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6.1 Introduction

H. W. Gould[26], J. P. Singhal and Savita kumari[38], Dave and Dalbhide

[8] and others proposed various uni�ed of polynomials' systems in the form of a

general class of polynomials and derived inverse series relation, generating function

relations, di�erential equation and other properties of it. In this chapter, we

provide an extension to the general class of polynomials

Sn(l,m, α, β : x) =

bn/mc∑

k=0

(−1)mk λk
Γ(1 + β − nα + lk)(n−mk)!

xk, (6.1.1)

due Dalbhide and Dave[8], in the light of recently proposed one parameter de-

formation Γp(x) of the classical gamma function Γ(x) such that Γp(x) reduces to

153
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Γ(x) when p = 1. Here {λk} is a general sequence; does not involve n. Dave and

Dalbhide obtained the inverse series relation of (6.1.1) in the form:

λnx
n =

nm∑

k=0

(−1)k β Γ(β + nl − kα)

(mn− k)!
Sk(l,m, α, β : x).

The general class of polynomial (6.1.1) includes the extended Jacobi polynomial:

H(α,β)
n,l,m[(α); (β) : x] =

bn/mc∑

k=0

(−n)mk(α1)k · · · (αc)k
(β + 1− nα)lk(β1)k · · · (βd)k k!

xk

due to H. M. Srivastava and M. A. Pathan[42] whose inverse series relation was

obtained in the form [8]:

(−1)mn(α1)n(α2)n · · · (αc)n
(β1)n(β2)n · · · (βd)nn!

xn =
nm∑

k=0

(−1)mn−kβ Γ(β + nl − kα)

Γ(1 + β − kα)(mn− k)!k!

×H(α,β)
k,l,m[(α); (β) : x].

The deformed version of (6.1.1) besides providing the extension to the extended

Jacobi polynomial, also extends the Brafman polynomial (4.1.2), the extended

Konhauser polynomial (4.1.3) and the extended Laguerre polynomial (4.1.4) with

their inverse series as stated in chapter 4. We de�ne the following p-deformation

of polynomial (6.1.1).

De�nition 6.1.1. For 0 ≤ α ≤ 1, β ∈ C, m ∈ N, n, l = mα ∈ {0} ∪ N and

p > 0,

Sn,p(l,m, α, β : x) =

bn/mc∑

k=0

(−1)mk λk x
k

Γp(p+ β − pnα + plk)(n−mk)!
, (6.1.2)

in which the �oor function brc = floor r, represents the greatest integer ≤ r.

The above extended Jacobi polynomial occurs as a special case when p = 1

and λn = (α1)n · · · (αc)n/((β1)n · · · (βd)nn!).

Thus, if

λn =
(α1)n,p · · · (αc)n,p

(β1)n,p · · · (βd)n,pn!

then (6.1.2) yields the p-deformed extended Jacobi polynomial (or pEJP):

H(α,β)
n,l,m,p[(α); (β) : x] =

bn/mc∑

k=0

(−n)mk(α1)k,p · · · (αc)k,p
(β + p− pnα)lk,p(β1)k,p · · · (βd)k,pk!

xk. (6.1.3)
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Here if l = 0 then we get the p-deformed Brafman polynomial (pBP):

Bm
n,p[(α); (β) : x] =

bn/mc∑

k=0

(−n)mk(α1)k,p · · · (αc)k,p
(β1)k,p · · · (βd)k,p k!

xk. (6.1.4)

Next, the polynomial (6.1.2) yields the generalization of the Konhauser polynomi-

als Z
(α)
n (x; l) when β = 1, α = 0, λn = 1/(n!(p + α)ln,p), l ∈ N and x is replaced

by xl; which is given by

Z(α)
n,m,p(x; l) =

(p+ α)ln,p
n!

bn/mc∑

k=0

(−n)mk
(p+ α)kl,pk!

xkl. (6.1.5)

We call this polynomial as �the extended p-deformed Konhauser polynomials�

or brie�y, EpKP. The case l = 1 yields the �the extended p-deformed Laguerre

polynomial�, or EpLP which we denote by L
(α)
n,m,p(x) and de�ne by

L(α)
n,m,p(x) =

(p+ α)n,p
n!

bn/mc∑

k=0

(−n)mk
(p+ α)k,pk!

xk. (6.1.6)

It is evident that the polynomial (6.1.2) and its particular cases would reduce to

the polynomial (6.1.1) and its particular cases, when p = 1.

The �ow of the remaining sections are as follows.

In section - 6.2, we derive general inversion pair. Form this, we deduce the inverse

series relation of the polynomial (6.1.2) and its further particular cases in section

- 6.3. Moreover, We obtained another inversion pair which is associated to (6.1.2)

and its particular cases for m = 1. The di�erential equation of the extended

p-deformed polynomials are derived in section - 6.4. The generating function rela-

tions and the summation formulas involving p-polynomials are derived in section -

6.5 and section - 6.6, respectively. In the last section, section - 6.7, the Companion

matrix of the p-deformed monic polynomial obtained from (6.1.2), is derived.

