LIST OF FIGURES

	LIST OF FIGURES	Page No
Figure 1.1	(A) Location map showing the lower Narmada valley. (B) Generalized	3
0	geological map (after Biswas, 1987) showing the location of study area (dotted	
	square).	
Figure 2.1	Map showing regional geology of the Narmada basin (after Biswas, 1987).	8
Figure 2.2	Tectonics map of western continental margin of India showing three rift	10
U	systems (after Biswas, 1987).	
Figure 2.3	Geological and structural map of the study area (after Agarwal, 1984).	13
Figure 3.1	Flow chart showing the methodology adopted in the present study.	21
Figure 3.2	(A) Diagram showing the principle of GPR. (B) Diagram showing sequence of	22
C	producing GPR profile.	
Figure 3.3	(A) Field photograph of one of the GPR survey site in the NSF zone. (B)	24
C	Photograph showing 80 MHz antenna. (C) Photograph showing control unit.	
Figure 4.1	Digital Elevation Model (DEM) of the study area. I to IV are the	25
C	morphotectonic segments of the study area. Alignments of topographic sections	
	in Figs. are also shown. Note ENE-WSW trending north facing scarpline	
	delimiting the uplands. Incising drainages in the alluvial terrain	
	to the north of the scarpline is also seen.	
Figure 4.2	Photographs of the study area showing various characteristics of tectonically	26
	controlled landscape. (A) South-viewing photomosaic showing the sharp	
	physiographic contrast along the NSF. The scarps cut basaltic flows of the	
	Deccan Trap Formation. The foreground is the incised alluvial plain. Arrows	
	indicate downstream direction of the Nandikhadi River. (B) View of a ~16 m	
	high waterfall along the Nandikhadi River near the upland zone. South-dipping	
	basaltic flows can be seen in the channel. (C) Close view of the slickensided	
	surface of Madhumati Fault in basaltic rocks indicating oblique slip movement.	
Figure 4.3	Geomorphic map of the lower Narmada basin showing various geomorphic	28
	surfaces (modified after Chamyal et al., 2002).	
Figure 4.4	Contour map of the study area with drainage and fault lines. Note the ENE-	28
	WSW trending north-facing scarps of the NSF and gentle northward slope of	
	the alluvial plain.	
Figure 4.5	Photographs of basaltic flows dipping in different directions. (A) Photograph	30
	showing southward dipping basaltic flows exposed in the upstream area of the	
	Madhumati River near the Tejpur. (B) Photograph showing northward dipping	
	basaltic flows exposed in the incised cliff section of the Nandikhadi River in	
	the upstream area near the Jhuna Ghanta. Arrow indicates downstream	
	direction of the river which is in the north.	
Figure 4.6	(A) Photograph showing field setting of the alluvial plain. (B) Side view of the	32
	terrain shown in the (A).	
Figure 4.7	Topographic profiles drawn along the trend of NSF (trend shown in Fig.4.1)	32
	over the alluvial terrain to the north of the scarps. Note the prominent variation	
	in the elevation of the alluvial surface in different segments.	
Figure 4.8	N-S oriented topographic profiles across the study area (trends shown in	34
	Fig. 4.1). Note the steep north facing scarps marking the NSF and the distinct	
	but variable northward slope of the alluvial plain.	
	Topographic profiles drawn along the trend of NSF (trend shown in Fig.4.1)	34
Figure 4.9	over the scarpline marking the NSF. Note the prominent variation in the	
	elevation of the crest line in different segments.	
	elevation of the crest line in different segments.	

