CHAPTER IV

ABSOLUTE CONVERGENCE OF FOURIER SERIES OF THE CONVOLUTION OF TWO FUNCTIONS.

Let the functions f, g and f be each L-integrable in (0, 2π) and periodic outside with period 2π . We recall that f is called the Fourier convolution (faltung or composition) of f and g if

(1)
$$h(x) = \frac{1}{\pi} \int_{0}^{2\pi} f(x+t)g(t)dt$$
. 1)

Moreover, a function Λ is said to be a Young's continuous function if there exist two functions f and \hat{g} , each of the Lebesgue class L_2 , such that \hat{h} is the Fourier convolution of these functions². Although there is no obvious criterion to verify directly whether a given function is a Young's continuous function, it is known that a function is a Young's continuous function if and only if its Fourier series is absolutely convergent.³) Min-Teh Cheng⁴ has obtained Young's continuous functions as convolution of two functions one of which satisfies a stronger and the other a weaker condition than that of being a function of L_2 . In fact, he has proved the following

1) Zygmund [40], Vol. I, p. 36 2) Young [35] 3) Hardy and Littlewood [12], Chen [7] 4) Cheng [8] THEOREM-A. If $f \in Lip(\alpha, b)$ and $g \in Lip(\alpha, p)$, where | , <math>q > 1 and $\alpha' = \frac{1}{2p} < \alpha$, then the function hgiven by (1) is a Young's continuous function.

In this chapter we shall establish two theorems regarding the construction of Young's continuous functions in a way similar to that of Min-Teh Cheng. The first one is the following

THEOREM 11. If $f \in Lip(\alpha, \beta)$ and $g \in Lip(\alpha', g)$, where $| < \beta \leq 2$, $\alpha + \alpha' > \frac{1}{\beta}$ and g is given by $\beta' + \overline{g}' = 1$, then the function β given by (1) is a Young's continuous function.

The case p=2 in this theorem is trivial.

A word of explanation is in order here to show the connection between our theorem and that of Min-Teh Cheng. In Theorem-A, for a given \not{p} , $\not{\alpha}$ is constant and $\alpha > \frac{1}{2p}$. In particular, the least value of α' is $\frac{1}{4}$ and the value of α' is always greater than $\frac{1}{4}$. In Theorem 11, each of α' and α' may assume any value between 0 and 1, provided that they remain connected by the inequality: $\alpha + \alpha' > \frac{1}{p}$ (which is required of them in Theorem-A as well) and q is the conjugate index of p.

In order to prove our theorem, we shall need the following

<u>_</u>

LEMMA 1. Let
$$f \in Lip(\alpha, \beta)$$
, $| < \beta \leq 2$, $o < \alpha \leq 1$ and
 g be given by $\beta + g' = 1$. If

 $f \sim \sum_{n \in \mathcal{N}} c_n e^{n k}$

then

(2)
$$\sum_{-\infty}^{\infty} |e_n|^{\beta} |n|^{T} \leq \infty$$

for all β such that $\beta \{ p(\alpha+1)-1\} > p(\tau+1) ;$ but not necessarily when $\beta \{ p(\alpha+1)-1\} = p(\tau+1)$.

PROOF: Since

$$f(n+h) - f(n-h) \sim \sum_{-\infty}^{\infty} 2i c_n e^{ihn} Sun nh$$

by applying Hausdorff-Young inequality, we get

$$\left(\sum_{-\infty}^{20} |2 c_n S_m \pi \pi |^2\right)^{\frac{1}{2}} \leq \left(\frac{1}{2\pi} \int_{S}^{2\pi} |f| \pi + \pi \right) - f(\pi - \pi) |\frac{1}{2\pi} \rangle^{\frac{1}{2}}$$

for $f \in L_p$, $| \leq p \leq 2^{-1}$ Now, taking $A = \frac{\pi}{2N}$, where N is a positive integer,

$$\sum_{l=1}^{N} |c_n S_{ln} \frac{n\pi}{2N}|^q \leq \sum_{l=1}^{\infty} |c_n S_{ln} \frac{n\pi}{2N}|^q$$

1) Hardy and Littlewood [13]

 $\leq \left(\frac{1}{2\pi}\int_{0}^{2\pi}\left|f(n+\frac{\pi}{2N})-f(n-\frac{\pi}{2N})\right|^{p}dn\right)^{2/p}$

 $= O\left(N^{-\frac{9}{b}}\right)$

Putting $N = 2^{n}$, and considering only the terms with indices exceeding $\frac{1}{2}N$, we obtain

$$\sum_{\substack{\substack{z^{n+1} \\ z^{n+1} \\ z^{n+1}$$

Since $\lim_{\substack{x \to y \\ x^{2} \to y^{2}}} \frac{\pi \pi}{J_{2}} = 0$ ($\frac{\pi}{2} + \frac{\pi}{J_{2}}$), for $\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{J_{2}}$, it follows that $\sum_{\substack{x \to y^{2} \to y^{2} \to y^{2}}} \frac{|c_{\pi}|^{q}}{|c_{\pi}|^{q}} = 0$ ($\frac{\pi}{2} + \frac{\pi}{2}$).

