar S2 schistosity plane has been developed

generating L2 lineations on S0 (figure 3a). These
lineations are intersection lineations formed by S2–
S0 intersection, which plunges 46◦ in the direction
of 279◦N and form pucker axis over the hinge line.
By plotting several such lineations over lower hemi-
sphere stereographic projection, the orientation



   48 Page 6 of 11 J. Earth Syst. Sci.          (2019) 128:48 

of π1 axis fits well with the pucker axes lineations
obtained from the field (figure 2c). The fold is
moderately inclined having pitch of the F1 fold
axis 47◦ in the direction of 280◦N (WNW) mea-
sured on S0 plane (figure 2d). Tight to isocli-
nal F2 folds affected quartzite band as F1 folds
refolded along a similar trend. In quartzites the
S0–S1 relationship is sub-parallel to each other
and S0 dips slightly steeper as compared to S1

(figure 3b). S2 orientation is feeble and mostly
appears as discrete cleavages to form L2 intersec-
tion lineations between secondary cleavage planes
and S0 over S1. π2 axis of F2 fold matches with
the data set of intersection lineations recorded
from F2 dominated area (figure 2e). The core
of the F2 fold is traceable for 1 km at the
western margin of the Narukot dome and can
be seen in sub-area II of figure 2b. The N and the
S limb of F2 strike ∼E–W having due N and due S
dip directions, respectively. The fold axis plunges
towards W with an amount of 20◦ and possess a
sub-vertical axial plane (figure 2f). Sub-area IIIa,b
depicts F3 open fold trending N–S axial trace over
kilometre long limbs of F1 and F2 folds. The axial
plane can be traced from the N to the S fringe of
the dome dividing it into two approximately equal
portions. Steeply dipping mesoscopic F3 fold axes
have been observed along outer rim of quartzite
near SW of Wadek (figure 3c). These lineations fit
well with the fold axis π3 (figure 2g). The folds
possess vertical axial plane and have a northerly
plunge of its axis (figure 2h). Representation of
F1−3 folds along with the orientation of the axial
plane and fold axis in the Narukot dome, depicted
by SRTM worldwide elevation data (3-arc-second
resolution) downloaded from Global mapper (v17)
(figure 4).

An attempt has been made to study the derivates
of these three fold events across the Champaner
Group. The results signify that further to the
W of the Narukot dome, where the younger For-
mation of the Champaner Group is encountered,
F1 folds exhibit second-order tight and F2 folds
as first-order open with varying amplitude vs.
wavelength ratio (figure 3d–g). The ratio for F1

folds has been calculated in the field as the folds
are meso-scopic in nature. The ratio ranges from
2:1 to 3:1, obtained along 3–4 m length across
3–6 m2 area. However, for F2 folds the ratio ranges
from 1:4 to 1:5, obtained along 1–2.5 km length
across 0.5–1.5 m2 area. These F2 fold ratios have
been acquired through satellite image and val-
idated during mapping. F3 folds gradually die

out in the form of mega-scale open wraps to
meso-scale kink bands from eastern to the west-
ern stretch of the Champaner Group, respectively
(figure 3h).

4. Discussions

Analyses of individual folds from F1 to F3 at
Narukot were helpful in interpreting the regional-
scale deformation interference pattern. The combi-
nation of F1 and F2 fold has generated map scale
hook or Type-III interference pattern of Ramsay
(1962) and Ramsay and Huber (1987), demon-
strating a comprehensive hammer head anticlinal
structure. Their fold axes are sub-parallel (F1 ∼
WNW; F2∼W) with ∼ orthogonal axial planes.
Overprinting of F3 fold on F1 and F2 developed
regional-scale dome and basin geometry or Type-I
interference pattern (Ramsay 1962; Ramsay and
Huber 1987). Moreover, N–S trending F3 fold
developed by E–W shortening has its maximum
effect along the eastern margin of the Champaner
Group by closing up of domes at Narukot and Poyli
areas (locations in figure 2a).

In order to postulate the possible causes of the
fold trends recorded from the Champaner Group,
the proto-continent accretion concept (primarily
given by Naqvi et al. 1974; Radhakrishna and
Naqvi 1986; Rogers 1986; Naqvi and Rogers 1987)
for the Aravalli, the Dharwar and the Singhb-
hum proto-continents proved to be useful. The
‘Y’-shaped lineaments, viz., the Narmada, Son and
Godavari, along which the Aravalli–Dharwar, the
Aravalli–Singhbhum and the Dharwar–Singhbhum
proto-continents accreted, respectively, during the
Meso-Proterozoic times. Based on a ‘Working
Model’ or ‘Working Hypothesis’ given by Mamtani
et al. (2000) in terms of deformation pertain-
ing to the SAMB it clearly suggests that, there
is an impact of accretionary event on southern
part of the Aravalli proto-continent the manifes-
tation of which is in the form of changes in the
structural trends and growth of metamorphic min-
erals. Further the model illustrates that the E to
NW trending structures in SAMB formed suturing
between the Aravalli and the Dharwar Protocon-
tinents (ca. 1400–935 Ma). In case of the present
study, the N–S to NNE–SSW shortening direction
generated on account of the suturing has led to
the development of ESE–WNW to E–W trend-
ing structures across the Champaner Group. Fur-
thermore, the area located at the core of the
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Figure 4. SRTM-derived shaded relief map of the Narukot Hammer head anticlinal structure. Respective orientations of the
axial planes and fold axis have been demarcated.

Champaner Group has experienced intense
compression due to regional deformation, engen-
dering refolding of earlier folds at the Narukot
dome and imparting westerly plunge to F1 and
F2 folds (figure 5a). Similar concept of protoplate
tectonics has been anticipated to explain the defor-
mational patterns observed in the southern parts
of the Delhi Fold Belt (by Sychanthavong and
Desai 1977; Sychanthavong and Merh 1981, 1985;
Sychanthavong 1990).

Granites located in and around the Champaner
Group of rocks display signatures of syn to post-
plutonic emplacement (Joshi and Limaye 2018).
Distinguishing characteristic of syn/post-tectonic
granite can be very well appreciated along the
east of the Jhand area (location presented in fig-
ure 2a), where coarse-grained post-tectonic granite
is having intrusive relationship with the fine-
grained syn-tectonic granite (figure 3i) (Joshi and
Limaye 2014). The coeval pulse of granite emplaced
during progressive deformation has magnetic foli-
ation trending WNW–WSW (figure 1b). Feldspar
laths within syn-tectonic granites too trend WNW
to W striking trends (Mamtani 1998; Mamtani
et al. 2002; Mamtani and Greiling 2005; Sen and
Mamtani 2006). Existing geochemical records of
syn-tectonic granite suggest that the granite is
of ‘S-type’ evolved on account of partial melting
of the continental crust during continent–continent
collision (figure 5a) (Merh 1995; Goyal et al.
1997).

The granite of post-tectonic nature is charac-
terised by forceful emplacement deforming the

country rocks along N–S trend and developed
strike slip faults of sinistral/dextral nature along
pre-existing axial planar weak zones throughout
the group (figures 2a and 5b). The model given
by He et al. (2009) for Fangshan pluton, SW
Beijing, forms the rim syncline along the margin
of the pluton. Similar style of N–S trending rim
synclines is found to be developed along the east-
ern margin of the Champaner Group bordering
the pluton. SRTM-derived shaded relief map of
the Champaner region demarcates folded metased-
iments and its relationship with the adjacent plu-
ton (figure 6). The post-tectonic granite having
the geochemical affinity of ‘A-type’ representing
transitional or post-orogenic uplift (suggested by
Maithani et al. 1998 and Goyal et al. 2001), has
been intruded by accommodating the space within
the Champaner metasediments and pre-existing
syn-tectonic pulse (figure 5b). Such inference has
been derived by collecting xenolith evidence of
(i) Champaner metasediment and (ii) fine-grained
granite from coarse-grained granite variety (fig-
ure 3j–k). One such location is at the northeast-
ern fringe of the Champaner region near Sukhi
dam, where intrusive contact between Godhra
granite and Champaner metasediments is exposed
(figure 3l).

