
CHAPTER I
I'N PRODUCTION

1« The present thesis is devoted to the study of 
certain problems relating to absolute convergence of 
Fourier series. A Fourier series, as is well known, is a 
trigonomatrie series

(15 d0 -b ^>2 ^cl^ lersni*--^ 4^

whose coefficients are related to a ^7T - periodic

and Lebesgue-integrable function £ by means of the socalled 
Euler-Fourier formulae:
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Considerable amount of work has been done with 

regard to the summability problems of Fourier series and, 
in fact, one can hardly find problems of intrinsic merit 
in that field now, but much remains to be done with regard 
to the question of almost everywhere convergence and almost 
everywhere divergence of Fourier series. Also, one of the 
outstanding problems, which await their solutions in the
theory of Fourier series, is to ascertain the structural



properties of functions which have absolutely convergent 
Fourier series. ¥e have obtained results pertaining to both 
of these questions.
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This chapter is of introductory character and seeks 
to give a brief survey of problems dealt witbjin the thesis.

2. The problem of the absolute convergence of 

Fourier series appears to have been considered for the first 
time by S. Bernstein?-) in th'e year 1914. It will be ■ 

convenient to introduce some definitions and notations 
before we mention Bernstein’s theorem and its generalisat­

ions by others. Let

loCS) ss. \f l*.,) - H*z)\ ^
for % f j j4. S * Jh@ function 14 l$j

is called the modulus of continuity of £ • ¥e say that $ 
satisfies a Lipschitz condition of order ^ I ,

in (0 , $jr ), or in symbols LCj? o( (6 ; £ 7Tj > if 
there exists a constant C , independent of £ , such that

Uii) b«,
Bernstein proved the following theorem:

(1.1) If £ L UjxX t6,ZW) <x > X- ' ifess
the series

1) Bernstein D1



i

oo
(3) 21 (/MWMJ

'h^i

is convergent. For <?(«=. i , (3) need not converge.^
<a

Obviously the convergence of (3) implies the absolute 
convergence of the Fourier series (l); although (l) may

2)converge absolutely without the series (3) being convergent.

As a matter of fact, in our study of the problem of absolute 
convergence of a Fourier series we shall mostly investigate 
conditions under which (3) converges and deduce from it the 
absolute convergence of (l).

Now as the Fourier series of a function Lj~p -4^

need not be absolutely convergent it is natural to investigate

additional conditions satisfied by j which would ensure the
3)absolute convergence of its Fourier series. L. Neder^' has 

proved the following result in this connection:

(1.2) If the Lipsohitz condition in Bernstein*s theroem 

is strengthened to the condition:

c s^
U i$)
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1) For some generalizations of this theorem, see Bernstein W

O'], as also Salem ‘ J^2] •
2) Zygmund {4oJ, p.
3) Neder [2(5] •
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where £ > o and

(&) = 1^ + 8
tAli) - (*■*'*') J V

(C is a constant depending on • ^ , but not on S ) then the 

Fourier series of ^ converges absolutely*

The problem of the absolute convergence of a Fourier 

series may be formulated in the' following more general 

settings

Given a Fourier series (1). we want to know as to what 

values of the exponent will make the series

« f. (/«/-/*/;
9i*I '

converge#. In this connection, the following result was 
obtained by 0. Szslsz^ in the year 1922: #

(1.3) If j- it, A*) o » .then^the

series (4) converges for all f8 £ j[XcK+lJ »

necessarily for ft •=■ £j( £<?{ ■+■ 1),

JUC.Zaanenl) 2^, however, has proved the following theorem:

l) Szasz [23] 2) Zaanen {36}

# The problem is further generalised when we establish a
relation between o( } fi > and T which makes jr {\**1+far) (a?9i ***. 
see, for example, Cheng [8j and Yafiav [30j . *=z- ' v
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(1.4) If for certain £. >o ,

U(S> ~ ’

then (4) converges for ^ s=. f (/■<^^~^) •

Ttfe observe that Bernstein’s theorem (l.l) reduces to 

a particular case of Szeisz's result, for if we take e< 'P^ ? 

then £j ij so that could be taken greater or

equal to 1.

In the year 1928, A. Zygmund^ proved the following 

result which is closely related to Bernstein’s theorems

(1.5) If f is of bounded variation and belongs to 

iJtj? o{ (0 f £ITJ j <X o j then the Fourier series of f
converges absolutely.

In fact, the theorem holds even 'if the condition ’ £ 
belongs to Ltj> a (o ,furj } ?i>o' is replaced by the 

following less stringent conditions

(5) OHS) o 7 >0

The fact that the Fourier series of £ need not be absolutely

convergent when *h =, <3 in condition (5) has been proved
' .. 2)

recently by Chlng^tsun Loo. 7

l) Zygmund |37j 2) Loo fl8]
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It is important to note that the Fourier series of a 
function of bounded variation or even of an absolutely 
continuous function may not converge absolutely. This is 
seen from the classical example of the series

(6)
poT

7) &o4''h

which is the Fourier series of an absolutely continuous 
function, and which does not converge absolutely.

