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p-DEFORMATION OF A GENERAL CLASS OF
POLYNOMIALS AND ITS PROPERTIES

RAJESH V. SAVALIA AND B. I. DAVE

Abstract. The work incorporates the extension of the Srivastava-Pathan’s

generalized polynomial by means of p-generalized gamma function: Γp

and Pochhammer p-symbol (x)n,p due to Rafael Dı́az and Eddy Pariguan

[Divulgaciones Mathemáticas Vol.15, No. 2(2007), pp. 179-192]. We es-

tablish the inverse series relation of this extended polynomial with the

aid of general inversion theorem. We also obtain the generating function

relations and the differential equation. Certain p-deformed combinatorial

identities are illustrated in the last section.
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1. Introduction

In this work, we consider the general polynomial:

Sn(l,m, α, β : x) =

bn/mc∑

k=0

(−1)mkλk
Γ(1 + β − nα+ lk)(n−mk)!

xk (1.1)

due to Manisha Dalbhide [1] with an objective to provide extension in the light

of recently proposed one parameter deformation Γp(x) of the classical gamma

function Γ(x) such that Γp(x) reduces to Γ(x) when p = 1. This introduction

is due to Rafael Dı́az and Eddy Pariguan [3]. In fact, the occurrence of the

product of the form x(x + p)(x + 2p) · · · (x + (n − 1)p) in combinatorics of

creation and annihilation operators ( [2], [4]) and the perturbative computation

of Feynman integrals [5] led them to generalize the Gamma function in the form

involving the above factors.

The p-Gamma function is given in Euler integral form as follows [3]. For
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z ∈ C, Re(z) > 0 and p > 0,

Γp(z) =

∫ ∞

0

tz−1e−
tp

p dt. (1.2)

For z ∈ C, p ∈ R and n ∈ N, the Pochhammer p-symbol is given by

(z)n,p = z(z + p)(z + 2p) · · · (z + (n− 1)p). (1.3)

In this notation, we also have for z ∈ C \ pZ<0 and p > 0,

Γp(z lim=)
n→∞

n! pn (np)
z
p−1

(z)n,p
. (1.4)

The following properties follow from (1.3) and (1.4).

Γp(z + p) = zΓp(z), (1.5)

Γp(p) = 1, (1.6)

(z)k,p =
Γp(z + kp)

Γp(z)
, (1.7)

(z)n−k,p =
(−1)k(z)n,p

(p− z − np)k,p
, (1.8)

(z)mn,p = mmn
m∏

j=1

(
z + jp− p

m

)

n,p

. (1.9)

When p = 1, these identities get reduced to the corresponding properties of the

Gamma function and the Pochhammer symbol ( [6], [9]). We shall make use

the notation

4p(m;n) =

m∏

j=1

(
n+ jp− p

m

)
. (1.10)

For p = 1, this gives the usual notation (41(m;n) =)4(m;n) which indicates

the array of m parameters

n

m
,
n+ p

m
, . . . ,

n+mp− p
m

.

Diaz and Pariguan [3] also proposed the following generalization of the hyper-

geometric series in the form of Pochhammer p-symbol (cf. [6] with p = 1), given

by

rFs(a, k, b, l)(x) =
∞∑

n=0

(a1)n,k1(a2)n,k2 · · · (ar)n,kr
(b1)n,l1(b2)n,l2 · · · (bs)n,lsn!

xn, (1.11)

where a = (a1, a2, · · · , ar) ∈ Cr, k = (k1, k2, · · · , kr) ∈ (R+)r, b = (b1, b2, · · · ,
bs) ∈ Cs \ (kZ−)s and l = (l1, l2, · · · , ls) ∈ (R+)s. This series converges for
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all x if r ≤ s, and diverges if r > s + 1, x =6 0. If r = s + 1, then the series

converges for |x| < l1l2···ls
k1k2···kr . It also satisfies the differential equation [3]:

[D (l1D + b1 − l1) (l2D + b2 − l2) · · · (lsD + bs − ls)
− x (k1D + a1) (k2D + a2) · · · (krD + ar)]y = 0, (1.12)

where D = x
d

dx
. For p > 0, a ∈ C and |x| < 1

p
, Diaz and Pariguan [3] showed

that

∞∑

n=0

(a)n,p
n!

xn = (1− px)−
a
p . (1.13)

This may be regarded as the p-deformed binomial series. In the present work,

we define the following p-deformation of polynomial (1.1).

