CHAPTER I

INTRODUCTTION

1. The pregent thesls is devoted to the study of
certaein problems relabting to absolute convergence of
Fourlier series. A Fouriler series, as is well knovn, is a

trigonometric series
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whose coefficients Qh s &” are releted to a AT - periodic
and Lebesgue~inteyrable function f by means of the socalled

Buler~-Fourier formulae:
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Considerable amount of work has been done with
rega»d to the summability oroblems of Fourier series and,
in Taclt, one can hardly find problems of intringic merit
in'that field now, bul much remains to be done with regard
to the queétion of almost everywhere convergence and almost
everyvwhere divergence of Fourler series. Also, one of the
outstanding problems, which await their solutions in the

theory of Pourler series, is 1o ascertain the structural



properties of funcilons which have absolutely convergent
Fourier series. We have obtalned results pertaining to both

of these guestions.

This chanter is of introductory character and seeks

to glve a orief survey of problems deall withfin the thesis.

2. The problem of the absolute convergence of
Fourier series avpesrs to have been considered for the first
time by S. Bernsteinl) in the year 1914. It will be -
convenient to intro'duce some definitions and notations
before we mention Bernstein's theorem and its generalisat-

ions by others. Let

Ws) = w(s;§) = dup| i) — x|
Tor %, , zz g_[a,zrf]) /4(1-7(,{4___ § « Fhe functlon éd(f/
is called the modulus of contlinuity of f « We say that
gatislies g Livschltz condition of order of , 90 & XL | »
in (0, 2 ), or in symbols & LL'% o((a/gﬂ‘) , if'
there exists a constant ¢ , independent of S, such that

W8 = 5%,

Bernsfein proved the following theorems

(1.1) If § e bepx (G/,Z?f/) O(p;é— s then

the serliesg

1) Bernstein [:l]
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(3) f ([2n]+]éal) -

, (3) need not convergefn

Obviously the convergence of (3) implies the absolute
convergence of the Fourier series (1); although (1) may
converge absolutely without the series (3) being convergent.g)
As a matter of fact, in our study of the problem of absolute
convergence of a Fourler series we shall wmostly investigate

conditions under which (3) converges and deduce from 1t the

sbsolute convergence of (1).

Now ag ‘the Fourler series of a function F & L:.fb —"—z*
need not bhe absolutely convergent it is natursl to investligate
additional conditlons satisfied by 4 which would ensure the
absolute convergence of its Fourier series. L. \Tedezj) has

proved the following result in this conneetion:

(1.2) If the Livschitz condition in Bernstein's theroem

ig strengthened to the condition?

¢ s’z
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1) For_some generalizations of this theorem, see Bernstein [2]
[_3']} as also Salem [22] . 4

2) zZysmund [40], p. 232,
3) Neder [20] .



vhere £ >0 and
0,(8) = log & +57")

¢, (8) = &7&3 (ee-+- 5—-,)) ete.

{€ is a constant depending on- £ s but not on & ) then the

Fourier series of ,‘f convergzes absolutely.

The problem of the absolute convergence of a Fourier
series may be formulated 1in the following more general

settings

Given a Fouriler series (1), we went to know as to what

values of the exponent /g Wwill make the series
-

(4) > (/%/ + /47:/)
’ h=)
converge®#. In this connection, the following result was

obtained by O. Sze\aszl) in the year 1922:

(1.3) I felcipax (0,RAT] 0 2 o) s then the
series (4) converzes for all ﬁ 7,2/(¢(p(+y ; but not
necesgarily for ﬂ Z/(Z&(-f*l)

A.C. Zaanena) however, has proved the followling theorem!

1) Szdsz [Eﬂ 2) Zeanen [?é]

% The problem 1ls Lurth;egr' generalised when we establish a y
relation between « « and 7 which makes Z i /4./1%/ s 97407
see, for example, Cheng [8] and Yadav 3ol . 572 (Q" / 7



(1.4) If for certain £70 ,

e 8%

ws £ WE, Xt 2
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then (4) converges for /5 = ﬂ./(;d'i—l) .

We observe thet Bernstein's theorem (1.1) reduces to
. ‘ - ,
2 varticular case of Sz2sz's result, for if we take of 7;{ 2

then ﬂ/(,zp(-ﬂ)é. ], so that /g could be taken grester or

equal to 1.

1

In the year 1928, A. Zygmund™ proved the following

result which is closely related to Bernstein's theorem:

(1.5) 1f § is of bounded variation and belongs to
L‘(fy X (a,sz/ , &> o0, then the Fourier series of ¢

converges absolutely.

