
Chapter 3

Nonlinear Cauchy problem for
abstract impulsive fractional
quasilinear evolution equation
with delay

The work discussed in chapter one is extended in chapter two by adding a delay

condition on it and derived sufficient conditions for existence and uniqueness of

mild solution of the integro-differential equations:

cDβx(t) = A(t, x)x(t) + f(t, x(φ(t)), Tx(t), Sx(t)) t 6= tk, k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(0) = x0 − g(x),

over the interval [0, T0] in a general Banach space X. Where, A(t, x) is bounded

quasi linear operator on X and f : [0, T0] × X × X × X → X, T, S : X → X are

defined by Tx(t) =
∫ t

0
h(t, s, x(ψ(s)))ds and Sx(t) =

∫ T0
0
k(t, s, x(ξ(s)))ds, where

h : D0 ×X → X, D0 = {(t, s); 0 ≤ s ≤ t ≤ T0} and k : D1 ×X → X,

D1 = {(t, s); 0 ≤ t, s ≤ T0} are the operators satisfying condition of the hypotheses,

and an example shows application of the result.
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3.1 Introduction

Many of the researchers taking interest in development in the theory of fractional

differential equations because of its various applications in science and engineering

[7, 8, 9, 10, 11, 12] this is due to its non local property [14] fractional differential

equations are considered as an alternative model to nonlinear differential equations

[13].Several researchers studied existence and uniqueness of the solutions of fractional

order differential equations with classical condition using fixed point theory [11,

14, 15]. Existence results with nonlocal condition studied by N’ Guerekata [18],

Balachandran and Park [19].

The rapid development toward impulsive differential equations played important

role in modeling of many problems [20]. Therefore, impulsive differential equations

have been great interest to researchers. The existence and uniqueness of impulsive

differential equations using fixed point theory studied by A. Anguraj, and M. M.

Arjunan [39]. The existence result of impulsive fractional differential equations with

classical conditions have been obtained by Benchohra and Slimani [40], Mophou

[41], Ravichandran and Arjunan [42], Benchohra and Slimani [40]. Balachandran

et. al. [21, 22] and Gao et. al. [43]. The systems in which past history of the

state is required are modeled into Delay differential equations [45]. Existence and

uniqueness of fractional impulsive differential equations with delay was initiated by

K. Balachandran, S. Kiruthika and J. J. Trujillo [46].

3.2 Notations

(N1) X = Banach space.

(N2) R+ = [0,∞)

(N3) C([0, T0], X) =
{
x : [0, T0]→ X/x is continuous

}
with norm ||x|| = supt||x(t)||

(N4) PC([0, T0], X) =
{
x : [0, T0]→ X;x ∈ C([tk−1, tk], X), and x(t−k ) and x(t+k ) exist,
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k = 1, 2, · · · , p with x(t−k ) = x(tk)
}

with norm ||x||PC = supt∈[0,T0]||x(t)||

(N5) AC([0, T0], X) =
{
x : [0, T0] → X/x is absolutely continuous

}
with norm

||x|| = supt||x(t)||

(N6) B(X) =
{
A : X → X/A is bouneded and linear

}
with norm ||A||B(X) =

sup{||A(y)||; y ∈ X, ||y|| ≤ 1}

with preliminaries and properties, next section derived sufficient conditions for ex-

istence and uniqueness of solutions:

3.3 Equation with classical condition

This section presents the study of the existence and uniqueness of the solution

of impulsive fractional differential equation with classical condition. Consider the

fractional quasilinear impulsive integro-differential equation of the form

cDβx(t) = A(t, x)x(t) + f(t, x(φ(t)), Tx(t), Sx(t)) t 6= tk, k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(0) = x0

(3.3.1)

over the interval [0, T0], where A(t, x) is bounded quasi linear operator on X and

f : [0, T0]×X×X×X → X, T, S : X → X are defined by Tx(t) =
∫ t

0
h(t, s, x(ψ(s)))ds

and Sx(t) =
∫ T0

0
k(t, s, x(ξ(s)))ds; where h : D0 ×X → X, with

D0 = {(t, s); 0 ≤ s ≤ t ≤ T0} and k : D1 ×X → X, D1 = {(t, s); 0 ≤ t, s ≤ T0} are
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continuous. The equation (3.3.1) is equivalent to the integral equation of the form

x(t) =x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds+
∑

0<tk<t

Ix(t−k )

(3.3.2)

The following conditions are assumed to show the existence and uniqueness of the

solution (3.3.1).