Definition 1.1. For 0 ≤ α ≤ 1, β ∈ C, m ∈ N, l n, αm ∈ N ∪ {0}, and p > 0,

Sn,p(l,m, α, β : x) =

bn/mc∑

k=0

(−1)mk λk x
k

Γp(p+ β − pnα+ plk)(n−mk)!
, (1.14)

in which the floor function brc = floor r, represents the greatest integer ≤ r.

The extended Jacobi polynomial due to H. M. Srivastava [8] occurs as a

special case when p = 1 and

λn =
(α1)n · · · (αc)n

(β1)n · · · (βd)nn!
.

Thus, if

λn =
(α1)n,p · · · (αc)n,p

(β1)n,p · · · (βd)n,pn!

then (1.14) yields the p-deformed extended Jacobi polynomial (or pEJP):

H(α,β)
n,l,m,p[α1, . . . , αc;β1, . . . , βd : x]

=

bn/mc∑

k=0

(−n)mk(α1)k,p · · · (αc)k,p
(β + p− pnα)lk,p(β1)k,p · · · (βd)k,p k!

xk. (1.15)

Here if l = 0 or (in (1.14)) α = 0, then we get the p-deformed Brafman

polynomial (pBP):

Bmn,p[α1, . . . , αc;β1, . . . , βd : x] =

bn/mc∑

k=0

(−n)mk(α1)k,p · · · (αc)k,p
(β1)k,p · · · (βd)k,p k!

xk.

(1.16)
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Next, the polynomial (1.14) generalizes the well known Konhauser polynomial

Z
(α)
n (x; l) when β = 1, α = 0, λn = 1/n!(p + α)ln,p and x is replaced by xl;

which is given by

Z(α)
n,m,p(x; l) =

(p+ α)ln,p
n!

bn/mc∑

k=0

(−n)mk
(p+ α)kl,pk!

xkl. (1.17)

We call this polynomial as “extended p-deformed Konhauser polynomial” or

briefly, EpKP. The case l = 1 yields the “extended p-deformed Laguerre poly-

nomial”, or EpLP which we denote as L
(α)
n,m,p(x).

2. Inverse series relation

In this section, we derive the inverse series relation for the polynomial

(1.14) by establishing a general inversion theorem below.

Theorem 2.1. Let 0 ≤ α ≤ 1, n, l,m ∈ N ∪ {0}, such that αm is an integer

and β ∈ C \ {0}, then

G(n) =

bn/mc∑

k=0

1

Γp(β + pmkα− pnα+ p)(n−mk)!
F (k) (2.1)

⇒

F (n) =

nm∑

k=0

(−1)mn−k β Γp(β + pmnα− pkα)

(mn− k)!
G(k), (2.2)

and conversely, the series in (2.2) implies the series (2.1) if for n 6= mr, r ∈ N,

n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!
G(k) = 0. (2.3)

Proof. We prove that (2.1)⇒ (2.2). For that let us denote the right hand side

of (2.2) by Fn then on substituting G(K) from (2.1), we have



230p-DEFORMATION OF A GENERAL CLASS OF POLYNOMIALS...

Fn =
nm∑

k=0

(−1)mn−kβ Γp(β + pmnα− pkα)

(mn− k)!
G(k)

=
nm∑

k=0

(−1)mn−k
β Γp(β + pmnα− pkα)

(mn− k)!

×
bk/mc∑

j=0

1

Γp(β + pmjα− pkα+ p)(k −mj)! F (j)

=
n∑

j=0

mn−mj∑

k=0

(−1)mn−k−mjβ Γp(β + pmnα− p(k +mj)α)

(mn− k −mj)! Γp(β + pmjα− p(k +mj)α+ p) k!
F (j)

= F (n) +

n−1∑

j=0

mn−mj∑

k=0

(−1)mn−k−mjβ Γp(β + pm(n− j)α− pkα)

Γp(β − pkα+ p) (mn−mj − k)! k!
F (j)

= F (n) +
n−1∑

j=0

(−1)mn−mjβ
(mn−mj)!

mn−mj∑

k=0

(−1)k
(
mn−mj

k

)

× Γp(β + pmnα− pkα− pmjα)

Γp(β − pkα+ p)
F (j)

= F (n) +
n−1∑

j=0

(−1)mn−mjβ
(mn−mj)! F (j)

mn−mj∑

k=0

(−1)k
(
mn−mj

k

) ln−lj−1∑

r=0

Ar k
r,

where l = mα is an integer < m for 0 ≤ α ≤ 1. Now, if P (a + bk) is a

polynomial in k of degree less than N then

N∑

k=0

(−1)k
(
N

k

)
P (a+ bk) = 0. (2.4)

Here, the inner sum in the second term vanishes in view of (2.4), giving Fn =

F (n).