In fact, the theorem holds even if the condition '
belongs to Litp ot (0,RT) , x>0 ig replaced by the

following less strlngent conditiont
R ._2,, .
(5) W) = o(&?;’;«) 7, 7>o0.

The fact that the Fourier series of f need not be absolutely
convergent when = 0 in condition (5) has been proved

recently by Ching-tsiin Loo.z)

l) Zygmund 'Ef)"{] " 2) Loo D.S]



It is important to note that the Fourier series of a
function of bounded variation or even of an absolutely
continuous function mey not converge absolutely. Thise isg

seen from the classical example of the series

o0
/m?’)%
gt

(6) 7 log /
. h=2
which is the Fourier series of an absolutely continuous

" funection, and which doeg not converge absolutely.

The following generalisatlon of Zyemund's theorem

(1.5) was obtained by Z. i‘?araszkiewiczl) and 4. Zygmunde):

(1.6) If £ is of bounded variation and belongs to
Lb"f? A <0,,27T) , & >0 |lthen the series (4)
converges for all ﬂ > ,Z/(a(.;.x/ :  but not necessarily.
for ﬂ:’-— X//t’(-fy(/ . '

We have studied in Chapter II of this thesis the

question of convergence of (4) for ﬂ "—:Z/(d(h?j and

have proved the following theorem:-j)

(1.7) If f is of bounded veriation and satisfies the

conditions

5%
[()(5] "é: 1+E aﬁg}( Y
L&59405)... ¢, (s)]
1) Wa Lo Zyemun
Y Jeendion iy 2 wema 1



then (4) converges for ﬂ = 2/(0(-!-2/

3. There 1is yet another aspect of the problem of
abzolute convergence of Fourler szeries of functions
belonging to Lt»/b & which 1s forced to our attentlon when
ywe compare thetheorems (1.1) and (1.5) of Bernstein and
Zygmund respectively. The series Z(l‘%H‘MﬁU may
diverge 1f f & /A/fy X s X é;}z » but according to
Zysmund's theorem the series converges if 'fé./—vﬁ X ,%X20,
and also 4 1s of bounded variation. It is of interest to
enqulre as to how rapid is the divergence in the first
case and how fast is the convergence in the second case.
The 'repidity' in elther case could be measured, in a
sensé, by oonéidez‘in@ certaln convergence factors or
divergence factors as the case may be and thisg has been
done by various authors. G.H. Har'dyl), for examople, proved

the following theorems:

(1.8) 1£ f & Lep X (0,Q0T) , g £ X% |, then
o9

-1
(7) Z 77,5/2(/4’?;/—%/4?;/)4”/
h=]
for B2

(1.9) If f is of bounded variation and belongs to

Lp‘p’oc(a,x/f// DL XL 5 then

1) Hardy [1oj
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for /Kz.d,

The following extension to theoren (1.8) has veen given by

A.C .Zaanenl):

(8) /43 -}-,4 )../..W

-y
o
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(1.10) If for certain ¢ » o ,
. - 5%
& HE )
608 G15). Ly
hen (7) holds for ﬂz o

Wis)

e shall also prove, in Chapter II, the following theorenm

. . am s 2
which is analogfous addition 1o the theorenm (1.9) ):
&

(L.11) If & is of bounded veriation and satisfics the

conditioﬁz
¢ 5%
Wwils) £ ‘
[405¢.5... ¢ )% 7

then (8) holds for /g—..: &

4s In the year 1928, Hardy and Littlewoodw introm-
duced the notion of a class of fgnctions called by them
Lbﬁ («, /7/}0( >0 , 14 P -3 which 1s more general than
the class LL'/{7 X . 4 Tunction f is said to belong to the

class Lip (o(,}y)) 04XLy |Lh . oaf

1) Zaanen [36] Yadav and Goyval, loc. cit. )
3) Herdy and Littlewood f_l"ﬁj
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(J | Fx44) - fim] 4 >}/P=: o (141%).