6.2 Inverse series relations

In this section, we derive two general inversion pairs.

Theorem 6.2.1. Let 0 ≤ α ≤ 1, n ∈ N ∪ {0}, m ∈ N such that αm is a non

negative integer and β ∈ C \ {0}, then

G(n) =

bn/mc∑

k=0

1

Γp(β + pmkα− pnα + p)(n−mk)!
F (k) (6.2.1)

⇒
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F (n) =
nm∑

k=0

(−1)mn−k β Γp(β + pmnα− pkα)

(mn− k)!
G(k), (6.2.2)

and conversely, the series in (6.2.2) implies the series (6.2.1) if for n 6= mr, r ∈ N,

n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!
G(k) = 0. (6.2.3)

Proof. We �rst prove that (6.2.1)⇒ (6.2.2). For that let us denote the right hand

side of (6.2.2) by Fn then on substituting G(k) from (6.2.1), we have

Fn =
nm∑

k=0

(−1)mn−kβ Γp(β + pmnα− pkα)

(mn− k)!
G(k)

=
nm∑

k=0

(−1)mn−k
β Γp(β + pmnα− pkα)

(mn− k)!

×
bk/mc∑

j=0

1

Γp(β + pmjα− pkα + p)(k −mj)! F (j) (6.2.4)

Here, On making use of the double series relation

nm∑

k=0

bk/mc∑

j=0

A(k, j) =
n∑

j=0

mn−mj∑

k=0

A(k +mj, j), (6.2.5)

we further have from (6.2.4),

Fn =
n∑

j=0

mn−mj∑

k=0

(−1)mn−k−mjβ Γp(β + pmnα− p(k +mj)α)

(mn− k −mj)! Γp(β + pmjα− p(k +mj)α + p) k!
F (j)

= F (n) +
n−1∑

j=0

(−1)mn−mjβ

(mn−mj)!

mn−mj∑

k=0

(−1)k
(
mn−mj

k

)

×Γp(β + pmnα− pkα− pmjα)

Γp(β − pkα + p)
F (j)

= F (n) +
n−1∑

j=0

(−1)mn−mjβ

(mn−mj)! F (j)

mn−mj∑

k=0

(−1)k
(
mn−mj

k

) ln−lj−1∑

r=0

Ar k
r,

where l = bmαc is an integer < m for 0 ≤ α ≤ 1. Now, if P (a+bk) is a polynomial

in k of degree less than N then

N∑

k=0

(−1)k
(
N

k

)
P (a+ bk) = 0. (6.2.6)
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Here, the inner sum in the second term vanishes in view of (6.2.6), giving Fn =

F (n).

Next, to show that (6.2.1)⇒ (6.2.3), we take

n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!
G(k) = Gn.

Then substituting from (6.2.1) for G(k), we get

Gn =
n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!

×
bk/mc∑

j=0

1

Γp(β + pmjα− pkα + p)(k −mj)! F (j)

=
n∑

k=0

bk/mc∑

j=0

(−1)n−kβ Γp(β + pnα− pkα)

Γp(β + pmjα− pkα + p) (n− k)! (k −mj)! F (j)

=

bn/mc∑

j=0

n−mj∑

k=0

(−1)n−mj−kβ Γp(β + pnα− pkα− pmjα)

(n−mj − k)! Γp(β − pkα + p) k!
F (j)

=

bn/mc∑

j=0

(−1)n−mj
β F (j)

(n−mj)!

n−mj∑

k=0

(−1)k
(
n−mj

k

) bnαc−bmjαc−1∑

s=0

Bs k
s.

Here, in the last expression, the inner sums is the (n−mj)th di�erence of polyno-
mial of degree less than n−mj for 0 ≤ α ≤ 1, hence it vanishes in view of (6.2.6);

thus proving (6.2.1) implies (6.2.3).

We now assume (6.2.2) and (6.2.3) with n 6= mj, j ∈ N, and show that they both

imply (6.2.1). For that we �rst note the inverse series relation:

Ω(n) =
n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!
Ψ(k) (6.2.7)

⇒

Ψ(n) =
n∑

k=0

1

Γp(β + pkα− pnα + p)(n− k)!
Ω(k). (6.2.8)

Since (6.2.2) and (6.2.3) hold, it follows that if n 6= mj, j ∈ N, then Ω(n) = 0,

whereas for n = mj, Ω(mj) = F (j) from (6.2.2). In this case, Ψ(k) = G(k) and

with these substitutions, (6.2.8) assumes the form

G(n) =
n∑

mk=0

1

Γp(β + pmkα− pnα + p)(n−mk)!
Ω(mk).
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Thus the inverse pair (6.2.7) and (6.2.8) provide us the series relation:

F (n) =
nm∑

k=0

(−1)mn−k β Γp(β + pmnα− pkα)

(mn− k)!
G(k)

⇒

G(n) =

bn/mc∑

k=0

1

Γp(β + pmkα− pnα + p)(n−mk)!
F (k)

whenever (6.2.3) holds. This completes the converse part.