Geophysical studies carried out by Joshi et al.
(2018) using Microtremor method suggests plu-
ton hump exactly below the Narukot dome. The
surface manifestation of pluton hump can be
corroborated by the development of the cross-
sectional reverse shear having top-to-east shear
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Figure 5. (a) Cartoon showing suturing of proto-continents and refolding of earlier folds along with the plunge on account
of regional deformation as well as emplacement of syntectonic granite; (b) closing up of earlier refolded folds orthogonally
and development of sinistral/dextral faults along the pre-existing axial planes due to post-intrusive pulse. Granite of post-
tectonic nature holds xenoliths of Champaner metasediments and earlier syn-tectonic granite. These cartoons have been
modified after Winter (2012).

Figure 6. SRTM-derived shaded relief map of the Champaner region. Red region demarcates the granite country and shades
of grey depict the folded Champaner metasediments. Curved thin red line shows the axial trace of the rim synclines developed
along the periphery of the granite pluton.

sense, in the vicinity of the Narukot dome
(figure 3m–p). Recent work carried out by Joshi
and Limaye (2018) at Jothwad region on isolated
calc-silicate bands from khandia Formation records

signatures of out-of-sequence deformation due to
post-tectonic granite. The Jothwad region, part of
the Champaner Group, represents superimposition
of Type-II interference pattern over cylindrical
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Table 2. Summarisation of various interference fold patterns
along with the fold and fault events observed within the
Champaner Group (data of out-of-sequence deformation is after
Joshi and Limaye 2018).

upright fold. Moreover, these interference fold
patterns are rootless and depict no continuity in
the subsurface as well as are unmatched with the
existing structural set up of the Champaner Group.

5. Conclusions

• The Meso-Proterozoic Champaner Group rep-
resents interference fold patterns ranging from
Type-1 to Type-III (table 2).

• Type-III interference fold pattern is due
to regional deformation and generated by
combinations of F1−2 folds (F1∼ ESE–WNW;
F2∼E–W).

• Regional deformation has imparted westerly
plunge to F1−2 folds and also characterised
by syn-tectonic emplacement of granite having
similar trend.

• Type-I interference pattern superimposed over
Type-III by closing up of domes, represents F3

folds (F3∼ N–S) due to post-intrusive granite.
The same has been responsible for the devel-
opment of sinistral/dextral faults throughout
the group and cross-sectional reverse shears in
vicinity of the Narukot dome.

• Type-II superimposed over rootless cylindrical
upright folds represents out-of-sequence defor-
mation of F1−2 folds (F1∼NW–SE to N–S; F2∼
NE–SW) suggests syn-post plutonic emplace-
ment.
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Deformation of the Champaner Group of rocks that form a part of Southern Aravalli Mountain Belt,
western India, occurred during the Grenville orogeny (ca. 1400–935 Ma). Two phases of deformation are
recorded: D1, persistent throughout the group and characterised by westerly plunging tight isoclinal folds
and D2, a localized phase of deformation associated with shortening of the earlier folds from the eastern
margin. Both the phases of deformation are in association with the syn-tectonically emplaced Godhra
granite. The present work records rootless calc-silicate folds in granite belonging to the older formation,
located at the eastern fringe of the Champaner Group. Field evidences suggest superimposition of Type
2 interference pattern trending NE–SW over rootless Type 0 of varying trends from NW–SE to N–S.
The superposed pattern obtained from the field study differs in terms of structural trends with the
neighbouring Precambrian stratigraphic units. These stratigraphic units include the Champaner Group
to which the study area belongs, the Kadana Formation of the Lunavada Group and Pre-Chamapaner
Gneissic Complex. Rootless character of folds found within the study area imply syn-post plutonic
emplacement of Godhra granite.

Keywords. Grenville orogeny; Champaner Group; Southern Aravalli Mountain Belt; deformation;
rootless folds; Godhra granite.

1. Introduction

The Champaner Group forms the youngest group
in the Aravalli Supergroup, located at the east-
ern fringe of Gujarat and it occupies entirely
the Shivrajpur, Jambughoda and Bodeli region
(Gupta et al. 1992, 1995, 1997). The Champaner
Group forms the part of southernmost extension
of the Southern Aravalli Mountain Belt (SAMB)
in Gujarat and is located at the junction between
the two older sequences, viz., the Lunavada Group
in the north and pre-Champaner rocks in the

southeast direction. Rocks of the SAMB displays
significant variation of the structural trend from
NE–SW to E–W in Gujarat and continues to
exhibit NW–SE trend in the older Pre-Champaner
rocks extending right up to parts of Jhabua district
of Madhya Pradesh (figure 1a).

The Champaner Group is intruded by younger
plutonic rocks, i.e., Godhra granite to the north-
ern, eastern and the southern margins, whereas
obliterated by the cover of thick Deccan volcanic
rocks and recent sediments along the western mar-
gin (figure 1b). Numerous available dates on age of
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Figure 1(a). Lithostratigraphic map of Southern Aravalli
Mountain Belt, NW, India (modified after Mamtani and
Greiling 2005).

Godhra granite have a time range of 1168–938 Ma
suggesting prolonged emplacement period (Rb/Sr
method 1168 ± 30 Ma: Srimal and Das 1998; Sm–
Nd method 1050 ± 50 Ma: Shivkumar et al. 1993;
Rb–Sr method 965 ± 40 Ma: Goyal et al. 2001;
Rb–Sr method 955 ± 20 Ma Gopalan et al. 1979;
Rb–Sr method 950 Ma, Crawford 1975; Rb–Sr
method: 938.8 ± 20 Ma: Srimal and Das 1998).
Lithologically, the Champaner Group consists of
a sequence of meta-subgreywacke, sandy phyl-
lite, graphite-schist, quartzite, polymictic meta-
conglomerate, dolomitic limestone and mangan-
iferous phyllite (Gupta et al. 1980, 1997). The
grade of regional metamorphism has reached up
to greenschist facies condition, which is implied

by the development of chlorite, muscovite and
biotite, whereas hornblende hornfels facies char-
acterise the contact metamorphic condition giving
rise to the development of pelitic hornfels and
skarns (Jambusaria and Merh 1967; Das et al.
2009).

Structurally, the entire sequence depict simple
deformation pattern as compared to the Aravalli
and Delhi Supergroup. The rocks of the Champaner
Group have undergone two phases of deforma-
tion, viz., D1 and D2. D1 deformation dominates
throughout the group which led to the development
of open-to-tight isoclinal folds with axial traces
trending in a WNW–ESE to E–W direction. D2,
a localized phase of deformation associated with
shortening of the earlier folds from the eastern mar-
gin of the Champaner Group signifying broad open
folds with N–S striking axial traces developed on
regional limbs of D1 folds (Jambusaria and Merh
1967; Gopinath et al. 1977; Srikarni and Das 1996;
Gupta et al. 1997; Karanth and Das 2000; Mam-
tani and Greiling 2005; Joshi and Limaye 2014;
Patel et al. 2016). There also exist signatures of
D1 axial planar strike slip faults and shear zones
across the Champaner Group (Joshi et al. 2018).
Due to the heterogeneity in terms of manganif-
erous beds and structure, a suggestion has been
made that the Champaner Group be described as
a sequence younger to both Aravalli and Delhi
Supergroup (Roy 1988).