It 1s not 4ifficult to see that the conclusions of
Bernstein's theorem (1.1) and Bz3sz theorem (1.3) remain
valid if the hypothesis that £ £ L-L'{y &  ig revlsced by
the less strin gent hypothesis that £ £ LL;};(O(,;Z) . Even
acre general resulis could be proved under the new

. . \ "
hypothesis snd, indeed, O. Szaszl) proved the following

generalisation of (1.3):

(1.12) Let 0L X4, |ehLg. If f&h#(c{/ﬁ} ‘then
the QSI‘J.CS (4) converges for all ﬂ > }’/{p(a(-g-) } ; but

not necessarily for ﬂ k/f,b (x+1)—1%

Pursuing the study of such problems still further

we have proved in Chapter IT of the present thesis the

followirg theorem:

L13) Let oo X&), j2he gz avda hvo. Ir
2

) o

(f fv‘("‘W”vﬁl“/de)/”é T

6 [LB 404 )] /

vhere 4 = fﬁ(o(-f‘)Nl}/}? > then the series (1’) isg
convergent for ,5 ﬁ/;ﬁ(q’—f-}y-—}}

This theorem contains asg a speclal case the theorem (1.19)

due to Mir-Teh Cheng.

l) Szdsz [24]



We remark that more general formes of theorems
- ] L * P ] 3)
(1.13) = {1.16) (corresponding to a theorem of Szdez™) can
be proved where the logarithms in hypotheses are replaced
o}

a .
¥ /\more seneral function.

10

It 1s also known that for a function f £ LL',# (x , }7 )}

0L &), 1¢be 2,
gy

(8) Z 7 ([@,]—}—M,,})Am
%)

for every /3 L o(.—.lﬁ.g).

In Chapter II, we orove the following extension of the

zhove resulls

(1.14) Let 0 4 X&), |&peZ end h7o. If for
certain AE_ >0,
2r

Wy ¢ A"
1)),
(‘L [f (%) ~F(x)] o/t) < ) 4

then (8) holds for /3 = Of— yP . '

5¢ Some of the ideas thaet we have disgcussed above

jer}

ould ve fruitfully spplled to the theory of Ffourier

(¢}

ct

rengforms also. Taking clue from the theorems of
\
Bernstein {Theorem 1.1) and Szssz (Theorm 1.3),

E.G.Titchmar*sh:ﬁ) oroved the following theorem!

33.3 Szasz [25] 2) Zygmmd [40]

Titchmarsh E26'_{

¢
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(1.15) Let O LxX&) |eped znd hvo. If

fe Lp’(’”;”/ and if .
“ y «f
[ |#aen) - fras] o = 04 ), & ho,
— 20 .

then the Fourier transform 7,9__;’: £ belones %o L.ﬁ » for

bllab+h=1) 2 b2 F](p-) .

. The range ofﬁ cannot be extended in this theorem. We have,

however, nroved the following theorem in Chepter II:

(1.16) Let o4k &), 14 P& ond 4oa. It
fely o, ) and if for certein £ > o

A y ’/ﬁ 4
( f [*H«*‘)*Hﬂ—ﬁ}éf%) = O (k e A)
oo L6 y05)... {Z 1))
J

where 4, (ﬁ/; joj [f)',/} (71(1':)::: Zog’ g(,z,,./ (%} znd
A = LW p.ﬂ;-—-l)”?} thengbelongé to L./g » for

b= bl ecprr-)

If we teke o<y and }7;,(, theorem (1.15) can

be put in a completely satlefactory form:l)

(1.17) If f¢ Lol#,2) and 02 X2y , then s

= necessary and sufficient condition for

([ )ty = 03%) as re

1) Titchmarsh [27]




iz that

o7
g la‘[zd}—ﬂz«%/[‘:k = O(/'Alz)p( A >0,

/
- &

We have also nroved ,in Chapter II ,the following snalogue

of the above theorem Tor Fourier seriest

(1.18) Let fg¢ L. 4 (0, M) 2nd Let

N .
Ih%
DC ~ E Vd 5 € . (Complex form)#
-0

A necesssgry and sufficient condition th_at
—-N

% -
7 [l 2 el = 0 ‘(Nam), as N=> 2,
N

— v
ig that
/A
S | §(x+%) - ﬂz»i}[‘dt = 0 ()%/M)/ as hzo,
©
O & K &,
- 6. If we teke ﬂLP?I in 8zasz theorenm (1.12),
then ty/[o(}%t—l?wl)/~ ] , end hence (1.i2) implies the

absolute convergence of the Fourier series of f in this

% Every (real) Fourier series (1) can be put in this
(complex) form if we define

C ) - S O
A= Ay, bgym—lg ; Cﬂ"ﬁ(""‘ 4")} 7=9,1,%, / én”c"}
and express cosines and gines in terms of exponentisl
functlons.
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casge. However, Min-Teh Chengl) proved, in 1942, the follow-

ing theorem:
(1.19) If 14 p£ 2 €70, h>0 and

20
“7‘“‘“‘)’7‘(“)15% = 0 (41 (&;ﬁ*’)"%&)}

O

then the Fourler series of f converges ‘absolutely. This is no

longer true for £=0.