It is interesting to check whether interchanging of the coe�cients in above

theorem yields the inverse pair? The attempt made in this direction led us to the

inversion pair which is proved as

Theorem 6.2.2. Let 0 ≤ α ≤ 1, n ∈ N ∪ {0}, m ∈ N such that αm is a non

negative integer and β ∈ C \ {0}, then

G(n) =

bn/mc∑

k=0

(−1)n−mkβΓp(β + pnα− pmkα)

(n−mk)!
F (k) (6.2.9)

⇒

F (n) =
nm∑

k=0

1

Γp(β + pkα− pmnα + p)(mn− k)!
G(k), (6.2.10)

and conversely, the series in (6.2.10) implies the series (6.2.9) if for n 6= mr, r ∈
N,

n∑

k=0

1

Γp(β + pkα− pnα + p)(n− k)!
G(k) = 0. (6.2.11)

Proof. In order to prove that (6.2.9)⇒(6.2.10), we denote the righthand side of

(6.2.10) by Θ(n) and then substitute for G(k) from (6.2.9) to get

Θ(n) =
nm∑

k=0

1

Γp(β + pkα− pmnα + p)(mn− k)!
G(k)

=
nm∑

k=0

1

Γp(β + pkα− pmnα + p)(mn− k)!

×
bk/mc∑

j=0

(−1)k−mjβΓp(β + pkα− pmjα)

(k −mj)! F (j)

=
nm∑

k=0

bk/mc∑

j=0

(−1)k−mjβΓp(β + pkα− pmjα)

Γp(β + pkα− pmnα + p)(mn− k)!(k −mj)!F (j).
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This, in view of the double series relation (6.2.5), further simpli�es to

Θ(n) =
n∑

j=0

mn−mj∑

k=0

(−1)k+mj−mjβ Γp(β + p(k +mj)α− pmjα)

(mn− k −mj)! (k −mj +mj)!

× 1

Γp(β + p(k +mj)α− pmnα + p)
F (j)

=
n∑

j=0

mn−mj∑

k=0

(−1)kβ Γp(β + pkα)

(mn−mj − k)!k!Γp(β + p(k +mj)α− pmnα + p)
F (j)

= F (n) +
n−1∑

j=0

mn−mj∑

k=0

(−1)kβ Γp(β + pkα)

(mn−mj − k)! k!

× 1

Γp(β + p(k +mj)α− pmnα + p)
F (j)

= F (n) +
n−1∑

j=0

β

(mn−mj)!

mn−mj∑

k=0

(
mn−mj

k

)
(−1)kF (j)

ln−lj−1∑

r=0

Ark
r,

where l = bmαc is a non negative integer < m for 0 ≤ α ≤ 1. Here, the inner

sum in the second term vanishes in view of (6.2.6), giving Θ(n) = F (n). Thus,

(6.2.9)⇒(6.2.10). Next, in order to show that (6.2.9)⇒(6.2.11) for n 6= mr, r ∈ N,
we denote right hand side of (6.2.11) by Φ(n) and then substitute for G(k) from

(6.2.9) as follows.

Φ(n) =
n∑

k=0

1

Γp(β + pkα− pnα + p)(n− k)!
G(k)

=
n∑

k=0

bk/mc∑

j=0

(−1)k−mjβ Γp(β + pkα− pmkα)

Γp(β + pkα− pnα + p)(n− k)!(k −mj)!F (j)

=
n∑

k=0

bk/mc∑

j=0

(−1)k−mjβΓp(β + pkα− pmjα)

Γp(β + pkα− pnα + p)(n− k)!(k −mj)!F (j)

=

bn/mc∑

j=0

n−mj∑

k=0

(−1)k+mj−mjβ Γp(β + p(k +mj)α−mjα)

(n− k −mj)! k! Γp(β + p(k +mj)α− pnα + p)
F (j)

=

bn/mc∑

j=0

n−mj∑

k=0

(−1)n−k−mjβ

(n− k −mj)! k!
F (j)

bnαc−bmjαc−1∑

s=0

Bsk
s.

Now since 0 ≤ α ≤ 1 and mα is a non negative integer, the inner sum is (n−mj)th
di�erence of the polynomial in k of degree less than bnαc − bmjαc − 1, hence is

zero (from (6.2.6)). Thus Φ(n) = 0 giving (6.2.9)⇒(6.2.11). We now assume that

(6.2.10) and (6.2.11) with n 6= mj, j ∈ N, hold true and show that they together
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imply (6.2.9). For that we �rst denote the inverse series relation G(n) and F (n)

by Λ(n) and Υ(n) for m = 1 as follows.

Λ(n) =
n∑

k=0

(−1)n−kβΓp(β + pnα− pkα)

(n− k)!
Υ(k) (6.2.12)

⇒

Υ(n) =
n∑

k=0

1

Γp(β + pkα− pnα + p)(n− k)!
Λ(k). (6.2.13)

If n 6= mr, r ∈ N, then Λ(n) = 0, whereas for n = mr, Λ(mr) = F (r) from

(6.2.10). In this case, Υ(k) = G(k) and with these substitutions, (6.2.13) assumes

the form

G(n) =
n∑

mk=0

(−1)n−mkβΓp(β + pnα− pmkα)

(n−mk)!
Λ(mk).

