CHAPTER IV

ABSOLUTE CONVERGENCE OF FOURIER SERIES
OF THE CONVOLUTION OF TWO FUNCTIONS.:.

Let the funetions f , ?.and.ﬂ be each L-integrable in
(0, 27 ) and periodic outside with period Z7 . We recall
that % 18 called the Fourler convolution (faltung or
composition) of f and ? it '
| kA 1)
() ) = L fo flxrt)g 1at

-,

Moreover, a functlon A is said. to be a Young's continuous
function if there exist two functions -f and ;j', each of the
Lebesgue class L, , such that % is the Fouriler convolution
of these functionsa). Although there 1s no. obvious criterion
to. verify directly whether a given function 1s a Young“e
continuous function, it 1s known that a function 1s a -
Young's continuous function if and only if ite Fourier
series is absolutely convergent.3) Min-Teh- chéngq') has
obtainqd.xoung's continuous functlons as convolutlion. of two
functions one of which satisfies a stronger and the other
a weaker condition than that of being a functlion of La. |

In fact, tie has proved the following

1) Zygmund [40] , Vol. I, p. 36 2) Young [35]
2? Herdy and Littlewood (12] , Chen [7]
Cheng [8 .
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THEOREM-A. If &£ LL&@(,;;/ and 4¢ M;@J/, where

I )
L. — A £ then the function
/7 & 2 7/‘.7/ .......7 = 7p a( » then the funmection 4
51ven by (1) is a Young's continuous function.

In this chapter we shall establish two theorems
.regarding the construction of Young's contimious' functions
in a2 way simlilar to that of Min-Teh‘Cheng. The firgt one
is the following

THEOREM 11. If f;,&%(«,p/ and ?/g,&/ﬁ( g/, vhere
l<p & 2 At & 7.%- andi is given by k—fci =),
then the function %4 given by (1] 1s 2 Young' s_continuous

functlon.

.

The case }7@ Z in this theorem is trivial.

A word of explanatlon is in order here to show the
connectlion between our theorem anct that of Min-Teh Cheng.

In Theorem-A, for a given fy , o( is constant and o > L .

Fé
In particular, the least value. of o( is -%f' and the value
of o 1s always greater them /- ¢ In Theorem 11, each

%

of & and 0(/ may assume any value between O and 1,
provided that they remain connected by the inequality.:
A4 & ,7 -é" (wvhich 1s.required of them in ’I‘heozjem-A as
well) and ? 1s the conjugate index of k ¢

In order to prove our theorem, we shall need the
following
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LEMA 1. Let fe£lep(,f) » |4 pLR » 024X ) end
i be_given by f.ﬁ.f":-_,/ o If

” I3
jL'N 2 Ca 6”’7(
—

2
 then
‘ . .
@ 2;/%/ )" < 2

for a1 /g such that Iﬁ{k(o\’-ﬁ/ l} > P (7)) s but not not
necessarilx when /g;// (a’—f'/—*'/j /7(7'-/-)

FROOF: Since

,ﬁ(«-m/ FA=) NZ 2ic,é g%z;./

by applying Hauadorff-!oung inequality, we get

(Zw;/afc’ JM%5/¢)/7 (a(” /ﬁ”‘/"ﬂ"“’//dx)#

— 09
L cheql)
for f¢ b [¢P£2
Now, taking 4 — 27,7: » where N is a positive integer,
N
N

Z/‘MO’M /¢ Z/cm&m 7 /%

/

1) Herdy and Littlewood [13]



< (4 ) fthe)- A
= ( Nwi/ﬁ/.

) .
Putting A/ ,{ , and considering only the terms with

indices exceeding Z—N s We obtain
0{2/

- /C Jmﬁ‘:;, 7 O(XW@)
+]

Since .. 27 7/ » for X 4 2 2 Xﬁ’ it follows that
a( Jo

%’ /Cﬁ/%. = O(ZM/Z/.

‘J:herefore s by Holder's 1nequalit.y,
/.,
Z c,}/# 4(2 /(41/?/) / /) #3
2 a);l / z)—f

— O(ZW(/{OZ}[/V//Z/)

9277 12’
S Jal e 275 Je, )
L H X

— 0( 7}[7 @//g-,v/../ﬁ/g))
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Thus

Z /C,,//é}ﬁ/T;: ,(Z /en] /‘27‘
. /

PYR (4

= 2/ 2> > N

7=/ 2%

w .
_ O(; azyzf“é’/ﬂ""/”/g/?/)
= o (1),

sinece ﬂ»{ﬂ[ﬂ(*/j"/} 7/7 (7:”’//.

This proves the first part of the lemma.

We observe that Lemma 1 1s a generallization of the
following lemms due to Cheng:

Let %guf{«,};} » |4 PR s oz.a(é/g_né?&g
given t’bx-’ ﬁ"* i"{-,—.;/ » then
_ g |

Pl Jead?| Yz 2o

— 0

for 7L A 3

but not necessaril fox_'

:.‘:..."0(0

 We shall also need the following lemma which 18,
obtelned by Hardy and Littlewood.])