Figure 4.10	Photographs showing youthful drainage characteristics in the upland zone. (A)	36
	Knick point of about 2 m formed in a trappean channel bed of a small stream.	
	(B) Zone of knick points and waterfalls. (C) Tilted gravel bar deposited in the	
	upstream area. (D) Strath terrace showing the Quaternary sediments directly	
	resting over the Deccan traps.	
Figure 4.11	Incised cliff section near Phulwadi.	37
Figure 4.12	A) Photograph showing incised Quaternary sections in the Nandikhadi River.	38
	(B) Close view of the cliff section shown in (A). Arrow indicates downstream	
	direction of the river.	
Figure 4.13	(A) Photograph showing incised cliff section in the Madhumati River. Arrow	39
C	indicates downstream direction of the river. (B) and (C) Photograph showing	
	incised cliff section of the Ratanpurni nadi River near Karad.	
Figure 5.1	Slope map of the study area. Slope values are in degrees. Arrows indicate the	42
	steep northward slopes formed in alluvial plain close to the scarps. Note the	
	north flowing drainages meeting the Narmada River and erosional gullies	
	(ravines) with high degree of slope suggesting fluvial dissection.	
Figure 5.2	Aspect map of the study area. Note the dark pink colored pixels along the NSF	43
1 19410 0.2	zone indicating northward slope.	15
Figure 5.3	Shaded relief map of the study area.	43
Figure 5.4	Longitudinal river profiles of the trunk streams of drainage basins R1 to R10.	44
I iguit J.+	Note the steepened reach of the profiles in the vicinity of the NSF. Circles	
	show the locations of anomalous high values of Stream Length Gradient index	
	(SL index) shown in Table 5.1.	
Figure 5.5		45
Figure 5.5	Schematic diagrams elaborating the method used for calculation of various	43
Eigung 5 (geomorphic indices included in the present study.	16
Figure 5.6	Landsat Thematic Mapper (TM) image overlapped over the shaded relief map.	46
	The arrow shows the prominent northward slope of the alluvial terrain near the NSF. Dark lines indicate the mountains fronts studied with Smf values.	
	Hypsometric curves of the drainage basins (R1 to R10) traversing the NSF in	10
Figure 5.7		48
0	the study area. The values of hypsometric integral are also shown.	49
Figure 5.8	Map of showing drainage basins R1to R10 and the direction of tilting	49
	(indicated by black arrows) as revealed by drainage basin asymmetry. Note in	
	segment-I, R2 & R3 shows westward tilting; in segment-II, R4 shows eastward	
	tilting whereas R5 & R6 shows westward tilting; in segment-III, R7 shows	
	westward tilting. This pattern correlates with the topographic profiles of the	
	alluvial plain shown in Figure 9A. In segment-IV, R8 & R10 shows eastward	
	tilting whereas, R9 shows westward tilting. This anomalous tilt pattern is	
	attributed to complexly folded and faulted Tertiary rocks. Segments studied for	
D' 5 0	mountain front sinuosity and the S_{mf} values obtained are also shown.	<i>c</i> 2
Figure 5.9	SL index map for drainage basins R1 to R10. Note the high SL values of class-	53
	3 & 5 in segment-I (R1 & R3), class- 3 in segment-II (R5), class- 3, 4 & 5 in	
	segment-III (R7) in the vicinity of scarpline. Dashed lines demarcate different	
	sinuosity zones delineated on the basis of variation in sinuosity pattern and	
	sinuosity values. Note the zone of low sinuosity values correlating with the	
	zone of high SL index values. On the contrary, zones of high sinuosity values	
	are the zones of low SL index values.	
Figure 5.10	Graphs showing the variation pattern of SL- index values from upland to	54
	downstream direction. Contour values are plotted on the X-axis while the SL	
	index is plotted on the Y-axis.	