Therefore, by Hölder's inequality,

$$\frac{\sum_{\substack{x=1\\x^{2^{n}+1}}}^{2^{n}} |c_{n}|^{\beta}}{2^{n+1}} \leq \left(\sum_{\substack{x=1\\x^{2^{n}+1}}}^{2^{n}} |c_{n}|^{2}\right)^{\beta/2} \left(\sum_{\substack{x=1\\x^{2^{n}+1}}}^{2^{n}} |\right)^{1-\beta/2}$$
$$= O\left(\frac{1}{2^{n}} \sum_{\substack{x=1\\x^{2^{n}}}}^{2^{n}} (1-\beta/2)\right)_{j}$$

and hence

$$\sum_{\substack{x^{2^{2}} \\ x^{2^{-1}} + 1 \\ x^{2^{-1}} + 1 \\ z^{2^{-1}} = O\left(x^{2^{2}(T - \alpha B + 1 - \beta/2)}\right)$$

Thus

$$\sum_{n=0}^{\infty} |c_n|^{\beta} |m|^{T} = 2 \sum_{n=1}^{\infty} |c_n|^{\beta} |m|^{T}$$

$$= 2|c_1|^{\beta} + 2 \sum_{n=1}^{\infty} \sum_{n=1}^{2^{n}} |c_n|^{\beta} |m|^{T}$$

$$= 0 \left(\sum_{n=1}^{\infty} 2^{n} (T - \alpha \beta + 1 - \beta / 2) \right)$$

$$= 0 (1),$$

n T

since
$$\beta_{1}^{2} p(\alpha + 1) - 1_{2}^{2} > p(T+1)$$
.

This proves the first part of the lemma.

We observe that Lemma 1 is a generalization of the following lemma due to Cheng:

Let $f \in Lip(\alpha, \beta) \cdot | < \beta \leq 2 \cdot 0 \leq \alpha \leq | \text{ and } \beta \text{ be}$ given by $\beta' + q' = | \cdot \text{ then}$ $\sum_{n=0}^{\infty} |c_n n'|^{q} \leq \omega,$

for $\gamma \angle \alpha$; but not necessarily for $\gamma = \alpha$.

We shall also need the following lemma which is obtained by Hardy and Littlewood.1)

ê s

1) Hardy and Littlewood, loc. cit.

LEMMA 2. If $f \in Lip(\alpha, \beta)$, $\beta \ge 1$ and $0 \le \alpha \le 1$, then $C_{\eta} = O(|\eta|^{-\alpha})$ <u>PROOF OF THEOREM 11</u>: In the first place we see, that $f \in L_{\beta}$ and $g \in L_{\eta}$, and hence the existence of the integral

$$\int_{0}^{2\pi} f(x+t) g(t) dt$$

follows by Hölder's inequality. Secondly, it will suffice to prove that the Fourier series of / is absolutely convergent.

Let

Then we know that

....

$$h \sim \sum_{-\infty}^{\infty} c_n d_n e^{-in\alpha}$$

Now

(3)
$$\sum_{N} |c_n d_n| \leq (\sum_{N}^{N} |c_n n^{\delta}|^p)^{1/p} (\sum_{N}^{N} |d_n \bar{n}^{\delta}|^2)^{1/2}$$

where δ is choosen such that $p(\alpha+1-\delta) > 2$ and $(\delta+\alpha') < 1$. This choice of δ is possible because of the hypothesis $\alpha + \alpha' > \frac{1}{p}$. The first sum on the right

^{*} To see this, we note that δ must simultaneously satisfy the conditions: (1) $\delta \leq |+\alpha - 2|p$ and (11) $\delta > |q - \alpha'$. That is, δ must be such that $|q - \alpha' \leq \delta \leq |+\alpha - 2|p$. Therefore such a will exist if $|q - \alpha' \leq \delta \leq |+\alpha - 2|p$. i.e. if $\alpha + \alpha' > |p$.

of (3)remains bounded, as $N \rightarrow \infty$, because of Lemma 1 under the condition $h(\alpha + 1 - \delta) > \lambda$; while the second, because of Lemma 2 under the condition $(\delta + \alpha) q > 1$. This completes the proof of the theorem.