(H1) A : [0, T0]×X → X is continuous bounded linear operator and there exists a

positive constant M , such that ||A(t, x)x−A(t, y)y||B(X) ≤M ||x− y||, for all

x, y ∈ X.

(H2) f : [0, T0]×X ×X ×X → X is continuous and there exists positive constants

L1, L2 and L3, such that ||f(t, x1, x2, x3) − f(t, y1, y2, y3)|| ≤ L1||x1 − y1|| +

L2||x2 − y2||+ L3||x3 − y3|| for all x1, x2, x3, y1, y2 and y3 in X.

(H3) h : D0 × X → X and k : D1 × X → X are continuous and there exists

positive constants H and K, such that ||h(t, s, x)−h(t, s, y)|| ≤ H||x−y|| and

||k(t, s, x)− k(t, s, y)|| ≤ K||x− y|| for all x and y in X.

(H4) The functions Ik : X → X are continuous and there exist positive constants

I∗k for all k = 1, 2, · · · , p, such that ||Ikx− Iky|| ≤ I∗k ||x− y|| for all x and y in

X.

Consider, γ =
Tβ0

Γβ+1
and further assume that,

(H5) q =

{
γ[(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑
I∗k

}
< 1
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Define F : PC([0, T0], X)→ PC([0, T0], X) by

Fx(t) =x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds+
∑

0<tk<t

Ikx(t−k )

(3.3.3)

Then equation (3.3.2) has unique solution if F defined by (3.3.3) has unique fixed

point. This means F is well defined bounded operator on PC([0, T0], X) and F is

contraction [23].

Lemma 3.3.1. If the operators A, f, T, S and Ik for k = 1, 2, · · · , p are continuous

then F is bounded operator on PC([0, T0], X).

Proof. Let a sequence {xn} be converges to x in PC([0, T0], X).

Therefore ||xn − x|| → 0 as n→∞. Consider,

||Fxn − Fx||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1||A(s, xn(s))xn(s)− A(s, x(s))x(s)||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1||A(s, xn(s))xn(s)− A(s, x(s))x(s)||ds

+
1

Γ(β)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)β−1||f(s, xn(φ(s)), Txn(s), Snx(s))

− f(s, x(φ(s)), Tx(s), Sx(s))||ds
}

+
1

Γ(β)

{∫ t

tk

(t− s)β−1||f(s, xn(φ(s)), Txn(s), Snx(s))

− f(s, x(φ(s)), Tx(s), Sx(s))||ds
}

+
∑

0<tk<t

||Ikxn(t−k )− Ikx(t−k )||

Assuming the continuity of A, f, T, S and Ik for k = 1, 2, · · · , p the right side of above
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expression tends to zero as n → ∞. Therefore F is continuous on PC([0, T0], X)

and hence F is bounded.

Sufficient conditions for existence and uniqueness of the solution of equation

(3.3.1).

Theorem 3.3.2. If the hypotheses (H1)-(H5) are satisfied, then the fractional quasi-

linear impulsive integro-differential equation (3.3.1) has unique solution in PC([0, T0], X)

for 0 < β ≤ 1.

