CHAPTER V

ABSOLUTE . CONVERGENCE OF FOURIER SERIES OF
ABSOLUTELY . CONTINUOUS FUNCTIONS
1. It is known that the Fouriler series.of an sbsolutely
0
continuous. function 1s not necessar,ilyAconvergent. For

example, the series

is the Fourier series of an absolutely continuous function,
yet it does. not converge absolutely. This necessitates to
think in terms of some extra conditions which an absolutely
continuous funetion should sat_isfy 1:} order that its Fourler
series converges absolutely. Varlous resulis are obtalned
in thils direction by L. To,nellin, G.H. Herdy and J.E.
thtlewooda) and A. Z&gmund.w Here we intend to prove the
following

THEOREM 13. If F be an absolutely continuous and. X7—

periodic functlon with the derivative /%) = f(#) such that
o _

(1? Wwls) « 5% , x>-),

where /) 1s the modulus of continuity of - , then the

Fourler series of I converges absolutely.

1) Torelli  [28] 2) Hardy and Littlewood [lla
3) Zygmund  [3§]



65

PROOFs If A,, R 5¢, denote the Fouriler coefficients of <~ ,

and ‘4,‘ . L, denote those of +, then

s?.? Ay = — bo/n , Ban = 4'7’/77/'
as also : ‘

,. ~

F(tB)e JrA) o 2D (— Ay v D3t by CTIX ) IR
r=/ .

Put
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T () = D A K CoTh K= oy dunk %)
K=/

where ,\k;o ’ a(k -":Jz?ndk and //c :/L;m,ﬁ,e.

Since 77, (%) 18 a trigonometric polynomial, we have
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Now putting ﬁ — ..7,7; » we obtain

F&
®- 7
% Z » Ay (/47//+ /@f/)
Y=z)

= 5 h llanl+145]) dee (2 |
2=

z;’f {Hx 2 )~ 7 3 )f T ()

""er /77/// Ta (%) ] A=

Z-

- ’L 7 W(LZ) {/ Z%/d%fl/szxgzj/z

(by Cauchy-Schwarz inequality)

AN P A L
”/f;@-/ i loc+ )

% This inequality was used by Bojanic [6] to give new
proofs of theorems (1.1l) and (1. 5) due to Bermstein and
Zygmund.. respectively. .
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2 =
Ir ,Nk:=;} ’ G(k == /Zé = | » then
4h

rn =5 2 el lesl) < 0L )z,

and hence from (2)

) gy = *"Z (/47/‘*/5;//)4 [()(E//—?)

=]

This gives
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/'402/+ ‘Zﬂl L/‘Z";é?//"/

- - - —

-

9w, “#1-~) .
//?w/—/' ) By) = Loy My — 2 Moy 5
Vi
and hence
7""/ .

%;04w/+/ﬁg/).« oy +Z: fw-—%}'@ L,

" 2 g2y
L LT —g/  4(T) /7

2 (2+)

oLy
— [ o wiE /+ )-—----—--—-—,,j (%)

'ﬁw!

J
=0 (%“f*}’a %*“) |
J




68

Therefore, taking limit, as N—> oo ,

4

Z //ﬁy}-—f"/ﬁ?)/ £ o7 , for 0{>"‘&,

2=/

The proof is complete.

We shall also prove the following routine generali-

zatlon of Theorem 133

THEOREM 14. If o - /9,4:,/ and, f satisfles the condition (1)

then

SRS TNIAT Nl e
7=
LY T

FROOF: Taking 53,‘:0 in (3), we have

7
2l 2w L) R
D=

But by Holder's inequality
5
r,, A #
- Y
= . 2.7 (> A m)
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end similarly

i 77’/571/% =

P=)

o Z
? 34/ wﬂ

Therefore

. 41 ) -
> 7)7/(//’;///5‘ /5,,/%/ .7 il W %)
=1 :

N

Now putting
7

5 #
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Therefore

2 (//’v'fé /ﬁy/gé 20, tor B> d[(Xx+3).

=

This completes the proofs!

2+ In this section we Intend to establlsh two. more
theorenms regarding the absolute.convergence of {;hesFourier
series of functlions of bounded varilation which satisfs;
certain additional conditions. Our theorems are in s

sequel to certain. theorems of R. Mohantyl) and S.Izumi?) Our
first theorem is

THEOREM 15+ Let

&0
fr~ 2 by dnnz

#=/
If is such that

(1) f is of bounded varistion in (0,77 )
’

(mj
R

@ (%,%) = f(n+%)~ §(%-%) end § 50 5 end
(111) the. seguence . {7,7'[) (A &.m) } 1s of bounded
varietion for some 7 >0 » then

44’["/’// = o(/ﬁ/“/ . a >0 » ibere

i) Moha‘.nty [}9] » 2) Izumi E.B]
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We have also the cosine series anslogue:

THEOREM 16. Let

o0
7 Z- Ay I N
7=

Ig
(1)_(? 18 of bounded variation in (o, 7 )

(11) j [A ¥ ,%)] = 0[/%// x>0 » where

L (xA) =lneh)-jinR) mmd 55 0 5 am

(111) the seguence { ¢77'A Z’” dn) j is of bounded

veriation for some 7>0

20
Z. [en| £ 20,
%=)

We shall only prove Theorem 15; the proof of Theorem 16
will follow similarly.

PROOF OF THEOREM 15: We first observe that

& (%,4) ~ ZZ (bn donn) cosax

hz)




Therefore
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= —L[Qf’(*;f/M ,--f-/dmmc A B (%,%)
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end hence

m
— Tl den? = .%/; Imnx 4 4 (%,%)

T
= ) duencdp(nd) -

a

' 77,4 (% %
+7'_f”7¢," AP %///

I : Joyf!
where 7 — ’/;‘ /s chosen such thet % ’ is an integer

and
"* 13

7’ — %;— + O (?’I-If/‘flozz).

¥ A 7 satisfying these.conditions can be chosen;
pee Izumi, loec. cit.
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m f /47: Junt/

i //7;’:“,41&4¢(&,Z//

4=/

>4l
+Z /Lv’mzad;ﬂk,z//

Putting 4= 7, we get
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We have

X 0 ‘
J ,Jmaa4¢lk,g;:/ (,ZkZ _[r/j/(kﬁjm%/ ¥
' = ’ X dur b g Jutro A7,
Hence

/f ‘Jmm4¢g¢<,zz~/ /_é z/g ké«/c/ ka%/
- i ﬁthdfa‘c/

From thisAfollows, under the hypothesis (15.1), that [ ~ M‘-z)

Again, choosing M/ = /\/(7/ §) such that .7, 44, for
717 N y We have

T
r = ; ;, / ﬂpm‘ﬁ%é(gﬁ(%,{%//—f-
> 4
+ A /A
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1) Izumi, loe. cits
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it follows that 7~ . o2 .
This completes the proof of the thebrem.

L]
A ———

REVARK: It is easy to see that the condition (11) can be
replaced by the weaker condition ’

§ , ,
fo /447(9%//:0(2;7;/:{;)7, 721,
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