AN APPLICATION OF THEOREM 7.

We can also obtain Young's continuous functions with the help of the Theorem 7 which can be stated in an equivalent form as follows:

Let $0 \le \alpha \le 1$, $1 \le \beta \le \alpha$ and t > 0. If $f \sim \sum_{-\infty}^{\infty} e_{n} e^{in\pi}$,

and

$$\int_{0}^{\infty} |f(\alpha+t) - f(\alpha)|^{p} d\alpha = O\left\{t^{\delta}(\log t^{-1})^{-1-\alpha p}\right\}$$

where $\delta = 1 + \frac{\beta(1-\beta)}{\beta}$, then

$$\sum_{n=\infty}^{\infty} |c_n|^{\beta} (\log n)^{T} \ge \infty,$$

for all $\beta > \beta(T+I)/(I+\alpha\beta)$; but not necessarily for $\beta = \beta(T+I)/(I+\alpha\beta)$. (\sum' denotes a summation for β in which the term corresponding to n=0 is omitted.)

In fact, we shall need the following lemma which can

be deduced as a corollary of this theorem by taking $\beta = p$. LEMMA 3. Let $0 \le \alpha \le 1$, $|\le p \le 2$ and t > 0. If

(4)
$$\int_{0}^{2\pi} |f(x+t) - f(x)|^{b} dx = 0 \left\{ t^{2-b} (\log t^{-1})^{-1-\alpha b} \right\},$$

then

$$\sum_{n=0}^{\infty} |C_n(\log|m|)|^p < \infty$$

for $T \angle \alpha$; but not necessarily for $T = \alpha$.

We shall prove the following

THEOREM 12. Let $0 < \alpha \leq i$, $| < \beta \leq 2$ and t > 0. If fsatisfies the condition (4) and $g \in Li\beta(\frac{1}{2}, g)$, where $\beta(1-\alpha) < i$ and g is given by $\beta' + g' = i$, then the function β given by (1) is a Young's continuous function. <u>PROOF</u>: We first prove that the integral

$$\int_{0}^{2\pi} f(x+t)g(t) dt$$

does exist under the hypotheses of the theorem. It follows from the condition (4) that $f \in Lip(\frac{2-p}{p}, p)$; and hence that $f \in L_p$. Also $g \in L_q$. Therefore the integral in question will exist by Hölder's inequality. Again, in order to prove the theorem we shall prove that the Fourier series of h is absolutely convergent.

If

$$f \sim \sum_{-\infty}^{\infty} c_n e^{in\pi}$$
 and $q \sim \sum_{-\infty}^{\infty} d_n e^{in\pi}$,

then

$$h \sim \sum_{-\infty}^{N} c_n d_n e^{inn}$$

Now

(5)
$$\sum_{-N}^{N} |c_n d_n| \leq \sum_{-N}^{N} |c_n (\log |n|)^T |b_1^{N}|_{2}^{N} \sum_{-N}^{N} |d_n (\log |n|)^T |b_2^{N}|_{2}^{N}$$

where T is chosen such that $T \angle \alpha$ and Tq > 1. This choice of T is possible because of the hypothesis $p(1-\alpha) \angle 1$. The first sum on the right of (5) remains bounded, as $N \rightarrow \infty$, by Lemma 3 under the condition $T \angle \alpha$, and the second, by Lemma 2 under the condition Tq > 1. This completes the proof of the theorem.

It remains to prove the second part of Lemma 1. For this, consider the function:

$$f(x) = |x|^{a}$$
, where $(a+1)p>1$, $12p \leq 2$

* For, 7 should be such that $\frac{1}{2} < T \angle \alpha$. Therefore such a 7 will exist if $\frac{1}{2} \angle \alpha$, or which means the same as, if $p(1-\alpha) \angle 1$?

It is not difficult to see that $f \in Lip(q, b)$, for $q = \frac{1}{p} - a$. Also, its Fourier coefficients C_{η} are of exact order $\left| \mathcal{H} \right|^{a-1}$. Therefore the series

$$\sum_{n=\infty}^{\infty} |c_n|^{\beta} |n|^{T} \leq A \sum_{n=\infty}^{\infty} |n|^{\beta} |a-1|+T$$

$$= A \sum_{n=\infty}^{\infty} |n|^{\beta} |n|^{2} |n|^{\beta} |a-1|/[\beta]^{\beta} |a+1|-1]^{\beta} + T$$

$$= A \sum_{n=\infty}^{\infty} |n|^{1}$$

63