Thus the inverse pair (6.2.12) and (6.2.13) provide us the series relation:

F (n) =
nm∑

k=0

1

Γp(β + pkα− pmnα + p)(mn− k)!
G(k)

⇒

G(n) =

bn/mc∑

k=0

(−1)n−mkβΓp(β + pnα− pmkα)

(n−mk)!
F (k),

whenever (6.2.11) holds. This completes the converse part ad hence the theorem.

6.3 Particular cases

In this section, we obtain inverse series relation of (6.1.2) and its particular

cases with the help of Theorem - 6.2.1. In order to obtain the inverse series relation

of (6.1.2), we substitute F (n) = (−1)mnλnx
n and mα = l in this theorem. We

then have G(n) = Sn,p(l,m, α, β : x) and consequently from (6.2.2), we obtain the

inverse series:

λnx
n =

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
Sk,p(l,m, α, β : x). (6.3.1)

The extended Jacobi polynomial (6.1.3) and its inverse series may be deduced by

taking

G(n) =
H (α,β)

n,l,m,p[(α); (β) : x]

Γp(p+ β − pnα) n!



Chapter 6 The p-deformed polynomials' system - III 161

and

F (n) =
(−1)mn(α1)n,p(α2)n,p · · · (αc)n,p

(β1)n,p(β2)n,p...(βd)n,pn!
xn,

and it is given by

(−1)mn(α1)n,p(α2)n,p · · · (αc)n,p
(β1)n,p(β2)n,p · · · (βd)n,pn!

xn =
nm∑

k=0

(−1)mn−kβΓp(β + pnl − pkα)

Γp(p+ β − pkα)(mn− k)!k!

×H (α,β)
k,l,m,p[(α); (β) : x]. (6.3.2)

From this, the inverse series of (6.1.4) occurs in straightforward manner by taking

α = 0 in (6.3.2), given by

(α1)n,p(α2)n,p · · · (αc)n,p
(β1)n,p(β2)n,p · · · (βd)n,pn!

xn =
nm∑

k=0

(−1)k

(mn− k)!k!
Bm
k,p[(α); (β) : x].

The polynomial EpKP possesses the inverse series:

xln =
nm∑

k=0

(−1)kn!(p+ α)ln,p
(p+ α)kl,p(mn− k)!

Z
(α)
k,m,p(x; l), (6.3.3)

and for l = 1, it furnishes the inverse of EpLP (cf. [53, Eq.(2), p. 207] with p=1):

xn =
nm∑

k=0

(−1)kn!(p+ α)n,p
(p+ α)k,p(mn− k)!

L
(α)
k,m,p(x). (6.3.4)

6.4 Di�erential equations

In this section, we derive the di�erential equation of the polynomial (6.1.2)

by specializing the sequence {λn} as { 1
k!
}. The equation will be obtained with the

help of the di�erential equation (1.3.11) of the function (1.3.10).

The particular polynomial thus obtained is denoted by Rm
n,p(x; l) which is given by

Rm
n,p(x; l) =

bn/mc∑

k=0

(−np)mk,p xk p−mk
(p+ β − pnα)lk,p k!

=

bn/mc∑

k=0

1

k!

{
m∏

i=1

(−np+ ip− p
m

)

k,p

}{
l∏

j=1

(
β − pnα + jp

l

)

k,p

}−1

×
(
mmxp−m

ll

)k

= mFl (4p(m;−np), p,4p(l; p+ β − pnα), p)

(
mmxp−m

ll

)
.
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Now comparing this with (1.3.11), we obtain in straight forward manner, the

di�erential equation:

[D (lpD + β − pnα + p− lp) (lpD + β − pnα + 2p− lp) · · · (lpD + β − pnα)

− x (mD − n) (mD − n+ 1) · · · (mD − n+m− 1)]Rm
n,p(x; l) = 0.

This may be further reduced to the di�erential equations satis�ed by pEJP, pBP,

EpKP and EpLP by specializing the parameters appropriately.

Explicit representation of (6.1.3) for l ∈ N with the help of (1.3.7) is given

by

H(α,β)
n,l,m,p[α1, . . . , αc; β1, . . . , βd : x]

=

bn/mc∑

k=0

(α1)k,p · · · (αc)k,p
(β1)k,p · · · (βd)k,p k!

{
m∏

i=1

(−np+ ip− p
m

)

k,p

}{
l∏

j=1

(
β − pnα + jp

l

)

k,p

}−1

×
(
mmxp−m

ll

)k

= m+cFl+d
(
(4p(m;−np), {αr}cr=1), p, (4p(l; p+ β − pnα), {βs}di=1, p

)(mmxp−m

ll

)
.