The paper focuses on field evidences of iso-
lated and deformed calc-silicate band of Khandia
Formation of the Champaner Group, occur as
enclaves within younger granite. The present study
will be helpful to understand the effects of pro-
long emplacement period of Godhra granite in the
region and will be helpful to resolve the strati-
graphic debate pertaining to the structure of the
Champaner Group of rocks. The study area is in-
and-around Jothwad village, located at the eastern
fringe of the Champaner Group. Detailed struc-
tural mapping has been carried out in the ter-
rain. Structural attributes acquired from the field
work have been plotted on stereographic projec-
tion to interpret the fold pattern. The inferences
derived from (i) the field evidences; (ii) the exist-
ing Anisotropy of Magnetic Susceptibility (AMS)
data from Godhra granite, and (iii) the existing
subsurface shallow seismic profiling using cost
effective Microtremor technique are used to
explain the syn-post plutonic emplacement with
D1 deformation of the Champaner Group of
rocks.
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Figure 1(b). Generalized geological map of the Champaner Group and neighbouring areas (modified after Jambusaria and
Merh 1967 and Gupta et al. 1997). Filled red square indicates the study area.

2. Geological and structural set-up of the
study area

The study area is the part of Khandia
Formation of the Champaner Group, Aravalli
Supergroup. The Khandia Formation is consid-
ered to be the second oldest formation of the
Champaner Group (table 1), primarily composed
of phyllite, quartzite, dolomitic limestone and
metasubgreywackes (Gupta et al. 1997). However,
the area under investigation consists of calc-silicate
rock of Meso-Proterozoic age enveloped by younger
plutonic intrusive, i.e., Jambughoda granite (Goyal
et al. 1997). Jambughoda granite is the part of
Godhra granite, emplaced along a major NW–SE
Precambrian trend (Mamtani and Greiling 2005;
Joshi et al. 2018).

As shown in the geological map of the Jothwad
region, the deformed calc-silicate rock is at the

centre followed by a thin rim of granite having
enclaves of calc-silicate rock, which further grades
into massive, medium to coarse grained, leuco-
cratic granite (figures 2, 3a). The calc-silicate rock
is greenish grey in colour, fine to coarse grained
and massive in nature. At places, the calc-silicate
exhibit caught up folded fragments embedded in
granite (figure 3b). The intrusive contact between
calc-silicate rock and granite can be appreciated
along the excavated pit located in vicinity of
the study area. The side face of 5 m deep pit
was studied in order to examine the subsurface
extent of calc-silicate rock (figure 3c). Minerals
that can be identified in the hand specimen include
wollastonite, actinolite, piedmontite and winchite,
forming typical skarn rock mineralogy (Das et al.
2009).

Structurally, rocks of the study area are
poly-deformed and exhibit two sets of fold, viz., F1
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Table 1. Proterozoic stratigraphic succession of Gujarat and south Rajasthan (after Gupta
et al. 1980, 1992).

and F2. The northwestern and the southern parts
of the study area depict mesoscopic rootless tight/
isoclinal F1 folds (figure 3d, e). The axial plane
in the northwestern part strike NW–SE and fold
axes plunges in the direction of N120◦ with an
amount of 50◦, whereas in the southern part of
the study area, trend of the axial plane is N–S
and fold axes plunges due N with an amount of
52o. By plotting poles of S1 foliation collected

from the entire study area, F2 axial trace has
been projected by using lower hemisphere stere-
ographic projection (figure 3f). F2 fold is broad
open type synformal structure trending NE–SW
and fold axes plunges in the direction of N30o with
an amount of 62o. The superimposition of F1 and
F2 folds has resulted in development of Type 2
interference pattern over Type 0 (i.e., non-plane
non-cylindrical fold over plane cylindrical folds).
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Figure 2. Geological map of the Jothwad region (study area).

The outcrop pattern due to Type 2 interference
has resulted in mushroom shaped geometry (fig-
ure 3g).

3. Discussion and conclusion

Based on the field evidences of the Jothwad region
(figure 3a–e), the folds are rootless and depict no
continuity in the subsurface; moreover, they also
occur as enclaves in the granite. Therefore, it is
suggested that the folding in the study area was
prior to the emplacement of the plutonic body.
The existing structural set-up adjacent to the study
area depict variation in the structural trend, i.e.,
the Champaner metasediments at the west are
characterized by two phases of deformation D1 ∼
E–W to ESE–WNW and D2 ∼ N–S and the Pre-
Champaner rocks located at the SE, which consists
four phases of deformation from D1 to D4. D1 is
characterized by rootless recline folds of N–S trend,
where as D2 and D3 show E–W trend with varied
fold morphologies. Finally, D4 depict N–S trending
warps and kinks. However, last two phases of defor-
mation of Pre-Champaner rocks are pronounced
over the Champaner metasediments (Karanth and
Das 2000; Das 2003).

The existing structural set-up of the Jothwad
region is not only in contrast with the adjacent

Champaner and Pre-Champaner rocks, but also
differ from the regional structural set-up of the
Southern Aravalli Mountain Belt (SAMB), which
includes: (1) The Banded Gneisses at the northeast,
(2) the Lunavada Group extended till south of
Devgadh Bariya in the north, (3) Pre-Champaner
Gneisses at the southeast, (4) the detached Cham-
paner metasedimentary sequence in the west, and
(5) Godhra granite in which the study area is
located (figure 1a).

Table 2 shows a summary of deformation events
recorded in the neighbouring Precambrian strati-
graphic units and its relation with the study area.
The inferences derived from existing Anisotropy
of Magnetic Susceptibility (AMS) data and pre-
ferred orientation of feldspar laths from Godhra
granite suggest that the range of magnetic foliation
in granite strike WNW to WSW and preferred
orientation of feldspar laths within granite trends
WNW to W (Mamtani and Greiling 2005; Mamtani
et al. 2002; Sen and Mamtani 2006). The prevailing
structural trends, which are correlatable with syn-
chronous Godhra granitic emplacement are: (1) D3

structures in the Banded Gneisses, (2) D3 struc-
tures in the Lunavada Group of rocks, (3) D2

and D3 structures in the Pre-Champaner Gneisses
with different fold morphology (a. Recline and
b. Upright), and (4) D1 structures in the Cham-
paner Group of rocks. Though the AMS data from
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Figure 3. (a) Enclaves of calc-silicate rock in granite (camera faces in eastern direction); (b) Caught up folded fragment of
calc-silicate rock embedded in granite (camera faces in southeastern direction); (c) Dotted line demarcates inferred contact
between weathered calc-silicate rock and granite at the side face of 5 m deep pit, in vicinity of the study area (camera faces
in western direction); (d) Tight to isoclinal folds in calc-silicate rock in the NW part of the study area (camera faces in
southeastern direction); (e) Tight to isoclinal folds in calc-silicate rock in the south part of the study area (camera faces in
southern direction); (f) Lower hemisphere stereographic projection of the structural data related to F2 folds, collected from
the Jothwad region. Plotting of poles of S1 foliation collected from the entire study area. Note that the F2 fold axes (πII)
perpendicular to common great circle plunge towards the NE direction; (g) Mushroom-shaped outcrop geometry on account
of Type 2 interference (camera faces in northeastern direction).

Godhra granite is found to be concomitant with
neighbouring Precambrian stratigraphic units, it
is unmatched with the trends recorded within the
study area.

Wide range of dates on age of Godhra granite
as mentioned in section (1) indicate longer time
span of emplacement, i.e., from 1.1 to 0.93 Ga.
However, the deformation date for the Champaner
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metasediment is still undetermined. Northern
extremity of Godhra granite is marked by the
contact with the Lunavada Group of rocks. The
field evidence for granite and related pegmatites
intruding foliation in schists of Kadana Formation,
Lunavada Group, indicates that the intrusion con-
tinued even after D3 deformation of the Lunavada
region. Microstructural records specify advent of
thermal event related to late D3/post-D3 Godhra
granitic intrusion in the Lunavada terrain (Mam-
tani and Karanth 1996; Mamtani et al. 2001).
Based on which, a possibility can be determined
that D3 deformation of the Lunavada region and
D1 deformation of the Champaner region were
coeval events (Mamtani and Greiling 2005). The
above inference also deflates the suggestion given
by Roy (1988) to reorder the stratigraphic position
of the Champaner Group over Delhi Supergroup.