Proof. To show equation (3.3.1) has unique solution it is sufficient to show F defined

(3.3.3) is contraction. Let x and y in PC([0, T0], X) and consider,

||Fx− Fy||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1||A(s, x(s))x(s)− A(s, y(s))y(s)||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1||A(s, x(s))x(s)− A(s, y(s))y(s)||ds

+
1

Γ(β)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)β−1||f(s, x(φ(s)), Tx(s), Sx(s))

− f(s, y(φ(s)), T y(s), Sy(s))||ds
}

+
1

Γ(β)

{∫ t

tk

(t− s)β−1||f(s, x(φ(s)), Tx(s), Sx(s))

− f(t, y(φ(s)), T y(s), Sy(s))||ds
}

+
∑

0<tk<t

||Ikx(t−k )− Iky(t−k )||
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Using (H1)-(H4),

||Fx− Fy||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1M ||x− y||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1M ||x− y||ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1
{
L1 + T0HL2 + T0KL3

}
||x− y||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1ds
{
L1 + T0HL2 + T0KL3

}
||x− y||ds

+
∑

0<tk<t

I∗k ||x− y||

≤
{

T β0
Γ(β + 1)

[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑

I∗k

}
||x− y||

=

{
γ
[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑

I∗k

}
||x− y||

By (H5) , ||Fx − Fy||PC ≤ q||x − y|| with q < 1. Hence by Banach fixed point

theorem the equation (3.3.1) has unique solution.

3.4 Equation with nonlocal condition

In this section, classical condition is replaced by a nonlocal condition for existence

and uniqueness of solution of the impulsive fractional differential equation.

Consider the fractional quasilinear impulsive integro-differential equation of the form

cDβx(t) = A(t, x)x(t) + f(t, x(φ(t)), Tx(t), Sx(t)) t 6= tk, k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(0) = x0 − g(x)

(3.4.1)

over the interval [0, T0], where A(t, x)is bounded quasi linear operator on X and

f : [0, T0]×X×X×X → X, T, S : X → X are defined by Tx(t) =
∫ t

0
h(t, s, x(ψ(s)))ds

and Sx(t) =
∫ T0

0
k(t, s, x(ξ(s)))ds; where h : D0 ×X → X, with
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D0 = {(t, s); 0 ≤ s ≤ t ≤ T0} and k : D1 ×X → X, D1 = {(t, s); 0 ≤ t, s ≤ T0} are

continuous and g : X → X is given function.

The equivalent integral equation of (3.4.1) is given by

x(t) =x0 − g(x) +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s, x(s))ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds+
∑

0<tk<t

Ix(t−k )

(3.4.2)

The following hypotheses are assumed.

(H6) g : X → X is continuous and there exist a positive constant g∗, such that

||g(x)− g(y)|| ≤ g∗||x− y|| for each x and y in X.

(H7) q∗ = g∗ + γ
[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑
I∗k < 1.

Define G : PC([0, T0], X)→ PC([0, T0], X) by

Gx(t) =x0 − g(x) +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s, x(s))x(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(φ(s)), Tx(s), Sx(s))ds+
∑

0<tk<t

Ikx(t−k )

(3.4.3)
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Lemma 3.4.1. If the operators A, f, T, S and Ik for k = 1, 2, · · · , p are continuous

then G is bounded operator on PC([0, T0], X).

Proof. Let a sequence {xn} be converges to x in PC([0, T0], X).

Therefore ||xn − x|| → 0 as n→∞. Consider,

||Gxn −Gx||PC ≤ ||g(xn(s))− g(x(s))||

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1||A(s, xn(s))xn(s)− A(s, x(s))x(s)||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1||A(s, xn(s))xn(s)− A(s, x(s))x(s)||ds

+
1

Γ(β)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)β−1||f(s, xn(φ(s)), Txn(s), Sxn(s))

− f(s, x(φ(s)), Tx(s), Sx(s))||ds
}

+
1

Γ(β)

{∫ t

tk

(t− s)β−1||f(s, xn(φ(s)), Txn(s), Sxn(s))

− f(s, x(φ(s)), Tx(s), Sx(s))||ds
}

+
∑

0<tk<t

||Ikxn(t−k )− Ikx(t−k )||

So by continuity of A, f, T, S, g and Ik for k = 1, 2, · · · , p the right side of above

expression tends to zero as n → ∞. Therefore G is continuous on PC([0, T0], X)

and hence G is bounded.