The following generalisation of Zygmund*s theorem
l) 2)(1.5) was obtained by Z. 'f7araszklewicz 'and A. Zygmund s

(1.6) If -f is of bounded variation and belongs to
L-Cfy . (€>jZjr) j <X ? O then the series (4)
converges for all 7 Jt,([<?(+£] I but not necessarily, 
for / *=- zji«+y

\fe have studied in Chapter II of this thesis the 
question of convergence of (4) for / ^ 2) and
have proved the following theorem$

(1.7) Iff is of bounded variation and satisfies the 
condition?

A C<^

u)tS) z.  ------- -——------——-1** J

l) Waraszltiewicz &sp 
3) Yadav and Goyal [54j

2) Zygmund |39]
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then (4) converges for = £ f -j-£J

• 3« There is yet another aspect of the problem of
absolute convergence of Fourier series of functions 
belonging to L-t-j? which is forced to our attention when 
we compare thetheorems (l.l) and (1.5) of Bernstein and 
Zygmund respectively. The series 21 may

diverge if oi * e( » but according to
Zygmund* s theorem the series converges if -f"£L Lij? o( } cK > 0, 
and also ^ is of bounded variation. It is of"interest to 
enquire as to how rapid is the divergence in the first 
case and how fast is the convergence in the second case.
The ’rapidi'Err* in either case could be measured, in a 
sense, by considering certain convergence factors or
divergence factors as the case may be and this ha3 been

l)done by various authors. G-.H. Hardy , for example, proved 
the following theorems:

(1.8) If -f £ Uft X (0 ,£TT] f a / then

(7) £

Ipz /I a.
(1.9) If f is of bounded variation and belongs to

Itf <k (e, zrr) ,
l) Hardy \\6J
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(8) 21 Cl*»l+ IOl) £<?
' ' **1 J

lor

The following extension to theorem (1.8) has been given by 
&.C.Zaanen^i

(1.10) If for certain £. > o

cS*10 (S} , ^

then (7) holds for ^ __ ^

We shall also prove, in Chapter II, the following theorem 
which is analogous addition to the theorem (1.9)^;

(1.11) Li—jjj:.§_of_bpunded variation and satisfies the
condition 8

U) l_S) ^

then (8) holds for ck

4. In the year 1928, Hardy and Littlewood3^intro­
duced the notion of a class of functions called by them 
Lop L°()p) jCK yo f /4; p y which is more general than 
the class Lc^p o( . A function -f is said to belong to the 
class U^p {x,p) } 6<Lo(<L ^ , lf

- A 2) Yadav and Goyal, loc. cit.
Littlewood [l3]
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■“' no^ difficult to see that the conclusions of 
Bernstein’s theorem (l.l) and Szasz theorem (1.3) remain 

valid if the hypothesis that £~£ L~tj? o( is replaced by 
the less stringent hypothesis that £ £. Ujp(c( . Even 
mere general results could be proved under the new 
hypothesis and, indeed, 0. Szasz"^ proved the following 

generalisation of (1.3)j

(1*12) “ to \ j . If f zL'jrfajIrJ then

^.serie-g W °onie££es_Jbr_all f, y. j? J fa+jj ^
not necessarilv for f =

Pursuing the study of such problems still- further 
we have proved in Chapter II of the present thesis the 
following theorems

(1.13) Leu I ^ ) *~ f? Z. # and ^ p? <5 • If
/ zir ~- ( f ]*(*+*)-H*-)\*4k)™ £ C*°‘__

i s= -{} j)> > then the series (4) is
convergent for j$ ~ Htyfr+V-t}.

Tnis theorem contains as a 
due to JQn-Teh Cheng.

special case the theorem (1.19)

l) Szisz J24J
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We remark that more general forms of theorems 
(1.13) - (1.16) (corresponding to a theorem of Szasz"^) can 

be proved where the logarithms in hypotheses are replaced 
bvSnore general function.

It is also known that for a function -^£ Ltp> (p(, J?) ̂

0^<x 4 I ) I ^ z,
(8) 21 a *0**1+1**1) ^ 00

for every Z

In Chapter II, we prove the following extension of the 

above result;

(1.14) Let 6 l~o(4z } /Z (74^ and ^ ~?6 . If for

certain £ >0,

( I Z^

then (8) holds for =• 0{— ,

t'A

t+t j

5* Some of the ideas that we have discussed above 
could be fruitfully applied to the theory of F/ourler 

transforms also. Taking clue from the theorems of 
Bernstein (Theorem 1.1) and Szasz (Theorem 1.3)» 
E.C.Titehmarsh'^proved the following theorem!

