CHAPTER II

CERTAIN THEOREMS ON THE ABSOLUTE
CONVERCENCE OF FOURIER SERIES.,

1. It is known that if £ is of bounded variation,
belongs to Lip & (0,27), « >0, and has Fourler coefficients
ﬂq. » lcﬂ s then

(1) Z— ( 4"" ”I}g)

ig convergent for /g 707/[0(-1-,2), but not necessarlly for .

ﬁ = 2/(0(+,z},1)

It is of interest to ask as to what condition,
satisfied by £ , will make (1) convergent for/g X//a(-rx/

In this connection, we prove the following

THEOREM 1. If £ 1s of bounded varistion and satisfies the

condition:
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[885405)-- - te (9
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vhere g0 s o(zo0 and
4,15 = g le+rs")
Lel8) = &717(22-%5”// ete.,

then (1) is convergzent for /é — Z/lp(_;_of/’

1) Zygmund [_39], Ware.szkiéwicz [’529]
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Similar theorems have been proved by Lo Nederl) and

A.C.Zaanenz) in connection with the classical theorems of

S.Bernsteins) and its generalizagtion due tc 0. Sz%,sz.&')

If we teke & = 0 and £ =] , then this theorem

reduces to the more general form of Zygmund's theorem (1.5).5)

PROOF: We shall prove the theorem for k=2. First we see
that
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Putting A. J, where Nis e positive integer, we have
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1) Neder [20] 2) Zagnen [36]
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where V is the total variation of f in (0,2ZM), we have
AT
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Therefore it ;ollows from (p), (4) and (5) that
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This implies that
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Putting N = X > wner'e ¥ 1g an integer greater or equal to 2,

where 2, + [{pizj+j and taking into account only the terms

with indices 7 exceedi ng ;% N » we get from the last



inequality
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Therefore .
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Applying Holder's inequality, we get
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A

since [|&,/| s as also J gl s doe.s not exceed fq ’
it follows that

RN AP
hz)

This completes the proof of the theorem.
2. G.H. Hardyl) has proved the following

THEOREM-A: If fg a‘,;, & » o0& (£ then

(7) < 2 P
) Z 7 (/ﬁ/‘*‘/l"'/)é- )

D=t

for ﬂ.&-d o If f£1s, in addition, of bounded variation,
)

then
. oA /4/2/

(8) Z U (/llﬂl‘f‘/éﬁ/)é_w j
’ N=/

for 24X « For f=o, (7) and (8) need not holds

A.O.Zaanen2) has made the Tollowing additlon to

Theorenm-43

THEORE¥~B. If for certain ¢ > g

c5%

Wi(s 2
4/ 0,051, (3) ... (5

l) Hardy [_10] 2) Zaanen, loc. cit.
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then (7) holds for e

In this connectlon, we shall prove the following

THEOREM 2. If 4 ig of bounded variation and satisfies the

condition:

‘ ¢ 57 :
(9) wis) <& ey
: [£,88)4,(5)... ¢ (¥

then
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Z_ 7 Jan]+ [4n)) £ 20,
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PROCF: 4le shall prove this theorem also for Azzz. From
(6), we have
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Therefore, by Schwarz's inequality,
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This proves that
X &
> A (/44./-#/44,/) 4 2o,
h=)

3. It can Pe easlly ssen that the hypotheses of
Bernstein's theorem (1.1) and its generalization {(1.3) by

\ . . . )
Szasz gre, unnecessarily stringent. 48 a matier of fact,
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they remain true and the proofs unchanged, il the condition
4 € L-‘—*f? & 1is replaced by the weaker condition f¢& Ldﬁ(d}.?}.
O.Sz:;,szl) has actually proved the Tollowing generalization

of (1.3):

THEOREM-C. If f¢£ a%(;(,ﬁ/ s where 0L X<|, | <P L 2>
then (1) is édnvez*g:;ent Tor all /5 7' /7 / { ﬁ(a{-ﬁ-y-lf; but not
necessarily for ﬂ = f/fﬁ(ﬂ(-{-//-—']}.

Similerly 1t is known that, if f¢ L’"%(K/ﬁ/’ 0<LX<),
| £ p_é. FEE then A
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following extensions to these theorems:
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THEOREM 3. Let 0 &X' 4], Ja p &g , £2>0 a8 450 If

3 c A%

< e J
[Z/H/ll/’(/...& (K/]y

ar
(ll? (f /{/{ﬂﬂ(} - ﬁ«//’»ﬂ(

where 9 — jf (a(.H/_,/}/‘b » then (1) converges for
f=bI{r(at1)—1F |

THEOREM 4, If, with the same o, )b y £ and A4 a8 in

Theorem 3,

1) sadsz LEiL] 2) zyemma [40]
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then (10) holds for = -1

then (10) holds for £ = a—4

also observe that our Theorem 3 includes, as g

special case, the theorem (1.19) due to Min-Teh Cheng,.

PROOF OF THEOREM 3: e shall prove the theorem for A=-2 .