Microtremor measurements carried out at 32
sites along D1 axial trace of Narukot Dome and
its western extension by Joshi et al. (2018) is help-
ful to identify two distinct rheological boundaries
based on frequency ranges determined in the ter-
rain. These rheological boundaries include (i) the
juxtaposed Champaner metasediment over granite
(C–Gr) boundary and (ii) intercalated phyllite and
quartzite (P–Qr) boundary. Out of which, (i) C–
Gr boundary lies in vicinity of the study area at
station 31. The inferences derived by the subsur-
face shallow seismic profiling using microtremor
technique indicate that the sporadic granitic plu-
tons emplaced in the terrain have uprooted the
Champaner metasediments giving ‘rootless’ char-
acteristic in the study area and at the Narukot
dome as well as to its western extension.

All above evidences lead to the conclusion that
even after the D1 deformation of the Champaner
Group of rocks, the Godhra granitic emplacement
continued to give rise rootless folds along with
caught up fragments in the granitic mass of the
Jothwad region. This prolonged emplacement also
probably uprooted the Champaner metasediments
exposed in the western part of the study area.
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22 stations identified as the phyllite and quartzite boundary. 
The proposed equation describing frequency–depth rela-
tionship between granite and overlaying regolith matches 
with those already published in the literature. The mor-
phology of granite pluton highlights the rootless charac-
ter of Champaner Group showing sharp discordance with 
granitic pluton. The findings of manifestation of pluton at 
a shallower depth imply a steep easterly plunge within the 
Champaner metasediments, whereas signature of pluton at 
a deeper level implies a gentle westerly plunge. The present 
method enables to assess how granite emplacement influ-
ences the surface structure.

Keywords Microtremor · H/V spectral analysis · Granite 
pluton · Champaner group · Aravalli

Abstract We report, using the microtremor method, a sub-
surface granitic pluton underneath the Narukot Dome and 
in its western extension along a WNW profile, in proxim-
ity of eastern fringe of Cambay Rift, India. The dome and 
its extension is a part of the Champaner Group of rocks 
belonging to the Mesoproterozoic Aravalli Supergroup. 
The present finding elucidates development of an asym-
metric double plunge along Narukot Dome. Microtremor 
measurements at 32 sites were carried out along the axial 
trace (N95°) of the dome. Fourier amplitude spectral stud-
ies were applied to obtain the ratio between the horizon-
tal and vertical components of persisting Rayleigh waves 
as local ambient noise. Fundamental resonant frequencies 
with amplitude ≥1-sigma for each site are considered to 
distinguish rheological boundary. Two distinct rheological 
boundaries are identified based on frequency ranges deter-
mined in the terrain: (1) 0.2219–10.364 Hz recorded at 31 
stations identified as the Champaner metasediment and 
granite boundary, and (2) 10.902–27.1119 Hz recorded at 
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Introduction

Neoproterozoic granites in this study popularly referred 
to as Godhra granite, constitute a part of major syn- to  
post-orogenic granitic phase of southeastern Aravalli  
domain, western India. The Godhra granite have 
emplaced regionally along NW–SE trend, which splayed 
further SE-producing sporadic plutons (Mamtani et al. 
2001; Mamtani and Greiling 2005). Emplacements  
of these plutons have locally deformed as well as  
generated contact metamorphism within Mesoproterozoic 
Champaner metasediments (Mamtani et al. 2001; Das 
et al. 2009; Limaye and Joshi 2016). The role of sporadic 
plutonic activity, however, induced structural complexity  
(Jambusaria and Merh 1967; Srikarni and Das 1996; 
Karanth and Das 2000). Doubly plunging Narukot  
dome, a part of Champaner Group forming southern 
extension of Aravallis in Gujarat, is one such feature that 
gives an opportunity to study the relationship of pluton 
and associated deformation. Deciphering subsurface  
morphology of pluton becomes vital.

Globally, the plutons are understood emplacing coun-
try rock with several geometric shapes, viz. circular, thick 
disk, sheet-like, hockey puck, flat-floored, wedge-shaped 
and many other discrete forms (McSween and Harvey 
1997; Benn et al. 1998; Vigneresse et al. 1999) that in turn 
depend on the heterogeneity of magmatic activity, depth, 
and their degree of isolation as well as volume, strength 
and density difference between the plutonic melt and the 
country rocks (Bott 1955; Pitcher 1979; Vigneresse 1995; 
Benn et al. 1998; Stevenson et al. 2006; Cruden 2008). 
Several geophysical methods are deployed to study plu-
tons, viz. gravity (Bott 1955; Vigneresse 1990; Singh 
et al. 2004; Rao et al. 2006; Cruden 2008; Singh et al. 
2014), magnetic (Mamtani and Greiling 2005); aeromag-
netic (Sahu 2012) magnetotelluric (Sastry et al. 2008); 
deep resistivity soundings (Singh et al. 2008); and deep 
seismic methods (Kaila et al. 1981; Dixit et al. 2010).

We apply a cost-effective microtremor technique to map 
subsurface pluton covering a large area at a prerequisite 
terrain-specific resolution from 250 m to 1 km interval. 
The assessment was quicker than the conventional indirect 
methods. The microtremor method has been used success-
fully to map subsurface rheological boundaries based on 
strong acoustic impedance along contrasting density at sed-
iment/rock interphases at shallow depths and across fault 
zones (Kanai 1957; Yamanaka et al. 1994; Ibs-Vonseht and 
Wohlenberg 1999; Delgado et al. 2000a, b; Parolai et al. 
2002; Garcia-Jerez et al. 2006; Guéguen et al. 2006; Zhao 
et al. 2007; Dinesh et al. 2010; Rošer and Gosar 2010; 
Sukumaran et al. 2011; Paudyal et al. 2013).

The present maiden attempt is to record a shallow 
seismic profile along doubly plunging Narukot dome and 

its western extension incorporating both microtremor 
method and field evidences. This enabled us (1) to deline-
ate morphology of an independent granite pluton under-
neath the Narukot dome, (2) to determine the thickness of 
the Mn-bearing rocks of the Champaner Group, and (3) 
to infer implication towards syntectonic deformation of 
the Champaner Group.

Geology and structures

The vast area E and SE of Narukot dome has a rolling 
topography with isolated highs that exposes Jambug-
hoda Granite (1050 ± 50 Ma: Sm–Nd method, Shivku-
mar et al. 1993); Chhota Udepur Granite (1168 ± 30 Ma: 
Rb–Sr method, Srimal and Das 1998) and Godhra Gran-
ite (950 Ma, Rb–Sr method assuming an initial Sr ratio 
of 0.700, Crawford 1975; Rb–Sr method 955 ± 20 Ma, 
Gopalan et al. 1979; Rb–Sr method 938.8 ± 20 Ma, Sri-
mal and Das 1998; Rb–Sr method 965 ± 40 Ma, Goyal 
et al. 2001) (Fig. 1a). Negative Bouguer gravity anomaly 
(−40 to −20 mgal) substantiates granites in the region 
(Fig. 1b; Sandwell et al. 2014). However, the structure 
and tectonic regime under which the granite emplaced 
remain indeterminate. The sporadic granite pluton under 
present study emplaces within Champaner metasediments 
comprising intercalated sequence of quartzites and phyl-
lites (Narukot Formation) exposed in the eastern portion 
of the dome. This is followed by polymict conglomerate 
with lithicwacke (Jaban Formation) and Mn-bearing phyl-
lites and quartzites (Shivrajpur Formation) in the central 
part, whereas thin phyllite–quartzite bands with dolomitic 
limestone (Rajgarh Formation) characterize the western 
extension (Fig. 1c; Table 1; Gupta et al. 1992, 1997). These 
sequences are regionally metamorphosed up to greenschist 
facies (Jambusaria and Merh 1967) and preserve relic pri-
mary sedimentary structures (Srikarni and Das 1996). Fur-
ther, isolated development of hornfelses and skarn zones 
are observed close to the granitic body (Das et al. 2009). 
The extreme WNW portion of the Narukot profile under 
present study exposes Mesozoic sedimentaries and the 
Deccan basalts.