As a matter of fact, this theorem has been proved Ly

Min-Teh Cheng in the following more general form}

1.20) IT L. X< nd
( ?__,_:o o(,__;/ /4#.4.“2}%702__

amw
J /%(Z—M)-«{/m)[ém - 0(% (&3{/)—#-«;»)
thena ' )
(9) Z ( l&q"-}- [&ﬁ() la?";, vy
; h=1 '

_f_g_:f__; T 2 0<+}7"'L, . I‘»Ioreovery* (9) may not hold for
T= o+

1) Cheng [8]
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Min~Teh Cheng has provéd this theorem by first
establishing an‘inequality for Ll%b(d;ﬁy classes’corresponq_
ing to the Hausdorff-Young inegquality farlapclasses. We
have given,in Chapter III, an alternative proof of (1.20)
based only on the Haus&gfffwxoung ineguality and without.'
apprealing to the inequéfity for l—£$’&(/k}classes obtained
by Min-Teh Cheng. Thus the vroof which we have given is
shorter and more direct. VYe ﬁave also generalized this

theorem to the following theoreméo

(1.21) It 0Lt zz_]pég} 450 2nd
A

J [-Hx-ri}-ﬂt)jpdx = 0 (745’[&3%"}‘,%/?)
0 )

wpere S = |+ p(1-§)[f > then

o7

(10) Z (/@,[é ’L_g,//g) 477;7 s

Nh=4

tor st B Zp(T) [ (144p) - Fex B=plrr)]lirat),

(10) does not hold.

We also observe that Min-Teh Cheng's theorem (1.19)

is contained in our more genersl result (1.13).

In the theorem (1.20), it is natural to ask: What

condition must‘j:satisfy in order that (9) may hold for

1) Yadav [3@] »
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T= o+ f)ﬁ-'—-I ? In this connection, we have established

the following result:

(1.22) Let o £ <] Japeg and 4 o0 - X

rdd

- G
[ [stast-so|fan = o (4 g4 " (g7 )
" A

-

then (9) holds for T =— 0<+pL
Similar addition can be made to the theorem (1.21).

Ve may mention here that the method of proofs which
we have developped in order to prove theorems (1.20)-(1. 22)
can be used toc prove these resulis in thelr more rreneral

Torms as indicated 1n Chapter -III.

7. Uext we give an apvlication of the theorem (1.21)
to construct Young's continuous functions. Let the
functions f ,4and A be each L-integrable in (0, 2T )
and periodic outside with period ZN . We say that A is

the Fourler faltung (composition or convolution) of f and

T ir
AN
hix) = Jrf fo f(«+ij7ﬂjdz”.

Moreover, a Tunction 7) is said to be a Young's continuous
function if there exlst two functions j’» and ?«, each of

the Lebesgue class Lg, such that A is the Fourier faltung
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of these functions.l) Although there is no obvious ecriterion
to verify directly whether a given funetion 7') is a Young's
continuous function, it is known that a necessary and
sufficient condition for a function to be a Young's
continuous function is that its Fouriler series be absolutely
cozlvergent.2> Min-Teh GhengB) has obtained Young's continuous
functlons as a convelution of 75 and ?', where fsatisfies

stronger conditions and ?/weaker ones. Indeed, he proves

the theorem:

(1.23) 12 FeLP(Xp), AF> 2,044, 1o pe g and if
?/&L‘;P (:%P’ %}} _f_g; ?7/ » then the function

Fea
(11) nx) = Jﬁf Fla+8 415 At
g 9

is g Young's continuous function.

We have also obtained Young's continucus functions
with the help of our theorem (1.21). We establish in

Chapter IV the following result:

(1.24) Let o2x4) jepezemd t>p- IE

AT
| sty = s fax =0 (£ log ) )
o }
1) Y{)ung ES] 2) Hardy and Littlewood [123 .

3) Cheng, loc. cit. end Chen [7]
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as t = 0 s and ?& L&fy( where k(!«d)&)g_gﬁ_
9, is ziven by ]7 + ¢ s uhen ‘che funetion A in (11)

is a Young's conuinuous function.l

We have also proved the following theorem:

(1.25) If f«g Lx,ﬁ(a( p) and ?/g_ a,/y(,,f ?7 where
LP 20(4-0( 7.1; and 4 is given by k'f"]/ | s Lthen

the zunctmn% given by (11) is a Young's continuous function.