Now comparing this with (1.3.11), we get the di�erential equation of pEJP:

[
D

{
l∏

j=1

d∏

s=1

(lpD + β − pnα + jp− lp) (pD + βs − p)
}

−x
{

m∏

i=1

c∏

r=1

(mD − n+ i− 1) (pD + αr)

}]
H(α,β)
n,l,m,p[(α); (β) : x] = 0,

where D = x
d

dx
. The p-deformed di�erential equation of the deformed Brafman

polynomial (6.1.4), the extended p-deformed Konhauser polynomials (6.1.5) and

the extended p-deformed Laguerre polynomial (6.1.6) are derived in section - 4.4

of chapter 4.

6.5 Generating function relations

In this section, we derive the generating function relations (GFR) of the

polynomials pEJP, EpKP and their particular cases pBP and EpLP. For that we

use the series (6.2.1) of Theorem - 6.2.1 given by

G(n) =

bn/mc∑

k=0

1

Γp(β + pmkα− pnα + p)(n−mk)!
F (k).
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Noticing that the Bessel function occurs in the generating function relation of

the Laguerre polynomial (see [53, Eq. (2), p. 201]), we use here the p-deformed

Bessel function (2.3.12) of chapter 2 and de�ne the p-deformed generalized Bessel

function as well as the p-deformed modi�ed Bessel function respectively, as follows

(cf. [53, 62] with p = 1).

De�nition 6.5.1. For p > 0 and n, µ, ν ∈ C,

Jn,p(x) =
∞∑

k=0

(−1)k

Γp(p+ np+ kp)k!

(x
2

)n+2k

, (6.5.1)

Jµν,p(x) =
∞∑

k=0

1

Γp(p+ νp+ kpµ)k!
(−x)k, (6.5.2)

and

In,p(x) = i−nJn,p(ix). (6.5.3)

Now from (6.2.1), we have

∞∑

n=0

G(n) tn =
∞∑

n=0

bn/mc∑

k=0

1

Γp(β + pkmα− pnα + p)(n−mk)!
F (k)tn

=
∞∑

n=0

∞∑

k=0

1

Γp(β + pkmα− pnα− pkmα + p)(n+mk −mk)!

×F (k)tn+mk

=

(
∞∑

n=0

1

Γp(β − pnα + p) n!
tn

)(
∞∑

k=0

F (k) tmk

)
. (6.5.4)

Next consider

∞∑

n=0

(γ)n,p G(n) tn =
∞∑

n=0

bn/mc∑

k=0

(γ)n,p
Γp(β + pkmα− pnα + p)(n−mk)!

F (k) tn

=
∞∑

n=0

∞∑

k=0

(γ)n+mk,p

Γp(β − pnα + p)n!
F (k) tn+mk

=
∞∑

k=0

(γ)mk,p

(
∞∑

n=0

(γ +mkp)n,p
Γp(β − pnα + p)n!

tn

)
F (k) tmk

=
∞∑

k=0

(γ)mk,pF (k)

Γp(β + p)
tmk

∞∑

n=0

(−1)nα(γ +mkp)n,p(−β)nα,p
n!

tn.

(6.5.5)
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By specializing α, β and F (k) appropriately, we obtain the generating function

relations of the polynomials pEJP and EpKP.

The substitution

F (n) =
(−1)mn(α1)n,p(α2)n,p · · · (αc)n,p

(β1)n,p(β2)n,p · · · (βd)n,p n!
xn

in (6.5.4) implies

G(n) =
H(α,β)
n,mα,m,p[(α); (β) : x]

Γp(p+ β − pnα) n!
,

and consequently, with the help of (6.5.4) and (1.3.10), we are led to the generating

function relation:

∞∑

n=0

(−1)nα(−β)nα,p
n!

H(α,β)
n,mα,m,p[(α); (β) : x] tn

=

(
∞∑

n=0

(−1)nα(−β)nα,p
n!

tn

)(
∞∑

k=0

(α1)k,p(α2)k,p · · · (αc)k,p
(β1)k,p(β2)k,p · · · (βd)k,pk!

xk (−t)mk
)

= cFd ((α), p, (β), p) (x(−t)m)
∞∑

n=0

(−1)nα(−β)nα,p
n!

tn.

Here for α = 0, the �rst series on the right hand side converges for |t| < ∞ and

for α = 1, it converges for |t| < 1/p. For α = 1, the above GFR takes more elegant

form:

∞∑

n=0

H(1,β)
n,m,m,p[(α); (β) : x] (−β)n,p

(−t)n
n!

= (1 + tp)
β
p
cFd ((α), p, (β), p) (x(−t)m) .

On the other hand, the choice α = 0 (hence l = 0) leads us to the GFR of pBP

which is given by

∞∑

n=0

Bmn,p[(α); (β) : x]
tn

n!
= et cFd ((α), p, (β), p) (x(−t)m) .

The special case p = 1 yields the generating function relation occurring in [62, Ex.

67, p.199]. Next, taking α = 0, β = 0, and

F (n) =
(−1)mn(α1)n,p(α2)n,p · · · (αc)n,p

(β1)n,p(β2)n,p, · · · , (βd)n,pn!
xn

in (6.5.5), we get

G(n) =
1

n!
Bm
n,p[(α); (β) : x].
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Hence in view of (1.3.12), we �nd yet another relation with the help of (6.5.5):

∞∑

n=0

(γ)n,p
n!