2) Zygmund ]4d3



P9 pj" "i'm- .'fh ^ ^ '* Oy
-A)

then the Fourier transform of belongs to . » lor

t’/fat’+P'-i) z. f z. _
The range of fL cannot be extended In this theorem. We have, 

however, proved the following theorem in Chapter IIs

(! .3.6) Let O j 1^)7^=.^ and ^ > o • If

L-j? j09)} and if for certain £ > o

P3

ifkggQ thlJj L<) *= (<) and
A = [«f f'+f’-l) j f } then ^ belongs to L. a , for

p = tu<xw~b-
If we take and theorem (1.15) can

be put in a completely satisfactory form:1)

a(1.17) If f-fc L £^4?;A?) and o <L<K <£.] * then 

'• necessary and sufficient condition for

+ f ^ 0 'Tj ' J A4 1j —^ ^ ,•^c

to 1
l) Titchmarsh |2
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Is that

CXJ
j* lfL*+fy- I **■ =• 0(!*lj ~is —7 o#
-A?

He have also proved;in Chapter II the following analogue 

of the above theorem for Fourier eeriest

(1.18) Let f&L^LOjZnJ and let 

to
f 22 ^ l?>\*L

(Complex form)#
~ to

A.necessary and sufficient condition that
to - .

~ 0 (N ) dj A/ -7
A/ f

j'l'k.-tyl ***- ==-0(/X/ ) 0*5 t\~^7 Q
) >

^3 L. <X 1 .

6. If we take d,^y] j.n s^asz theorem (1.12), 
then p l [tKptV — j)Z- } ^ and hence (1.12) implies the 

absolute convergence of the Fourier series of / in this

* Every (real) Fourier series (l) can be put in this 
(complex) form if we define
4i / ft- c/••••/£„=-

S^L??press cosines and sines in terms of exponential ^ 
iuuCoions#
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case. However, Min-Teh Cheng‘Sproved, in 194-2, the follow­

ing theorems

(1.19) If and

%W ^ 0 {is ^

o ;

then the Fourier series of £ converges ‘absolutely. This is no 

longer true for £ =. O .

As a matter of fact, this theorem has "been proved by 

Min-Teh Cheng in the following more general forms

(1.20) If o o<4~ i l^f? y{ and

air
IH ~ ft*) / tf*. ofol&f*1) 1 J

then
£>0

{9) ( i**i+i^*i) ^ **)
for o(^fL) • Moreover (9) may not hold for

T ~ cK-t-f’-l.

4

l) Cheng J8J
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Min-Teh Cheng has proved this theorem hy first 

establishing an inequality for Ltjy fa )p) classes-correspond­
ing to the Hausdorff-Young inequality for i-fy classes. We 
have jtglven, in Chapter III, an alternative proof of (1.20) 

based only on the Hausdorff-Young inequality and without • 
appealing to the inequality for ) Pj classes obtained
by Min-Teh Cheng. Thus the proof which we have given is

Ishorter and more direct. We have also generalized this 
theorem to the following theorem:*^

(1.21) If O ^4=.); and

J \f l*+t) - f fa) j^X O l 'J J0 y

where £ f-f- , then

_ a a

for all f> / — }?lT+l)/Lt+ 

(10} does not hold.

We also observe that Min-Teh Cheng's theorem (1.19) 

is contained In our more general result (1.13).

In the theorem (1.20), it Is natural to ask: Vha;fc 
condition must -p satisfy in order that (9) may hold for

1) Yadav [|<3
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"fl- jfi-1 ? in this connection, we have established

the following results

(1.22) Let o Jj ) an^- > 6 *

Me may mention here that the method of proofs which 
we have developed in order to prove theorems (1.20)-(l.22) 
can be used to prove these results in their more general 
forms as indicated in Chapter •III,

7. Hext we give an application of the theorem (1*21) 
to construct Young’s continuous functions. Let the 
functions ^ ,^and i\ be each L~integrable in {6fgjr) 
and periodic outside with period £TT « Me say that i\ is 
the Fourier faltung (composition or convolution) of and

function if there exist two functions and ^ , each of 
the Lebesgue class Lqi such that ~f\ is the Fourier faltung

then (9) holds for ~f-=. cK-t jfi- l.

Similar addition can be made to the theorem (1.21).

Moreover, a function 7) is said to be a Young's continuous
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of these functions. 'Although there is no obvious criterion 
to verify directly whether a given function ^ is a Young’s 
continuous function, it is known that a necessary and 
sufficient condition for a function to be a Young’s 
continuous function is that its Fourier series be absolutely 
convergent.^ Min-Teh Oheng^ has obtained Young’s continuous

and ^
stronger conditions and ^ weaker ones. Indeed, he proves 
the theorem!

functions as a convolution of -r , where -^satisfies

(1.23) If £ £ L-fy C°(ifc) / ^Z7 ^ ^ , a /-e<<u jt_ 2 and if
) — f*1 * then the function

HIT
(ii) -hLV = fLX.+t)fHr}4tr

is a Young’s continuous function.