The deformation pattern of southern Aravalli domain 
comprising Lunawada and Champaner Group are not 
comparable to the main Aravalli domain. The main 
Aravalli domain shows two deformation phases  (AD1 
and  AD2).  AD1 exhibits W trending rootless reclined, 
inclined, and rarely upright isoclinal folds. On the  
other hand,  AD2 are coaxial isoclinal folds with widely 
dispersed axial planes (Naha et al. 1966, 1969). Further 
south, the Lunawada Group displays  AD3 deformation 
comprising  LF1 and  LF2 coaxial folds (L: Lunawada) 
with NE-trending axial planes.  LF3 folds are open with 
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E- and NW-trending axial planes (Mamtani et al. 2001). 
Additionally, the Champaner Group demonstrates  AD4 
deformation developing upright folds with E-trending 
axial traces  (CF1) followed by open upright cross folds 
with N–S axial traces  (CF2) emerging as large domal 
structures in Narukot and Poyali areas (Jambusaria and 
Merh 1967; Gopinath et al. 1977; Srikarni and Das 1996; 
Gupta et al. 1997; Karanth and Das 2000).

The domal character at Narukot is well preserved by 
quartzites that skirt the dome (Fig. 2a, b). Quartzite rim-
ming N, E and S portion of dome shows discordant rela-
tion, steep dip, steep/vertical foliation and strong anneal-
ing. On the other hand, quartzites and phyllites in core 
region and towards the western margin show concordant 
relations, gentle westerly dip and regional metamorphism. 
Phyllites exposed adjacent to Narukot dome preserve S–C 

Fig. 1  a Regional geologi-
cal map showing extension of 
Aravalli Supergroup in Gujarat 
(after Mamtani et al. 2001). 
NW-trending batholith (Godhra 
Granite) constitutes the most 
conspicuous feature that demar-
cates the Lunawada Group at 
ENE and the Champaner Group 
at WSW. b Regional Bouguer 
gravity map showing exten-
sion of Aravalli Supergroup in 
Gujarat (Sandwell et al. 2014). 
c Geological map of study area 
(modified after Gupta et al. 
1997). Oval structure along the 
E margin represents the Narukot 
dome with N95° axial trace. 
Dotted line across the dome and 
further W shows location of 
stations (1–32) for microtremor 
measurements
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fabric (Passchier and Trouw 2005; Mukherjee 2011a, 
2012, 2013a, b, 2014, 2015; Mukherjee and Kovi 2010a,b). 
Fieldwork did not reveal any visual effect of shear heating 
(Mukherjee and Mulchrone 2013; Mulchrone and Mukher-
jee 2015, 2016) The S- and C-planes meet at ~24°. The dip 
direction of both S–C fabrics is parallel to the plunge of 
open folds that characterizes western portion of the Naru-
kot dome (Fig. 2c–e). Stereonet of lower hemisphere equal 
area projection containing n = 67 foliations have been plot-
ted. Beta intersection diagram represents superimposition 
of N–S axial plane over the E–W trends. Beta-1 and Beta-2 
are respective fold axes of  CF1 and  CF2 producing dome 
and basin geometry (Fig. 2f).

Microtremor studies

Studies reveal that microtremors are activated by ambient 
noise that encapsulates the fundamental resonant frequency 
of near surface sediment horizons (Ohta et al. 1978; Celebi 
et al. 1987; Lermo et al. 1988; Nakamura 1989; Field et al. 
1990; Hough et al. 1991; Yamanaka et al. 1994; Konno and 
Ohmachi 1998; Ibs-Vonseht and Wohlenberg 1999; Delgado 
et al. 2000a, b; Aki and Richards 2002). These resonating 
frequencies derived from microtremors strongly correlate 
with the velocity of seismic wave as well as the sediment 
thickness (Ibs-Vonseht and Wohlenberg 1999; Parolai et al. 

2002). To characterize amplification of seismic wave for a 
given site, Nogoshi and Igarashi (1971) proposed a tech-
nique to normalize the source effect by taking the ratio of 
the horizontal (NS + EW component) and vertical compo-
nent (H/V) of the noise spectrum. Nakamura (1989) further 
popularized the method and its applications. The merits 
and demerits of this method are discussed by several work-
ers and has been used extensively as a low cost tool for site 
characterization in estimating the resonant frequency and 
thickness of sedimentary layers, viz. Field and Jacob (1993), 
Parolai and Galiana-Merino (2006), Bonnefoy-Claudet et al. 
(2006), Garcia-Jerez et al. (2006), Zhao et al. (2007), Naka-
mura (2008), Bard (2008), Pilz et al. (2009), Lunedei and 
Albarello (2010), and Sánchez-Sesma et al. (2011).

We deployed a Lennartz seismometer (5 s period) and 
a City Shark-II data acquisition system to acquire ambi-
ent noise in forms of three components, viz. NS, EW, 
and vertical directions. The recording was carried out 
for 40 min at the rate of 100 samples/s per site (Suku-
maran et al. 2011, fig. 3). All the 32 geophysical stations 
(Fig. 1c) arrayed for measurement run almost parallel 
to the axial trace (N95°) of the Narukot Dome (Fig. 1c). 
The station interval was decided considering topography 
along the profile line. The region with rolling topography 
from station 1–13 (Fig. 1c) was surveyed at 1 km interval, 
whereas the rugged terrain, stations 13–32 (Fig. 1c), was 
surveyed at 500 m interval.

The ratio between the Fourier amplitude spectra of the 
horizontal to the vertical (H/V) components of persisting 
Rayleigh waves were calculated from the ambient noise 
vibrations acquired from 32 stations using the GEOPSY 
(SESAME European Project 2004). The H/V spectral 
ratios were plotted between 0.2 and 25 Hz encompassing 
the complete range of resonating frequencies recorded 
within the study area (Fig. 3). These H/V ratios were 
further processed individually to identify statistically 
significant spectral peaks using custom-written Matlab 
code. The statistically significant peaks were taken to 
be those peaks that were at least one standard deviation 
greater than the baseline activity. These peaks then corre-
spond to significant fundamental resonating frequencies 
for each station. The significant fundamental resonating 
frequencies f0, f1 and f2 were singled out for individual 
stations quantifying their amplitudes (Fig. 3; Table 2). 
Figure 3 illustrates a series of H/V spectral frequency 
plots recorded from the study area. Station 22, 30 and 31 
show the peaks at fundamental frequency (f0). Station 2, 
3 and 4 show dual frequency (f0, and f1) with representing 
the boundary at both deeper and shallower levels. Station 
15 and 29 too display dual frequency (f0, and f1) but at 
different frequencies that correspond to the boundary at 
moderate to shallower depth level. However, station 32 

Table 1  Lithostratigraphy of southern Aravalli, Gujarat, W India 
after Gupta et al. (1992)

Supergroup Group Formation

Post Delhi
Igneous  

Intrusive

Idar Granite  
(Malani Igneous suite)

Erinpura Granite
Godhra Granite
Sendra–Ambaji Granite

Delhi Sirohi
Kumbhalgarh
Gogunda

Phulad Ophiolites

Aravalli Champaner Rajgarh

Shivrajpur

Jaban

Narukot

Khandia

Lambia

Lunawada Kadana

Bhukia

Chandanwara

Bhawanpura

Wagidora

Kalinjara
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represent three frequencies (f0, f1, f2) incorporating three 
boundaries at shallow, moderate and deeper levels.