1) Hardy and Littlewood, loc. cit. E
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mea'. fé:u,ﬁ[p(,#}, [g_n__d O 4 o< |y then
= o(/ﬁ/"‘f) _
‘?EOOF OF THEOREM. 113 In the first place we see, that

;c‘g 1,} and ﬁg(,%. and hence the exlstence of the integral

Fe
f fourt) g1t A
e

follows by ‘H'o'lderj inequality. 8Secondly, it will suffice
to prove that the Fourier serles.of 7 1s sbsolutely
convergent. ‘

Let
. &y
ferC 1A and ?/deﬁem

Then we know that

ﬁNZ Cocdn &

AS

Now

N ,
() ZA; /C«nda/ .é‘(zNjaﬁﬂ‘s//’)l/f(ZN /4,%/?/}/’%

where. 5 1s chogsen such that /; (x+ |—& ) > A and
[[—f- A )4), > ] ¢ This cnoice of § is possible because of
the. hypothesls o+ a( > —;- «# The ,first»stzm on the right.

# To gee this, we note Af)mat S must simult'.’aneously satilfy
the conditionss (i) [+ a(.nx/f a;nd (11) 57/
That 18, 5 must be.such that /2 .-«4 52 1w ae gy
Therefore such &  will exist i/ — % R/f - Y s
l.ee 1f w4t 4 7/} + K”’z/
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of (3)remains bounded, a8 A -» & , because qf Lemma 1
under the condition vlx+1-8) 7R ; vhile the second,
because of Lemma 2 under the condition (J-f' X )2>].
This comple:bes the proof of the theorem.

AN APPLICATION OF THEOREM T.

We can also obialn Young'!s continuous functions with
the help of #hke Theorem 7 whic;h can be stated in an

equivalent form as followss

Let 0 s xe s |£pegad T >0 « If

Vil .
JC - Z (P 6’5’(»
-7

J

1

and .
“ | 5 -
) t)- f _ Lo f’/ -
fa [ Flac+t x| gac Off ( 7 ) f/
where & = |+p(i-f)/F then -
5 eul by oo
< (% ,

for all ﬁ 7/7(7-‘»“/)/(/-71- q’;b); but not necessarily for
ﬂ = pLTD [+ xB) o ¢ Z_’ ‘denotes a summation for 3 in

which the term correspoziding to #7=¢ 18 omitted.)

In fect, we shall need the following lemme which can
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be deduced as a corollary of this theorem by teking =7},

LEMAA 3. Let o2 X&) » [<pegend €00 XL

(4) jﬁﬁﬁ@*ﬁ@/ﬁl% =—o{t (&7 /i ’bj

T 0
then
b )
D Calleginfl]” 2. oo,

for T o 3§ but not necessarily for 7 — o

We shall prove the following

THEOREM 12, Let o< xXzl]s J<p L g 2nd t>ovIL £
satisfles the condition (4) end ?/ £ A%( ?/ /;/ where
ﬁ(/-—-o(} Z | a.nd iis given bz ﬁ + g /— ) » then the
function # Eiven bx (1) 18 a Yogg‘s continuous function:

PROOFs We first prove that the integral

f f’éﬂ-*f/ﬂf/ at

does exlist under the hypotheses of the theorem. It follows
from the condition (4) that £& Loﬁ(:’::! b) and hence that

-f < L P ¢ Also ?’ £ Li +« Therefore the integrel in
question will exist by Holder’s inequality. Again, in

order to prove the theorem weyehall prove that the Fourier
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series of ﬁ is absolutely convergent.
If
V7 . . .4 .
. Y 27
-f -~ E C 7€ and ? ~/ Z A 2 €
‘ s ' , —

then

L@
/

Now

N N ~ y
/ . N 7519
(5) % /Q 41:/ 4 ;; )¢, (47/4’//7/7 /?'g; //49, (é;/ﬁ/)}ij;z
where 7  1s chosen such that 7 Z & and T4 >/ This
choice of 7 is possible because of the hypothesis
pli-x)2] # The firet sum on the right of (5) remains
bounded, as N ~5 4, by Lemma 3 under the condition 7-"40{ ’

and the second, by Lemma 2 under the condition 79 2>/. This

completes the proof of the theorem.

It remains to prove the second part of Lemma l. For

this, consider the function:

) = }fo; where (a+/))p >] /4.#4—__,2‘

# For, 7  should be such that i £ TZo , Therefore such a
7° will exist if L -~ s Or which means the same

88, 1f p(1-x) 217
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It 1s not aifficult to see that £z L (4,p/, for
of =d5y—a . also,its Fourier coefficlents <, are of

/ a-/
exact order /7#/ .+ Therefore the series

V7

oo
R /cw/ﬁ/z/” Z A D /w/ﬂ /T
— 29 —

oo MR T
A

diverges.