Since

V-4
£ (xth)— fx-%) o > (- 4y St trcr by C5B%) dr DK ,
H=/

by Hausdorff-Youns inequality, we have

Yy /e
( Z /Xﬂ,dmm /’) 4 ( ]/ﬁwt/ = flu- z}/” )
2
I /
where f = /Aﬂ/.f- /4.,,/ and /7 is given by ﬁ + V =] .
Putting A = XN ,» where AN 1ig o poelitive integer, we

obtain by the condition (11),
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Teking N ==,zw, where ¥ 1s an integer rreater or equal to
“L = 2
2, ;;(ﬂ;jxg}-ﬁj s and taking into account only the terns

with indices 7 exceeding L a, we get from the last

e
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From this, it follows, .as in the proof of Theorem 1, that
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Therefore
— f
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This completes the proof of the theorem.

PROCOF OF THECREM 4: Since the condition (12) ig nothing

but the condition (11) with ) _, we can, by putting

in the inecua ity (135 (or direcily as sbove), obtain
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/5 = 5(_¢;$ .
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This proves the theoren.

4, In the rest of this Chapter we shall establish
two theorems which asre related to two theorems of
E.G.Titchmarsﬂg’ Teking clue Trom the theorem of S.Bernstein
on the absolute convergence of Fourier series and its
generalization by O.Szész, Titchmarshg>broved the following

theorem on Fourier transforms:

THEOREM-D. Let fg 1,/7(«434»), /¢ F£ g, 2nd let

1) Titchmarsh |27] 2) Titcamersh [26]
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S y -
[ [ Jrxet-semiffen) = 0 (1417) 0 <xes,

— 0

28 A-%0. Then the Fourier Transform ?’ of F belongs to L/g}

for

plbrar=y = fcpliry.

The range of ﬁ cannot be extended in this theorem. We shall,

however, prove the following

THEOREM 5. Let o <Le(4) s £ &£ Xy £>080d A4>o. If

N
b\ ual
@ ,’(L,/f’” /= f A )= o ([4/%/43(%/,.-&’7%/7”);

we geeptE f=pllprap-y.

This tuheorem corresponds to our Theorem 3 on the

absolute convergence of Fouriler series.

If we take &(«) and b = 7 , Theorem-D can be put in

a completely satisfactory form:l)

THEOREM-E. If f£g Lxg,w/»/ and o~ o< ) , then a

necessary and sufficient condition for

U:}*f;) fp0) 4 = 0(7) as 9o,

1) Titchmarsh [27]




35

ig that

&

[ T#neti- ) x = 0 (14]) as s> 0.

— &

We shall also prove here the following anaslogue for

Fourier series:

THEOREM 6. Let fé L 4 (0, A7) and be periodic outside
with period Z/, and let

ad v Y
f ~ § (s €
— o7 ’

4 necessary and sufficient condition that

-N 7 d & — X

as) D ]+ ] T=0(N") as N>
— o N

is that
T

(16) fo /ﬁ**‘/wﬁz—x//z?t = 0(/%/20) 28 %0,

0 L X<
PROOF OF THEOREM-5: We shall prove the theorem for X =X .

We Tirst observe that the Fourier #ransform of F(%+%) -F(%-%) ,

for a Tixed A , iz — X7 fn. % % . (%) - Theretore
&

(f /X,sz:{./(&//?;«)l/’; kf‘[jf(z(,%/,..?c(,’(,x//i,,(fy*

-

/
whereﬁ is given by -L- L=}, ana K is a constent

rov
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depending on p .1)
It follows from the condition (14) that

e / / -x4/
J /x/fm M.y(«//i/« = 0 (ﬁqk{l, (%), "'x”(é*/) ’V])
8ince /@“_7{%} > AxA4 » for 7(_42'—, we get
¢ ’ W proyl
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F b Z4 e =)y
(’(} . = 0 ¢, (%) &y (%) :
L 1ol e = 04 T (wgin)” )
Now put
5
95) = [ /17&///4«
d
then, jlzce /4 ya .{_: k’ » we obtain by Holder's
inequality

47(?{/ (.[5 7(?(1(// )/g/// f 4’()7'/4//’1

(/ —(r-)f +1- ¥ (&) ) )

/%‘/ /4’7/” 5/

1) Titchmarsh, log. cit.
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This completes the proof of the theorem.
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PROOF OF THECREM 63 The sufficiency of the condition (16)

is easy to prove and we supply a proof only for the sake of
completeness. Since

7
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flax+4) - fla—t) ~ Z:»a&'(cfm ni €

it follows from Parsevel's theorem that
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and (2) follows from
—N 2
=2 )" A
21l T= 2 1G] =0 (N7
/M A/ . »
To prove that the condition is necessary, we put

2y
¢’(ﬁ/ — Z /C‘ﬁ/z’
l('::f) )

Then
.9 %
2 J4] = %: [ -k}
= @ — (7w
Also, from (5)
LG =0 (5

Therefore, by Abel's transformetion, we obtain

-, z N
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M
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and hence from (7)
n ’

0 — o0
U] %]

y 4
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&
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This proves Theorem € completely.