The thickness (h) of soil/sediment layer over the  
bedrock can be related theoretically with the fundamental 
resonant frequency (fr) of H/V spectral ratio (Ibs-Vonseht 
and Wohlenberg 1999)

(1)h = af br ,

where a and b are obtained by nonlinear regression between 
the thickness and the fundamental resonant frequency. For 
a given fundamental resonant frequency, if the velocity of 
seismic waves (Vs) for a given interphase is known, the 
depth of the interphases is given by Parolai et al. (2002):

(2)h =
Vs

4fr
.

Fig. 2  a Structural map of the 
study area (modified after Gupta 
et al. 1997). b Geo-eye image 
of Narukot Dome. N–S axial 
trace overlay over WNW–ESE 
trend; discontinuous lines: shear 
in the region; P1, P2 and P3: 
locations for field photographs. 
c–e Top-to-E ductile shear along 
vertical section. S schistosity 
fabric dipping steeper than the 
C-plane. f Foliation surfaces as 
great circles (n = 67,  S0,  S1). 
g Beta intersection diagram 
representing superimposi-
tion of N–S axial plane over 
E–W (2211 intersections of 67 
planes). Beta 1 and Beta 2 are 
the respective fold axes of  CF1 
and  CF2 producing dome and 
basin geometry. h Pie diagram 
(n = 67,  S0 and  S1) showing 
similar fold axes of  CF1 (i.e., 
N275°). i Contoured pie dia-
gram; 2, 4, 8 and 16% contours 
per 1% area
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On the other hand, if the depth of the interphase in 
known based on available core record, the velocity of seis-
mic waves (Vs) can be determined using Eq. (2).

In the present study, we used a record of a private bore-
hole 300 ft (91.4 m) closer to station 29, in Hirapur Vil-
lage, east of Narukot dome. The records suggest 7-ft (2.13-
m) thick soil unit, followed by 15-ft (4.57-m) thick white 
fine-grained sand (alteration product of in situ granite); and 
278 ft (84.7 m) of massive granite. In the present case, we 
categorized both the soil unit and altered granite unit under 
the regolith. Using the observed depth of regolith–granite 
boundary (6.70 m), we computed Vs (227 m/s) for the rego-
lith unit at station 29 using Eq. (2). The depth of regolith–
granite boundary for stations 28, 30, 31 and 32 has been 
estimated using the above computed value of Vs. In addi-
tion, substituting the value of Vs in Eq. 2,

(3)h = (56.8)f−1
r .

Equation (3) derived from the study area is comparable 
to the equation derived for a granitic terrain around Banga-
lore (state Karnataka, India) decoding interphase of soil–
regolith from that of granites (Dinesh et al. 2010), viz.

In this context, we preferred the equation established by 
Dinesh et al. (2010) in this study to derive theoretical depths 
of interphases as they had established the relationship using 
a larger number of observed borehole logs.

Further, grouping fundamental resonating frequency, 
geology and structural data from the study area, we identify 
two distinct rheological boundaries, viz. 0.2219–10.364 Hz 
that is inferred to record boundary between Champaner 
metasediment and granites (C–Gr boundary) and 10.902–
27.1119 Hz that differentiates phyllites from quartzites (P–
Qr boundary) (Figs. 4, 5). The other boundaries identified 
along the W margin of the profile, viz. 0.7088–12.6896 Hz 

(4)h = (58.3± 8.8)f−0.95± 0.1
r .

Fig. 3  H/V spectral frequency plot recorded for the representative 
stations from the study area. Station 22, 30 and 31 show the peaks at 
fundamental frequency (f0); station 2, 3 and 4 show dual frequency 
(f0, and f1) with representing the interphases at both deeper and shal-
lower levels; station 15 and 29 also show dual frequency (f0, and f1) 

but at different frequencies that correspond to the interphases at mod-
erate to shallower depth level. However, station 32 represent three 
frequencies (f0, f1, f2) incorporating three interphases at shallow, mod-
erate and deeper levels
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frequencies distinguish the boundary between the Cham-
paner metasediments and the Mesozoic sediments. On the 
other hand, at stations 2 and 3, 18.0848 Hz frequency dis-
tinguishes thin Deccan traps from Mesozoic sediments.

Champaner–granite boundary

The Champaner–granite boundary (C–Gr boundary) occurs 
at a shallower depth towards E than at the W margin of the 
profile showing an arched-up geometry (Fig. 5). The gran-
ite pluton attains shallowest depth calculated from surface 
underneath station 20 (35.69 m) and station 23 (32.42 m) 

followed by a significant depth, or a ‘low’, beneath station 
6 (243.64 m) and station 1 (232.82 m) towards W. C–Gr 
boundary follows a steep slope between stations 7 (45.40 m) 
and 6 (243.64 m). The low along profile between stations 1 
and 6 marks an extension of the younger Champaner rocks 
exposed around stations 7 and 8 (Rajgarh Formation) and is 
confirmed based on aeromagnetic data (Sahu 2012).

Phyllite–quartzite boundary

The phyllite–quartzite (P–Qr boundary) sequence 
of Champaner Group is well exposed in the western 

Table 2  Fundamental resonant frequency f0, f1 and f2 for station 1–32 across Narukot Dome and in its western extension along a WNW profile

The depths of rheological boundaries are calculated using Eq. 3 (h = 56.8 fr 
−1: derived from borehole data from station 29 whereas Eq. 4 

(h = 58.3 ± 8.8fr 
−0.95 ± 0.1; Dinesh et al. 2010)

Stations fo Depth in m 
(Eq. 3)

Depth in m 
(Eq. 4)

f1 Depth in m 
(Eq. 3)

Depth in m 
(Eq. 4)

f2 Depth in m 
(Eq. 3)

Depth in m 
(Eq. 4)

1 0.2328 243.814 232.828 0.913 62.169 63.565

2 0.913 62.169 63.565 18.0848 3.139 3.726

3 0.7088 80.079 80.848 18.0848 3.139 3.726

4 1.1759 48.269 49.982 0.2328 243.814 232.828

5 0.2328 243.814 232.828

7 12.6896 4.473 5.217 1.3011 43.625 45.402

8 1.3011 43.625 45.402 25.7738 2.202 2.661

9 1.18284 47.986 49.704 12.3244 4.605 5.363

10 0.7456 76.127 77.053 25.7738 2.202 2.661

11 27.1119 2.094 2.536 1.1759 48.269 49.982

12 12.6896 4.473 5.217

13 18.0848 3.139 3.726

14 10.902 5.206 6.026

15 9.3662 6.060 6.961 1.3687 41.470 43.269

16 8.904 6.375 7.304 18.0848 3.139 3.726 1.2369 45.889 47.638

17 14.7704 3.843 4.516

18 1.8543 30.610 32.426 25.7738 2.202 2.661 4.3838 12.948 14.319

19 1.5145 37.478 39.302 20.0113 2.836 3.384

20 10.364 5.477 6.323 1.6758 33.870 35.699

21 27.1119 2.094 2.536 19.0237 2.984 3.551

22 6.572 8.637 9.747

23 1.8543 30.610 32.426

24 1.4397 39.425 41.239

25 18.0848 3.139 3.726

26 18.0848 3.139 3.726

27 19.0237 2.984 3.551

28 5.3676 10.575 11.813

29 8.4645 6.706 7.664 1.4397 39.425 41.239

30 10.902 5.206 6.026

31 10.364 5.477 6.323

32 1.3687 41.470 43.269 6.9132 8.210 9.289 25.7738 2.202 2.661
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extension of Narukot dome. During the field studies, 
boundary of different lithology and their trends were 
recorded and mapped (Figs. 1, 2). Lithology and structural 
trends were plotted along the topographic profile, extrapo-
lating their contact up to the C–Gr boundary (Fig. 5).