8; We have further considered absolute con%ergence of
the Fourler series of an absolutely continuous functlon. We
have already seen [éeries (6)] that the Fourier series of an
abgolutely continuous fﬁnotién is not necegsarily absoluteiy
convergent. Therefore, in addition to belng absolutely
continuous, a functlon must satlisfy some other conditions
in order that its Fourier series may converge absolutely.
Various such additlonal conditions have been obtained by
L.7one111%, A.Zygmmad) and G.H.Hardy and J.E.Littlewood ™V
mostly in terms of the integrability of the derevative of an
absolutely continuous function. We shall also prove, in
Chapter V, the following tneorem which is different in

character {rom those of the above authors:

(1.26) If F is_a gZw -periodic absolutely continuous
function with ite derivative F'(%) = f(=) such that

1} Yadav [)3] 2) Tonellil E?Bj
%) Hardy Littlewood [14’1 , see also Fejér [J]
3) Zysmund [38]
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(12) wis) 8% x>-l,

where ) is the modulug of continuity of fi, then the Fourler

gserles of F converges absolutelv.

We have also proved the following routine generaslizao~

tion of the above theorem?

(1.27) If Oz f 4| end fsatisfies the corditlon
(12), then

> (151807 < o0
P 2";/

: LA+3%
one

Lastly we establish in Chepter V/more theorem on the
absolute convergence of Fourier series of functions of
bounded variliation. Apart from asn additional condition on
function, the hyvothesls of the theorem involves certain
restrictions on 1its Fourier coefficients also. Our theoren
1s in 2 sequel to certain theorems of R.Mbhantyl>and

S. Izumi.a) It runs as follows:B)

{1.28) Let
i | &
f N\ E 'ﬁg?? Jﬂh_,???( .
71-;/
If 4 1s such that

(i),_f- 165 6% boandeds variation in (o ,7r)

1) Mohenty [19 2) S.Izumi {15
%? Yadav {5%% ' ) L )
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b3
(11) J {4{4)[1{,‘/&}[ _ O(M}q/)J o 7 O, where

.
<
{
H

quﬂi,ﬁi}a f(x+%) = f(%p-#) and 5 > 0 ; and
(111) the seauence {777&‘ (‘h Aw)} is of bounded

veristion for some >0, then
oo

S o< o0

=1

We have also the cosine series analogue.

9. Some of the technigues of proofs of the theorems
on absolute convergence of Fourier series can be applled
to obtain results in other directions also. This we have
done in Chapter VI where we prove a theorem on the almost
everyvhere convergence of Fourler series. According to
A Beurlingl) a function § is sald to be a contraction of
a funcvion ? if

[$10) - F9] & [9Lo-F W]
for all X ; 7 7 [a ,Zﬂjg Employing the notlon of contract-
ion, Beurling proved, in the year 1949, the following

theorem on the absolute convergence of Foriler series:

(1.29) 1f ,f and 12/ are continuous even functiong of period

AT with Fourier cosine coefficiente £, and j?’ s _.}._g'f is
g, contraction of ?/ s and if ’?ﬁyé jh » Where 7?7,, {/0 and

S, e e S jey| 2 0.

~'.I.) Beurling [{&]
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Recently R.B.Boasl) has given an elementary proof of the

following zeneralization of this thecrem:

(1.30) Theorem (1.29) }a ins true when the hyvothesis

that Y, V0 is renlaced by

- -3z 7 K ’/Z N ’/X k
%p 7 {% jkz { 7H'/

We have used the method of vroof of the theorem (1.26)
to prove g similar theorem on the almost everywhere converw
gence of Fourier serles. Thus we prove in Chapter VI the

following theorem:a)

(1.31) If J): and j are even functions of class L,, each

of period 21 » with Fourier cosine coefficients £q2nd ?"

if .f is a confraction of ? , and if ,?7’1 ya .} , where

Y &
ﬁﬂg%k’?;}’/q%%agz %},

I+

then the Fourier series of -f converses almost everywhere.

Part of the research work incorporated in this
thesis has been published by the author in the form of two
research papers in mathematical jJournals. Reprints of these

papers constlitute an appendix to the thesilas

1) zoas |5 2) Yedav [3i]