Bm
n,p[(α); (β) : x]tn

=
∞∑

k=0

(−1)mk(γ)mk,p(α1)k,p(α2)k,p · · · (αc)k,p
(β1)k,p(β2)k,p · · · (βd)k,pk!

(
∞∑

n=0

(γ +mkp)n,p
k!

xktn

)
tmk

=
∞∑

k=0

(γ)mk,p(α1)k,p(α2)k,p · · · (αc)k,p
(β1)k,p(β2)k,p · · · (βd)k,pk!

(1− pt)(
−γ−mkp

p )xk(−t)mk

= (1− pt)−γ/p
∞∑

k=0

(γ)mk,p(α1)k,p(α2)k,p · · · (αc)k,p
(β1)k,p(β2)k,p · · · (βd)k,pk!

(1− pt)−mkxk(−t)mk.

(6.5.6)

By making use of (1.3.12) together with properties (1.3.7) and (1.3.9) in (6.5.6),

we get (cf. [62, Eq.(2), p.136] with p=1)

∞∑

n=0

Bm
n,p[(α); (β) : x]

(γ)n,p t
n

n!
= (1− pt)−γ/p

×m+cFd ((4p(m; γ), (α), p) , ((β), p))

(
(−mt)mx
(1− pt)m

)
.

For m+ c ≤ d+ 1 , this yields convergent generating function relations.

For obtaining the GFR of EpKP and EpLP, we take α = 0, β = 1 and replace

F (n) by (−1)mnxln/(Γp(p+ α + pnl)n!) in (6.5.4). Then G(n) = Zα
n,m,p(x; l)/((p+

α)nl,pΓp(p+ α)) the GFR:

∞∑

n=0

Zα
n,m,p(x; l)

(p+ α)nl,pΓp(p+ α)
tn =

(
∞∑

n=0

1

Γp(1 + p)n!
tn

)(
∞∑

k=0

(−1)mkxlk

Γp(p+ α + pkl)k!
tmk

)

=
et

Γp(1 + p)

∞∑

k=0

1

Γp(p+ α + pkl)k!

(
(−1)mxlt(m)

)k
,

that is

∞∑

n=0

Zα
n,m,p(x; l)

(p+ α)nl,p
tn =

etΓp(p+ α)

Γp(1 + p)
J lα
p
,p

(
(−1)m+1xltm

)
, (6.5.7)

involving the deformed generalized Bessel function (6.5.2). The particular cases

p = 1, m = 1 provide us the generating function relation obtained in [62, Ex.

65, p. 198]. Yet another generating function relation is obtainable by making

the substitutions α = 0, β = 1, and F (n) = (−1)mn xln/(Γp(p+ α + pnl)n!) in
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(6.5.5), yields G(n) = Zα
n,m,p(x; l)/((p+ α)nl,pΓp(p+ α)), we �nd that

∞∑

n=0

(γ)n,pZ
α
n,m,p(d, x; l)

(p+ α)nl,pΓp(p+ α)
tn

=
∞∑

k=0

(γ)mk,p(−1)mkxlktmk

Γp(p+ α + pkl)k!Γp(1 + p)

(
∞∑

n=0

(γ +mkp)n,p
n!

tn

)

=
1

Γp(1 + p)

∞∑

k=0

(γ)mk,p x
lk

(p+ α)lk,pk!

(
∞∑

n=0

(γ +mkp)n,p
n!

tn

)
(−t)mk

=
1

Γp(1 + p)

∞∑

k=0

(γ)mk,p
(p+ α)lk,pk!

(1− pt)
−γ−mkp

p xlk(−t)mk

=
(1− pt)

−γ
p

Γp(1 + p)

∞∑

k=0

(γ)mk,p
(p+ α)lk,pk!

(1− pt)−mkxlk(−t)mk.

In the notations of (1.3.7) and (1.3.9), this takes the form:

∞∑

n=0

(γ)n,p
(p+ α)nl,p

Z(α)
n,m,p(x; l) tn =

(1− pt)−γ/p
Γp(1 + p)

×mFl ((4p(m; γ), p), (4p (l;α + p) , p))

((x
l

)l( −mt
1− pt

)m)
. (6.5.8)

Here m ≤ l + 1 for convergence; the divergent generating function relations occur

for m > l + 1. This reduces to the generating function relation appearing in [62,

Ex. 66, p. 198] with p = 1 and m = 1.