Other rheological boundaries

In the western portion of the profile, the C–Gr bound-
ary is ~240 m deep. The Rajgarh Formation in this part 
directly overlies granites deduced from aeromagnetic 

Fig. 4  Fundamental resonant 
frequency of 1–32 stations 
along WNW trending profile. 
The diameter of bubbles cap-
tures amplitude of fundamental 
resonant frequency. The blue 
color represent frequency for 
C–Gr boundary  (L1) that ranges 
between 0.2219 and 10.364 Hz, 
whereas red color represents 
frequency for P–Qr boundary 
 (L2) that ranges between 10.902 
and 27.1119 Hz

Fig. 5  Layered model for the profile along Narukot dome and to 
its W. Subsurface interphases of C–Gr and P–Qr plotted with refer-
ence to the surface elevation. C–Gr boundary shows the granite plu-
ton hump (from station 16 to 29) towards eastern part of the profile. 
The C–Gr interphase in W distinguishes a steep wall of the pluton 
(between stations 6 and 7) taking pluton further deeper to 243.64 m 
(station 6) and 232.82 m (station 1). The P–Qr boundary shows 

a steep plunge E of the granite pluton hump and 15° gentle plunge 
due W. The profile highlights subsurface extension of the Champaner 
Group further W overlain by Mesozoic sedimentaries and thin cover 
of Deccan basalt between stations 1 and 7. Numbers in the figure 
indicate (i) granite, (ii) quartzites, (iii) phyllites, (iv) conglomerate, 
(v) Mesozoic sedimentaries, and (vi) Deccan basalt
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data (Sahu 2012). The boundary between the Rajgarh 
Formation and Mesozoic sediments is ~70 m deep. The 
boundary between the Mesozoic sediments and Deccan 
basalt is ~1–2 m deep (Fig. 5).

Discussions

The microtremor study reveals Champaner–granite boundary 
as the most conspicuous rheological boundary that empha-
sizes the morphology of subsurface granite pluton (Fig. 5). 
The granitic pluton forms a hump between stations 29 and 16 
followed by gentle westerly dip up to station 7. The profile 
between stations 6 and 7 highlights a steep wall of the granite 
pluton, with 230-m deep C–Gr boundary, thereafter follows a 
rolling topography till station 1. On the other hand, the Cham-
paner metasediment terminates abruptly above granite plutons 
imparting a discordant relation. The sporadic granitic plutons 
emplaced in the terrain presumably uprooted the Champaner 
metasediments giving “rootless” characteristic especially at 
Narukot dome and to its West (Fig. 5). Further northeast of 
the Narukot dome, at Gol Dungari such rootless character can 
be deciphered (Limaye and Joshi 2016). The estimated verti-
cal thickness of Champaner metasediments varies as: 30 m 
(station 20), 100 m (station 21) and goes to a maximum of 
136 m (station 12) at the Shivrajpur Manganese Mine. In the 
W extension of Narukot dome, the estimated thickness of Raj-
garh Formation is ~108 m followed by 70-m thick Mesozoic 
sediment capped by 1–1.5-m thick Deccan basalt.

To present the relation between the pluton and associated 
deformation, we draw a geological cross-section across Naru-
kot Dome and its extension towards W, by applying standard 
method adopted in geological studies, extrapolating surface 
geology and structural trends up to regolith–granite rheologi-
cal boundaries delineated by microtremor studies (Figs. 2, 5). 
The sporadic emplacement of plutonic bodies produced asym-
metric plunge along the dome. The Champaner metasedi-
ments between stations 23 and 29, E of the pluton hump, are 
tightly folded and plunge steeply towards E (Fig. 2), whereas 
to the W of pluton hump (station 20) metasediments show 
open folds and plunge 15° due W (Fig. 2). However, the fold 
axis of both tight (towards E) and open folds (towards W) 
across the Narukot dome trends N95° signifying the same 
deformation phase (Fig. 2). The accompanied deformation in 
form of open folds with N and NW trends has further resulted 
into dome and basin geometry. A more detail mechanism of 
doming (such as Mukherjee 2011b; Mukherjee et al. 2010; 
Mukherjee and Mulchrone 2012) remains a subject of future 
research. Finally, pluton morphology, selective metamorphism 
and related deformations favor syntectonic granite emplace-
ment. Similar observations have been made in the Lunawada 
region—further NE of the study area (Mamtani et al. 2001).

Conclusions

(a) Microtremor method is a handy tool for geoscientists 
to infer morphology of subsurface plutons underneath 
meta-sedimentary sequence.

(b) Microtremor method would update the results along 
with field records to estimate thickness and to further 
project subsurface attitudes of the country rock.

(c) Country rock and pluton boundary, contact 
metamorphism and associated deformation connote 
syntectonic pluton emplacement.
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Abstract: Precambrian rocks of Champaner group located at the eastern extremity of Gujarat 

is characterised by covering from three sides, younger Godhra granitoid. This granitoid has 

been found to have intrusive relationship with the Champaner group of rocks. The variety of 

granitoid encountered within the study area is also referred as unclassified granites and 

gneisses by the earlier workers, due to the presence of foliations at some places. It has been 

found that there exists strong intermixing of these varieties with the country rocks which 

makes it difficult to differentiate between them. The main emphasis is given in present study 

to the structural evidences recorded in these granitoids with respect to Champaner group of 

rocks. By carrying out rigorous field studies it is seen that the granitoid display similar 

structural disposition that of Champaner, which suggest that the deformation was active till 

end phase of plutonic intrusion to shape itself in the identical fashion. On the contrary these 

granitoids were responsible to deform Champaner group of rocks, which was emplaced 

synchronously. 

Keywords: Champaner group, Godhra granitoid, deformation 

Introduction: Southernmost tip of Southern Aravalli Mountain Belt (SAMB) is located in 

the extreme eastern part of Gujarat. These rocks are of Champaner group having meso-

proterozoic age and are covered from northern, eastern and southern sides by younger 

plutonic intrusive (i.e. Godhra granite), while there exists deccan trap formation in the west 

(Gupta et. al. 1992, 1995) (Fig.1). On the basis of intraformational conglomerate the group is 

divided into six formations, viz. Lambia, Khandia, Narukot, Jaban, Shivrajpur and Rajgad, 

having total surface area of 1400 sq km (Gupta et. al. 1997). Structurally rocks of this region 

have undergone two phases of deformation, viz. D1 and D2. D1 phase is dominant throughout 

the group and resulted in E-W trending folds while D2 phase of deformation has its feeble 

effects from east to west and are characterised by N-S trending folds (Jambusariya and Merh 

1967, Gopinath et. al., 1977, Merh 1995). Due to its low deformed nature Champaner group 

has been a centre of debate with regards to its stratigraphic position. (Gupta et. al. 1980, 

1992, 1995) consider it as the youngest group of the Aravalli Supergroup, and Roy (1988) 

has suggested that it is younger than the Delhi Supergroup. Apart from the nature of folds and 

intergroup stratigraphic order, Champaner group is very poorly studied region in SAMB. 

Though holding its economic importance in manganese as well as uranium mineralization an 

attempt to give overall structural evaluation deserves further investigation.  
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The granite present within and all three sides of Champaner group vary in terms of its 

appearance and play a dominant role in defining its architecture. The relationship of granite 

with the present group is of intrusive nature. However in precambrian tectonics, granitic 

intrusions which are associated with several deformation events are useful in constraining the 

age of deformation (Sychanthavong, 1990). The reason for applying granitoid term (Winter 

2010) against granite is due to its complex origin encountered in the present study. The 

granite origin is always controversial but earlier results from different precambrian terrain 

suggest emplacement and crustal deformation may be interrelated and synchronous process 

(Solar et. al., 1998; Pressley and Brown, 1999). Aim of this paper is to document the field 

observations in granitoids supporting syndeformational event of Champaner group lying in 

the vicinity of Jhand and adjacent areas. Moreover, a correlation in terms of structural 

disposition is established by taking into account linear and planer features present within the 

study area. The paper also highlights microstructural evidences encountered within these 

granitoids. 