Figure 5.11	Graph showing the relationship between stream power (Ω) and graded river gradient index (K) for the drainage basins (R1-R10) of the study area.	60
Figure 6.1	(A) Location map of the study area. (B) Map of Gujarat showing climatic zones. (C) Geomorphic map of lower Narmada basin (after Chamyal et al., 2002). Boxed area demarcates the identified bajada surface. (D) DEM of lower Narmada basin showing physiographic and tectonic setting of bajada surface, and drainage basin of feeder channels. Alignment of topographic section in	63
	Fig. 6.2A and locations of lithologs in Fig. 6.3, 6.4 and 6.5 are also shown.	
Figure 6.2	 (A) Topographic cross profile of the bajada surface drawn from the DEM. Note the wedge shaped coarse gravelly bajada sediments deposited in front of the mountain front. Three sectors of bajada surface and their slopes are also shown. (1- Allchin et al., 1978). (B) View of the cliff section exposing bajada sediments at site 10. Note the parallel horizontal calcite sheets formed in basal matrix supported gravel lithofacies. (C) View of the cliff section at site 11. 	65
Figure 6.3	Lithologs of bajada sediments exposed in northward flowing unnamed rivers located to the west of Nandikhadi River. Locations are shown in Fig. 6.1d. The vertical scale is in meters.	68
Figure 6.4	Lithologs of bajada sediments exposed in the Nandikhadi River. Locations are shown in Fig. 6.1d. The vertical scale is in meters.	69
Figure 6.5	Lithologs of bajada sediments exposed in the Nandikhadi River. Locations are shown in Fig. 6.1d. The vertical scale is in meters.	69
Figure 6.6	Close view of various depositional lithofacies exposed in river cliff sections. (A) Gmm lithofacies. Note the angular granule to boulder size clast embedded in the coarse sandy matrix. (B) Gcm lithofacies. (C) Sm lithofacies. (D) Isolated scour & fill structures formed at the base of Sm lithofacies. Note the presence of rhizocretions formed perpendicular to the horizontal layers of coarse sand. (E) Soil (P lithofacies) exposed in the distal sector of bajada. Note the clearly visible root structure in the middle part of the soil horizon. (F) Ss lithofacies. Note the prominent red color of the facies.	70
Figure 6.7	(A) Composite litholog showing sequential and topographic development of the bajada with aggradation phases. (B) Depositional model for the deep braided river system based on Miall, (1996) showing the pattern of deposition of different architecture elements and relevant sedimentary lithofacies. (C) Schematic model explaining the deposition of the coarse gravelly sediments in phases that are related to the tectonic uplift along the NSF. Stage I- Initial uplift along the NSF led to the deposition of coarse gravelly debris flow deposits in the semi-arid climate. Stage II- Deposition of fine silty sand deposits during tectonically quiescence period in semi-arid environment. Stage III- The second pulse of uplift provided coarse gravelly material deposited as longitudinal in sub-humid climate. Stage IV- Deposition of fine silty sand sediments during the tectonically quiescence period. Stage V- Third pulse of uplift deposited coarse gravelly sediments as longitudinal bar deposits.	72
Figure 7.1	Field photographs of deformed Mesozoic inliers in segment I. (A) Photograph showing tight anticlinal folding in the shale beds. (B) Photograph showing tectonic contact between sandstone, shale and limestone.	77
Figure 7.2	Field photographs of the Nandikhadi River in upstream area in segment II. (A) Photograph of the highest waterfall of 16 m height. (B) Photograph taken from the top of the water fall shown in A. Note the deep and narrow meandering channel with frequent occurrence of knick points. Solid arrow indicates	79

