List of Figures

1.1	Seasonal Migration of ITCZ	2
1.2	Schematic of fractionation of ${}^{13}C$ in soil	6
1.3	Rayleigh isotopic distillation curve	8
1.4	Temperature- $\delta^{18}O$ relationship in precipitation	9
1.5	Relation between rainfall and its $\delta^{18}O$	10
1.6	Schematic representation of a convective cloud system	11
1.7	$\delta^{18}O$ variation with altitude $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	12
1.8	Continental effect	12
2.1	Conceptual model explaining the formation of speleothems in a	
	karstic cave	17
2.2	A schematic diagram of the role of different pathways involved in	
	speleothem formation	21
2.3	Factors controlling $\delta^{13}C$ of speleothem $\ldots \ldots \ldots \ldots \ldots$	24
2.4	Map of the India showing the locations of the caves explored for	
	paleoclimate studies	32
2.5	Overview of the Dandak cave	33
2.6	Cross sectional view of Kotumsar cave	34
2.7	Cross sectional view of the Belum cave	35
2.8	A schematic explaining Upwelling in the coast of Oman	36
2.9	Location of core SK-234-60 from Andaman Sea	38

3.1	Dramet cutting machine at PRL	42
3.2	New Wave Research Micro Mill at PRL	43
3.3	Polished cross sectional view of the Dan-I stalagmite	45
3.4	Polished and schematic cross sectional view of the Dandak-II sta-	
	lagmite	46
3.5	Polished cross sectional view of the Kotumsar cave speleothem	47
3.6	Schematic cross section of KOT-I stalagmite	48
3.7	Polished cross-section of Kailash stalagmite	49
3.8	Polished cross-section of Belum stalagmite	50
3.9	Sketch of a mass spectrometer	52
3.10	Working principle of quadrupole	54
3.11	Thermo Fisher Delta-V Plus IRMS	54
3.12	Kiel-carbonate device and Thermo Fisher MAT-253 IRMS $\ .$	55
3.13	Working principle of Kiel carbonate	57
3.14	Thermo-scientific Quadrupole-Inductively Coupled Plasma mass	
	spectrometer	62
3.15	Typical calibration curves for different trace elements generated on	
	ICP-MS	63
3.16	The benzene synthesis glass line at PRL	67
3.17	Schematic representation showing wet and dry combustion setup	
	for radiocarbon dating	71
3.18	Schematic diagram showing acetylene and benzene synthesis setup	72
3.19	Formation of Uranyl compound in water	74
3.20	Rosholt and Osmond type plots used to determine for initial ac-	
	tivities of ^{230}Th and ^{234}U in the sample	75
3.21	Schematic of the Monte Carlo simulation for age model	78
4.1	Climatological monthly rainfall over Dandak cave	82

4.2	Plane polarized light and cross polarized light images of Dan -I	
	stalagmite	82
4.3	Age model of Dan-I stalagmite	83
4.4	$\delta^{18}O$ and $\delta^{13}C$ profiles of the Dan-I stalagmite	87
4.5	Trace element variations in the Dan -I stalagmite	88
4.6	Age model reconstructed for Dan - II stalagmite	89
4.7	$\delta^{18}O$ and $\delta^{13}C$ profiles of Dan-II stalagmite	90
4.8	Sketch of the Dandak-II stalagmite, showing sampling the sam-	
	pling sites for Hendy's test and U-Th ages	91
4.9	Age model for the Kotumsar stalagmite	93
4.10	Hendy's test results of Kotumsar stalagmite	93
4.11	$\delta^{18}O$ and $\delta^{13}C$ timeseries of KOT-I stalagmite $\ldots \ldots \ldots$	94
4.12	Monsoon rainfall reconstructed from Ulvi speleothem and Param-	
	bikulam teak cellulose	95
4.13	Locations of marine and terrestrial proxies	97
4.14	$\delta^{18}O$ variations of planktic for aminifera from six different cores	
	from the eastern Arabian Sea	98
4.15	Combined Holocene monsoon record based on $\delta^{18}O$ of KOT-I,	
	Dandak-I and II stalagmites	100
4.16	Comparison between Dandak- II stalagmite, GRIP ice core record	
	and Qunf cave	102
4.17	Interproxy comparison between present study and ISM records	106
4.18	Charcoal layers preserved in sediments of the Kotumsar cave and	
	the Dandak cave	107
4.19	The comparison between $\delta^{18}O$ time series of Jhumar speleothem,	
	Dandak speleothem, and the present study	109
5.1	Locations of different terrestrial records from the core monsoon	
	region of India	116

5.2	Age model of the Kailash stalagmite	119
5.3	$\delta^{18}O$ and $\delta^{13}C$ timeseries of the Kailash cave stalagmite	120
5.4	Climatological monthly rainfall over the Belum cave	122
5.5	Three day back trajectory at the Belum cave	122
5.6	Correlation coefficient between model simulated JJAS average rain-	
	fall $\delta^{18}O$ at the Belum cave and over surrounding grids \ldots \ldots	123
5.7	Plane polarized light and cross polarized light images of a thin	
	section of the Belum stalagmite	124
5.8	Age model of the Belum stalagmite	128
5.9	$\delta^{18}O$ profile of the Belum cave stalagmite	129
5.10	Comparison between the $\delta^{18}O$ profile of the Belum stal agmite and	
	trace element ratios	130
5.11	Interproxy comparisons of the $\delta^{18}O$ profiles of Sanbao, Xiabailong	
	cave stalagmites with the Belum stalagmite	132
5.13	Locations of different cores raised from the Arabian Sea and the	
	Bay of Bengal	136
5.14	Comparison between Andaman Sea sediment core $\delta^{18}O$ record of	
	the present study with sediment cores from the Bay of Bengal and	
	the Arabian sea	138