As noted in Section -6.1, the case l = 1 of (6.1.5) is the extended p-deformed

Laguerre polynomial L
(α)
n,m,p(x). Hence the GFRs (6.5.7) and (6.5.8) when l = 1,

will reduce to those corresponding to the EpLP. They are however also directly

deducible from (6.5.4) with α = 0, β = 1, and F (n) = (−1)mnxn/((p + α)n,p n!)

and thereby G(n) = L
(α)
n,m,p(x)/(p+ α)n,p. In either case, we have

∞∑

n=0

L
(α)
n,m,p(x)

(p+ α)n,pΓp(p+ α)
tn =

(
∞∑

n=0

1

Γp(1 + p)n!
tn

)(
∞∑

k=0

(−1)mkxk

Γp(p+ α + kp)k!
tmk

)
,

that is,

∞∑

n=0

L
(α)
n,m,p(x)

(p+ α)n,p
tn =

etΓp(p+ α)

Γp(1 + p)

∞∑

k=0

(−1)mk

Γp(p+ α + kp)k!
(xtm)k.
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Here the cases m = 2r and m = 2r + 1, r ∈ N ∪ {0}, are worth mentioning. If we

take m = 2r + 1, then we have the following GFR involving (6.5.1).

∞∑

n=0

L
(α)
n,2r+1,p(x)

(p+ α)n,p
tn =

etΓp(p+ α)

Γp(1 + p)

(
∞∑

k=0

(−1)(2r+1)k

Γp(p+ α + kp)k!
(
√
x(t)2r+1)2k

)

=
etΓp(p+ α)(

√
x(t)2r+1)−

α
p

Γp(1 + p)

×
(
∞∑

k=0

(−1)k

Γp(p+ α + kp)k!
((
√
x(t)2r+1))

α
p

+2k

)

On making use of (6.5.1), this becomes

∞∑

n=0

L
(α)
n,2r+1,p(x)

(p+ α)n,p
tn =

et Γp(p+ α) (tr
√
xt)−α/p

Γp(1 + p)
Jα
p
,p(2t

r
√
xt).

When p = 1 and r = 0, this further reduces to the GFR as obtained in [53, Eq.(2),

p.201]. On the other hand, for m = 2r, the following GFR occurs which involves

p-deformed Bessel function (6.5.1) and p-deformed modi�ed Bessel function(6.5.3)

respectively.

∞∑

n=0

L
(α)
n,2r,p(x)

(p+ α)n,p
tn = et

Γp(p+ α)

Γp(1 + p)

∞∑

k=0

(−1)(2r+1)k

Γp(p+ α + kp)k!

(
tr
√
−x
)2k

= et
Γp(p+ α)

Γp(1 + p)

(
itr
√
x
)−α

p

∞∑

k=0

(−1)k

Γp(p+ α + kp)k!

(
itr
√
x
)α
p

+2k

= et
Γp(p+ α)

Γp(1 + p)

(
itr
√
x
)−α

p Jα
p
,p

(
2itr
√
x
)
.

In the notation of (6.5.3), this becomes

∞∑

n=0

L
(α)
n,2r,p(x)

(p+ α)n,p
tn = et

Γp(p+ α)

Γp(1 + p)

(
tr
√
x
)−α/p

Iα
p
,p

(
2tr
√
x
)
.

Similarly, if α = 0, β = 1, and F (n) = (−1)mnxn/(Γp(p+ α + np) n!), then with

G(n) = L
(α)
n,m,p(x)/((p+ α)n,pΓp(p+ α)) and (6.5.5) we �nd the relation:

∞∑

n=0

(γ)n,pL
(α)
n,m,p(x)

(p+ α)n,pΓp(p+ α)
tn =

∞∑

k=0

(γ)mk,p (−1)mkxktmk

Γp(1 + p)Γp(p+ α + kp)k!

×
(
∞∑

n=0

(γ +mkp)n,p
n!

tn

)



Chapter 6 The p-deformed polynomials' system - III 168

=
∞∑

k=0

(γ)mk,p
Γp(1 + p)Γp(p+ α + kp)k!

×(1− pt)
−γ−mkp

p (−t)mkxk.

Thus we get,

∞∑

n=0

(γ)n,pL
(α)
n,m,p(x)

(p+ α)n,p
tn =

(1− pt)−γ/p
Γp(1 + p)

∞∑

k=0

{
m∏
j=1

(
γ + jp− p

m

)

k,p

}

(p+ α)k,p k!
xk

×
( −mt

1− pt

)mk
.

Here the series on the right hand side converges for m = 1, 2. These cases are

illustrated below. For m = 1, we have

∞∑

n=0

(γ)n,pL
(α)
n,1,p(x)

(p+ α)n,p
tn =

(1− pt)−γ/p
Γp(1 + p)

1F1((γ, p), (α + p, p))

( −xt
1− pt

)
,

(6.5.9)

whereas for m = 2, we �nd

∞∑

n=0

(γ)n,pL
(α)
n,2,p(x)

(p+ α)n,p
tn =

(1− pt)−γ/p
Γp(1 + p)

2F1 ((4p (2; γ) , p), ((α + p), p))

( −4xt2

(1− pt)2

)
,

(6.5.10)

with

∣∣∣∣
4xt2

(1− pt)2

∣∣∣∣ < 1. If p = 1, then (6.5.9) reduces to the GFR given in [53, Eq.(3),

p.202]. Further, for γ = p+ α, (6.5.9) reduces to the GFR:

∞∑

n=0

L
(α)
n,1,p(x)tn =

(1− pt)−1−α
p

Γp(1 + p)
exp

( −xt
1− pt

)
,

whose particular case p = 1 appears in [53, Eq.(4), p.202].