Geological setup: The study area is characterised by various lithological entities such as 

Oligomict meta-conglomerate, quartzite, phyllite, pelitic-hornfels of Lambia formation and 

younger granitoid rock of foliated as well as non-foliated variety. The Oligomict meta-

conglomerate encountered within the study area is the considered to be the basal 

conglomerate of Lambia formation. The pebble sized clasts are rounded to sub-rounded in 

nature, dominantly of quartz embedded in dark grey colour matrix (Fig.2a). This meta-

conglomerate horizon is in „L‟ shaped manner, exposed 2.5 km south west of Jhambughoda 

and can be traced along road section from Mota-Raska towards Jhand. Overlying quartzite is 

massive fine grained dark grey in colour and display significant structural signatures in terms 

of folds and warping (Fig.2b,c). Prominent kink bands are characteristics of fine grained 

phyllitic rock adjacent to the quartzitic horizon (Fig.2d). 

 Due to the effect of Godhra granitoid there has been developed pelitic hornfels in 

contact aureole between Jhand and Sagva (Bhatt et. al. 2012). The rock is hard, massive dark 

green in colour and show prominent foliations. Similar hornfelsic rocks and magnesite 

bearing calc-silicates have been reported from Wadek and Chalvad region by (Das et. al. 

2009, Sharma et. al. 2013). Appearance of granitoids within the study area varies at different 

places. There are in all two main varieties identified based on foliated and non-foliated 

nature. The foliated variety is whitish-grey in colour, coarse grain with the development of 

feeble gneissic structure on outcrop scale (Fig.2e,f). Dominant mineral assemblage are 

quartz, K-feldspar with biotite segregation. Microstructurally, the quartz grains in foliated 

granitoids are extensively strained and show development of subgrains. Such straining 

indicate intracrystalline deformation and recovery (Passchier and Trouw 2005) during 

folding, representing active deformation till end phase of magma consolidation (Fig.3a,b). 

The non-foliated variety are of two types distinguish based on the colour and nature of 

grain size.  The areas near Lambia village have non-foliated granitoid rock of pink colour 

with the effect of boron metasomatism resulting in the formation of tourmaline mineral 

(Fig.3c). Another non-foliated whitish-grey variety ranges in grain size from fine to coarse. 
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Fine grained granitoid is commonly found to occur in association with the coarse grained 

granitoid; at places, the latter is seen to have an intrusive relationship with the former. Such 

features indicate coarse grain granitoid is evolved subsequent to the fine grained (Fig.3d). 

Structural Setup: Southern most part of Aravalli domain represented by Champaner group 

of rocks are characterised by atleast two phases of deformation (Fig.4a). D1 is present 

throughout the group displaying E-W trending folds while D2 phase of deformation is 

represented in the form of N-S trending folds (Shah et. al. 1984), however derivatives of both 

the phases of deformation are present within the study area (Fig.4b). The quartzitic ridges, 

east of Jhand have strike E-W with variable dip direction represent regional scale antiformal 

and synformal structure. Similar meso-scopic folds in quartzite are also observed in unlined 

canal section, north of Mota Raska village. The folds are tight in nature with westerly plunge 

of 15˚. The variety of foliated granitoid on a regional scale has been mapped, which display 

similar folded antiformal and synformal structure. The axial trace of these foliated antiformal 

folded outcroups can be trace along unlined canal section till west of Jhand and another axial 

trace of synformal structure can seen along north of Mota Raska till east of Lambia village. 

The overall morphology of these foliated granitoids is enveloped from three sides by 

quartzitic ridges forming an outlier. These structural features can be correlated with E-W 

deformation of Champaner group. Derivatives of second phase of deformation can be seen 

over quartzites and phyllites in the form of N-S warping and Kink bands respectively. 

However the effects of second phase of deformation have not been witnessed over foliated 

granitoids. In order to visualize the identical style of folding of foliated granitoids (Fig.4c) 

and quartzites (Fig.4d), respective planer features have been plotted which resulted in 

identical structural attributes calculated through it. 

Discussion: The detail structural analysis of the study area reveals that D1 phase of 

deformation is dominantly seen to have E-W trending regional plunging tight folds in 

quartzites and ganitoids. Whereas D2 phase of deformation is represented by N-S trending 

warping and kink bands in quartzite and phyllite. By correlating the structural attributes of 

quartzites and granitoids, gives the idea of identical sense of folding. The granitoids of this 

region have been dated by Rb/Sr method which reflect the age (955± 20 my) (Gopalan et. al. 

1979) and are the result of within plate collision activity (Goyal et. al. 1997) in which partial 

melting of lower crust was involved due to heat supplied by upper mantle giving rise to A-

type granitoids . However still older granitoid intrusions of 1100 my from the Jhambughoda 

area have been reported by (Shivakumar et. al. 1993). On the basis of these variations in 

geochronology of granitoids, it postulates two different pulses in the present region. Such 

evidences can be substantiated in the field by studying granitoids which are devoid of N-S 

folding. The granitoid intrusion which was responsible to give rise D1 phase of deformation 

might be older than the pulse which gave later D2 deformation. Based on our results it is 

suggested that after the emplacement and consolidation, the granitoid has been synchronously 

co-folded along with the country rocks. 

 Similar synchronous emplacement has been recorded from Devghad Bariya region 

situated NE of Champaner group. These rocks represent Lunawada group and gets terminated 
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in the vicinity of Devgadh Bariya where they come into contact with granitic and gneissic 

rocks; the latter are known to constitute the Godhra Granite and Gneiss (Srikarni et. al., 

1992). Lithologically Lunawada group comprises meta-sedimentary rocks and are involved in 

at least three deformation events associated with regional metamorphism and exhumation 

(Mamtani, 1998; Mamtani et al., 1999a,b, 2000, 2001; Bakker and Mamtani, 2000). Based on 

the field as well as magnetic foliations from granite and gneisses of Devghad Bariya suggest 

similar trend coinciding with D3 deformation of Lunawada region (Mamtani et. al., 2005). In 

addition to that these granites accommodated deformation and strain during its evolutionary 

history. Identical to that of Champaner‟s, there exists a probability that these granitoids must 

have derived by melting of the gneiss and were emplaced synkinematically (Mamtani et. al., 

2002).  

Conclusion 

Based on the field as well as lab investigation it can be inferred that the quartzite and 

foliated granitoid show similar sense of folding, suggesting synchronous deformation along 

with the granitoid emplacement. Based on cross cutting field relationship it can be said that 

coarse grain non-foliated granitoid is evolved subsequent to the fine grained. The quartz 

grains in foliated granitoids exhibit strained nature, implying intracrystalline deformation 

active till synchronous emplacement. 
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Captions: 

Fig.1: Lithostratigraphic map of Southern Aravalli Mountain Belt, modified after Gupta et. 

al., 1992. 

Fig.2: Field photograph showing: (a) Pebble sized clasts in oligomict meta-onglomerate. Loc. 

Mota Raska. (b) Tight fold in quartzite. Loc. Mota Raska. (c) N-S trending warps in quartzite. 

Loc. Mota Raska. (d) N-S trending kink bands in phyllite. Loc. Mota Raska. (e) Intermixed 

granitoid of foliated variety .Loc.  Jhand. (f) Meso-scopic view of feeble gneissic structure in 

granitoid. Loc. Lambia. 

Fig.3: (a) Photomicrograph of granite representing subgrain development in quartz grains. (b) 

Photo--micrograph of granite showing undulose extinction in quartz, implying intracrystalline 

deformation. © Field photograph of non-foliated granite showing presence of tourmaline 

mineral indicating boron metasomatism. (d) Field photograph showing discordant 

interrelationship of coarse grain and fine grain granite. 

Fig.4: (a) Litho-stratigraphic map of Champaner group, modified after Gupta et. al., 1997. (b) 

Enlarged litho-stratigraphic map of the study area. (c) Streographic plot of foliated granitoid. 

(d) Streographic plot of quartzite. 
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