The sufficient conditions are derived as under for existence and uniqueness of

the solution of equation (3.4.1).

Theorem 3.4.2. If the hypotheses (H1)-(H4) and (H6)-(H7) are satisfied, then

the fractional quasi-linear impulsive integro-differential equation (3.4.1) has unique

solution in PC([0, T0], X) for 0 < β ≤ 1.

Proof. To show equation (3.4.1) has unique solution it is sufficient to show G defined
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in (3.4.3) is contraction. Let x and y in PC([0, T0], X) and consider,

||Gx−Gy||PC ≤ ||g(x)− g(y)||

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1||A(s, x(s))x(s)− A(s, y(s))y(s)||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1||A(s, x(s))x(s)− A(s, y(s))y(s)||ds

+
1

Γ(β)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)β−1||f(s, x(φ(s)), Tx(s), Sx(s))

− f(s, y(φ(s)), T y(s), Sy(s))||ds
}

+
1

Γ(β)

{∫ t

tk

(t− s)β−1||f(s, x(φ(s)), Tx(s), Sx(s))

− f(t, y(φ(s)), T y(s), Sy(s))||ds
}

+
∑

0<tk<t

||Ikx(t−k )− Iky(t−k )||

BY (H1)-(H4) and (H6) the result is,

||Gx−Gy||PC ≤ g∗||x− y||

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1M ||x− y||ds+
1

Γ(β)

∫ t

tk

(t− s)β−1M ||x− y||ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1
{
L1 + T0HL2 + T0KL3

}
||x− y||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1ds
{
L1 + T0HL2 + T0KL3

}
||x− y||ds+

∑
0<tk<t

I∗k ||x− y||

≤
{
g∗ +

T β0
Γ(β + 1)

[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑

I∗k

}
||x− y||

=

{
g∗ + γ

[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑

I∗k

}
||x− y||

From (H7), ||Gx−Gy||PC ≤ q∗||x− y|| with q∗ < 1. Hence, by Banach fixed point

theorem [97]the equation (3.4.1) has unique solution.
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3.5 Example

Consider the following fractional integro-differential equation with the impul-

sive condition,

cDβx(t) =
1

10
sinx(t)x(t) +

1

(t+ 3)4

|x(sint)|
1 + |x(sint)|

+
1

10

∫ t

0

se
−x(coss)

4 +
1

20

∫ 1

0

(t− s)x2ds

∆x(
1

2
) =

|x(1
2

−
)|

18 + |x(1
2

−
)|

x(0) = x0 −
x

18

(3.5.1)

where β = 1
2

over the interval [0, 1]. Since, A(t, x) = 1
10
sinxI therefore

||A(t, x)x− A(t, y)y|| ≤ 1
10
||sinxIx− sinyIy|| ≤ 1

20
||x− y||,

Tx(t) = 1
10

∫ t
0
se
−x(coss)

4 ||Tx− Ty|| ≤ 1
10

∫ t
0
s||e

−x(sins)
4 − e

−y(sins)
4 || ≤ 1

40
||x− y||,

and ||Sx− Sy|| ≤ 1
20

∫ 1

0
|(t− s)||x2 − y2|||ds ≤ 1

40
||x− y||

and 1
(t+3)4

|| |x(sint)|
1+|x(sint)| −

|y(sint)|
1+|y(sint)| || ≤

1
81
||x− y||

therefore q∗ = g∗ + γ
[
(p+ 1)[M +L1 + T0HL2 + T0KL3]

]
+
∑
I∗k < 1. There-

fore by existence theorem the given system has unique solution in the interval

[0, 1].

3.6 Remark

1. This method suggest not only the existence and uniqueness about the solution

but it also suggest method to find approximate solution of impulsive fractional

differential equations (3.3.1) and (3.4.1).

2. This condition is not necessary condition this means equations (3.3.1) and

(3.4.1) may have solution if one of the (H1) to (H7) not satisfied.
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