In (6.5.10), the substitution γ = 2α + p gives an elegant form:

∞∑

n=0

(2α + p)n,pL
(α)
n,2,p(x)

(p+ α)n,p
tn =

(1− pt)−1− 2α
p

Γp(1 + p)

(
1− 4pxt2

(pt− 1)2

)− 1
2
−α
p

.

6.6 Summation formulas
It is interesting to observe that the inverse series relation obtained from

Theorem - 6.2.1 of section - 6.2 leads us to derive certain summation formulas. In
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fact, From (6.3.1) we have

1

λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
Sk,p(l,m, α, β : x) = xn, (6.6.1)

assuming λn 6= 0,∀n ∈ N.
Now multiplying both sides by 1/n! and taking summation from n = 0 to ∞, we

obtain

∞∑

n=0

1

n!λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
Sk,p(l,m, α, β : x) =

∞∑

n=0

xn

n!
= ex,

(6.6.2)

for all x. The choice λn = (α1)n,p · · · (αc)n,p/((β1)n,p · · · (βd)n,pn!) here, provides

the summation formula of pEJP as follows.

∞∑

n=0

(β1)n,p · · · (βd)n,p
(α1)n,p · · · (αc)n,p

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
H(α,β)
k,l,m,p[(α); (β) : x] = ex.

(6.6.3)

Further, l = mα = 0 in (6.6.3) simpli�es to the summation formula of pBP(6.1.4)

in the form:

∞∑

n=0

(β1)n,p · · · (βd)n,p
(α1)n,p · · · (αc)n,p

nm∑

k=0

(−1)k β Γp(β)

(mn− k)!
Bm
k,p[(α); (β) : x] = ex.

Next taking β = 1, α = 0, λn = 1/(n!(p + α)ln,p) and x is replaced by xl; in

(6.6.2), we get

∞∑

n=0

nm∑

k=0

(−1)k(p+ α)ln,p
(p+ α)kl,p(mn− k)!

Z
(α)
k,m,p(x; l) = ex

l

,

the summation formula of EpKP. The immediate consequence of this, is the sum-

mation formula involving EpLP:

∞∑

n=0

nm∑

k=0

(−1)k(p+ α)n,p
(p+ α)k,p(mn− k)!

L
(α)
k,m,p(x) = ex,

when l = 1.

The number e is the value if x = 1 in above formulas.
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Further on taking sum from n = 0 to ∞ (6.6.1) with |x| < 1, λn 6= 0, ∀n, we get

∞∑

n=0

1

λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
Sk,p(l,m, α, β : x) =

∞∑

n=0

xn =
1

1− x.

By assigning di�erent values to x from (−1, 1), a number of particular summation

formulas can be derived. For example, x = 1/2 in this formula gives the following

one:

∞∑

n=0

1

λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
Sk,p

(
l,m, α, β :

1

2

)
= 2.

The reducibility of this summation formula corresponding to the particular cases

of Sn,p(l,m, α, β : x) may be obtained by the substitutions as stated above. We

consider the sum

∞∑

n=0

(β1)n,p · · · (βd)n,p n!

(α1)n,p · · · (αc)n,p

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!

×H(α,β)
k,l,m,p

[
(α); (β) :

1

2

]
= 2,

∞∑

n=0

(β1)n,p · · · (βd)n,p n!

(α1)n,p · · · (αc)n,p

nm∑

k=0

(−1)k β Γp(β)

(mn− k)!
Bm
k,p

[
(α); (β) :

1

2

]
= 2,

∞∑

n=0

nm∑

k=0

(−1)kn!(p+ α)ln,p
(p+ α)kl,p(mn− k)!

Z
(α)
k,m,p

(
1

2
; l

)
=

2l

2l − 1
.

Similarly one can derive other summation formulas from (6.6.1).

6.7 Companion matrix

Taking bn/mc = N in (6.1.2) and converting it to the monic form

S̃n,p(l,m, α, β : x), we get

S̃n,p(l,m, α, β : x) =
N∑

k=0

δk x
k,

where

δk =
(−1)(k−N)m Γp(p+ β − pnα + plN)λk (n−mN)! xk

Γp(p+ β − pnα + plk)λN(n−mk)!
.

With this δk, C
(
S̃n,p(l,m, α, β : x)

)
assumes the form as stated in De�nition 1.3.1.

The eigen values of this matrix will be then precisely the zeros of S̃n,p(l,m, α, β : x)
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(see [48, p. 39]).

Next chapter, Chapter-7, provides q-extension to the polynomial (6.1.2) and derive

analogous properties.

POLYNOMIALS' REDUCIBILITY

A General class of p-deformed
polynomials' system III

The p-deformed ex-
tended Jacobi polynomial

General class of p-polynomials
Ban,m,p(x; l) of chapter 4
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