	downstream direction; dotted arrows indicate the knick points.	
Figure 7.3	Field photographs of the fault planes in the shear zone area of the NSF. (A)	79
-	Displacement along the steeply northward dipping fault plane showing reverse	
	type of movement. (B) Vertical fault plane within the sheared basaltic rocks.	
Figure 7.4	Photographs of the basaltic outcrop intruded by veins. (A) Photograph showing	80
C	numerous displaced veins. Square frames show the location of the	
	displacement. (B), (C) and (D) are the close view of the displaced vein. Note	
	the left lateral movement indicated by the arrow.	
Figure 7.5	Field photographs of the basaltic flows exposed in the Nandikhadi River.	80
1 15u10 7.0	Arrow indicates downstream direction which is towards north. (A) Steeply	00
	northward dipping basaltic flows in the vicinity of the NSF scarp. (B)	
	Northward dipping basaltic flows few meter downstream from location of A.	
Figure 7.6	Satellite imagery of NSF zone in the vicinity of Madhumati River. The various	83
rigule 7.0		05
	structural elements are marked. Note the straight course of Madhumati River	
	which follows the NNW-SSE trending transverse fault and the compressed	
T : 7	meander near Tejpur.	0.4
Figure 7.7	Field photographs of the upstream area of the Madhumati River near Tejpur.	84
	(A) Photograph of the southward dipping basaltic flows. (B) Shear zone	
	located few meter downstream from the location of A. (C) Slickensides related	
	to the Madhumati fault exposed in the shear zone shown in B.	
Figure.7.8	Satellite imagery of NSF zone in segment IV showing the locations of	85
	paleobank, Sarasia hill and Rajparadi Fault.	
Figure 7.9	Cliff on the right bank Karjan River near Karjan dam. Arrow indicates the	87
	downstream direction of Karjan River. Notice the elevation of Quaternary	
	sediments above the river bed.	
Figure 8.1	A map showing the locations of the GPR survey sites. I to IV are the	92
	morphotectonic segments of the study area.	
Figure 8.2	(A) Processed CMP profile taken over the basaltic flows at Gora colony. (B)	93
	Velocity diagram of the CMP profile shown in A. (C) Processed CMP profile	
	taken over the Tertiary rocks near Jhagadia. (D) Velocity diagram of the CMP	
	profile shown in B.	
Figure 8.3	(A) GPR profile taken at Gora colony (site 1) using 80 MHz bistatic antenna.	95
U	Note the displacement and hyperbolic reflections emanating from the fault	
	plane at ~15m. (B) Interpreted section of the profile shown in A.	
Figure 8.4	(A) GPR profile taken near Umarwa (site 2) using 80 MHz bistatic antenna.	97
i iguite o. i	Note the vertical displacement indicating the fault plane at $\sim 10m$. (B)	21
	Interpreted section of the profile shown in A.	
Figure 8.5	(A) GPR profile taken near Chakva (site 3) using 80 MHz bistatic antenna.	98
riguie 0.5	Note the bifurcation of the reflections and vertical displacement that indicating	70
	the fault plane at distance of $\sim 6m$ and below depth of 5m. (B) Interpreted	
Figure 0.6	section of the profile shown in A.	00
Figure 8.6	Field photographs of the GPR survey site 4 located near Sanedra. (A) Front	99
	view of the survey site showing excavated trench in basaltic ridge and direction	
	of survey line. Arrow indicated north direction. (B) Side view of the survey site	
	showing two different types of basaltic flows exposed in the trench, shown by	
	the arrows. (C) A close view of the exposure showing highly fractures and	
	sheared basalts.	
Figure 8.7	(A) GPR profile taken near Sanedra (site 4) using 80 MHz bistatic antenna.	100
	Note the discontinuity and displacement of the reflections at ~29m. (B)	1

	Interpreted section of the profile shown in A.	
Figure 8.8	(A) GPR profile taken at Jhuna Ghanta (site 5) using 80 MHz bistatic antenna.	101
	Note displacement of the reflections at ~40 m. (B) Interpreted section of the	
	profile shown in A.	
Figure 8.9	(A) GPR profile taken at Wali (site 6) using 80 MHz bistatic antenna. Note	103
	displacement of the reflections at ~ 29 m. (B) Interpreted section of the profile	
	shown in A.	
Figure 8.10	(A) GPR profile taken near Kapat (site 7) using 200 MHz monostatic antenna.	104
	Note displacement of the reflections at ~ 7.5 m. (B) Interpreted section of the	
	profile shown in A.	
Figure 8.11	GPR profile taken near Jhagadia (site 8) using 200 MHz monostatic antenna.	105
	Note the significant displacement of the reflections at ~ 7.5 m.	
Figure 8.12	Interpreted GPR profile taken near Karad (site 10) using 200 MHz monostatic	106
	antenna. Note the sudden change in the radar facies at 15-17.5 m.	

LIST OF TABLES

		Page No.
Table 2.1	Stratigraphy of rocks of study area (Merh, 1995)	7
Table 4.1	Basic properties of the drainage basins in the study area.	37
Table 5.1	Stream Length gradient index (SL index) values calculated for the drainage basins of the study.	52
Table 6.1	Sedimentary facies characteristics tics of bajada sequence in the study area.	66