We have also obtained Young’s continuous functions 
with the help of our theorem (1.21). We establish in 
Chapter IV the following result!

(1.24) Let q z. oC^) }<L p and -£■ q . If

J f(x+tj by ^ J
1) Young [35l 
3) Cheng, loo. clt

2) Hardy and LIttlewood and Chen Ld
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as f -7 0 * &s£ ^ t Uj? , *p) j where bll- <*)£.} and
^ is_Eiien_M ff (f- f = | , then "the function ^ in (115 
is a Young*s continuous function*^

We have also proved the following theorems

(1.25) If f£ UspOXjp) and Uj?{el\fj * where
|A X, <X+A ? Jp MS ^ is given by JTlf. ^k / > ±hen
the function‘d given by (11) is a Youngs continuous function.

8. We have further considered absolute convergence of 
the Fourier series of an absolutely continuous function. We 
have already seen [series (6)3 that the Fourier series of an 

absolutely continuous function Is not necessarily absolutely 
convergent. Therefore, In addition to being absolutely 
continuous, a function must satisfy some other conditions 
in order that Its Fourier series may converge absolxitely. 
Various such additional conditions have been obtained by 
L.Tonelli^, A.Zygmund^ and G-.H.Hardy and J.E.Llttlewood^ 

mostly in terms of the integrahility of the derevative of an 
absolutely continuous function. We shall also prove, in 
Chapter V, the following theorem which is different in 
character from those of the above authors}

(1.26) If p is a £TT-periodic absolutely continuous
function with its derivative such that

f) Yadav [330 ^ 2) Tonelli J28]
4) Hardy Littlewood \l4j , see also Fejer {<0 
3'J Zygmund [55]
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(12)
where Is the modulus of continuity of ^ , then, the Fourier 

series of F converges absolutely.

We have also proved the following routine generaliza­
tion of the above theorems

Lastly we establish in Chapter Y/more theorem on the 

absolute convergence of Fourier series of functions of 
bounded variation. Apart from an additional condition on 
function, the hypothesis of the theorem involves certain 
restrictions on its Fourier coefficients also. Our theorem 
is in a sequel to certain theorems of R.Mohanty"^ and 

S. Izumi.^ It runs as follows

(1.27) If O Z. p A | and -p satisfies the coxidition 

(12), then
& i £

one

(1.28) Let

■a. ?? JlvX'VyK- .
7^/

If -f is such that
(i) ^ l&5:6f6§MndM6 variation in ( 0 }7T )

l) Mohanty YJl§] 
3) Yadav

2) S.Izumi £15]
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(ii) j \4.<bL%,*)\ = o(W )} <x > ° , where
0

y

‘ tfy*s-f(*+t)-mH*rty aM S > o J and
(111) the sequence $7? A (*»£*)} Is of bounded
variation for some ^ > q » then

00
^ \Ln\ .

We have" also the cosine series analogue.

9. Some of the techniques of proofs of the theorems 
on absolute convergence of Fourier series can be applied 
to obtain results in other directions also. This we have 
done in Ohapter VI where we prove a theorem on the almost 
everywhere convergence of Fourier series. According to 
A. Beurling^ a function f ls said to be a contraction of 
a function if

IfW-fivI <=■
for all %. } ^ }%Jf] > Employing the notion of contract­
ion, Beurling proved, in the year 1949, the following 

theorem on the absolute convergence of Forier series;

(1.29) If and ^ are continuous even functions of period 

% Jf » with Fourier cosine coefficients and ^ , if ^ is

a contraction of , and if J ^ | ^ , where ^ yJ/Q andthen

l) Beurling \jf\
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Recently R.B.Boas ' has given an elementary proof of the 
following generalization of this theorem:-

(1.30) Theorem (1.29) remains true when_the hypothesis

that is replaced by

i. **{£. \ £ »'*{k
We have used the method of proof of the theorem (1.26) 

to. prove a similar theorem on the almost everywhere conver­
gence of Fourier series. Thus we prove in Chapter VI the 
following theorem*^

(l.3l5 If ^ and are even functions of class L0» each
of period g jj , with Fourier cosine coefficients and 

if is a contraction of ^ , and if J ^ , where
' ^2!h ”

l ^y*i **! y>j'* I 2f-z.1 K&r*rl

Vz-Z_ &c>

then the Fourier series of converges almost everywhere.
Part of the research work Incorporated In this 

thesis has been published by the author in the form of two 
research papers in mathematical journals. Reprints of these 
papers constitute an appendix to the thesis.'

It) Boas £5] 2) Yadav