Next, to show that (2.1)⇒ (2.3), we take

n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!
G(k) = Gn.
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Then substituting from (2.1) for G(k), we get

Gn =
n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!

×
bk/mc∑

j=0

1

Γp(β + pmjα− pkα+ p)(k −mj)! F (j)

=

n∑

k=0

bk/mc∑

j=0

(−1)n−kβ Γp(β + pnα− pkα)

Γp(β + pmjα− pkα+ p) (n− k)! (k −mj)! F (j)

=

bn/mc∑

j=0

n−mj∑

k=0

(−1)n−mj−kβ Γp(β + pnα− pkα− pmjα)

(n−mj − k)! Γp(β − pkα+ p) k!
F (j)

=

bn/mc∑

j=0

(−1)n−mj
β F (j)

(n−mj)!

n−mj∑

k=0

(−1)k
(
n−mj

k

) bnαc−mjα−1∑

s=0

Bs k
s.

Here also the inner sums express the (n − mj)th difference of polynomial of

degree less than n − mj for 0 ≤ α ≤ 1, hence it vanishes in view of (2.4);

proving (2.1) implies (2.3).

We now assume (2.2), and (2.3) with n 6= mj, j = 0, 1, . . . , and show that they

together imply (2.1). For that we first note the inverse series relation:

Ω(n =)
n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)

(n− k)!
Ψ(k (2.5))

⇒

Ψ(n) =
n∑

k=0

1

Γp(β + pkα− pnα+ p)(n− k)!
Ω(k). (2.6)

If n 6= mj, j = 1, 2, . . . , then Ω(n) = 0, whereas for n = mj, Ω(mj) = F (j)

from (2.2). In this case, Ψ(k) = G(k) and with these substitutions, (2.6)

assumes the form

G(n) =

n∑

mk=0

1

Γp(β + pmkα− pnα+ p)(n−mk)!
Ω(mk).

Thus the inverse pair (2.5) and (2.6) provide us the series relation:

F (n =)
nm∑

k=0

(−1)mn−k β Γp(β + pmnα− pkα)

(mn− k)!
G(k)

⇒

G(n) =

bn/mc∑

k=0

1

Γp(β + pmkα− pnα+ p)(n−mk)!
F (k)

whenever (2.3) holds. This completes the converse part. �
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In order to obtain the inverse series relation of (1.14), we substitute F (n) =

(−1)mnλnx
n and mα = l in this theorem. We then have G(n) = Sn,p(l, m, α, β :

x) and consequently from (2.2), we obtain

λnx
n =

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)

(mn− k)!
Sk,p(l,m, α, β : x). (2.7)

From this, the inverse series of (1.16) occurs in straightforward manner, given

by

(α1)n,p(α2)n,p · · · (αc)n,p
(β1)n,p(β2)n,p · · · (βd)n,pn!

xn =

nm∑

k=0

(−1)k

(mn− k)!k!

×Bmn,p[α1, . . . , αc;β1, . . . , βd : x].

The polynomial EpKP possesses the inverse series:

xln =
nm∑

k=0

(−1)kn!(p+ α)ln,p
(p+ α)kl,p(mn− k)!

Z
(α)
k,m,p(x; l) (2.8)

and for l = 1, it furnishes the inverse of EpLP (cf. [6, Eq.(2), p. 207] with

p=1):

xn =
nm∑

k=0

(−1)kn!(p+ α)n,p
(p+ α)k,p(mn− k)!

L
(α)
k,m,p(x). (2.9)

3. Generating function relations of p-deformed polynomial

By making use of the identity (2.1) of Theorem 2.1, the generating func-

tion relations (or GFR) of pEJP and EpKP will be derived here. The special

cases namely, the pBP and EpLP respectively will then follow immediately.

Since the Bessel function occurs in the generating function relation of Laguerre

polynomial (see [6, Eq. (2), p. 201]), we define the p-deformed Bessel function,

p-deformed generalized Bessel function as well as p-deformed modified Bessel

function respectively, as follows (cf. [6, 9] with p = 1).

Jn,p(x =)

∞∑

k=0

(−1)k

Γp(p+ np+ kp)k!

(x
2

)n+2k

, (3.1)

Jµν,p(x) =

∞∑

k=0

1

Γp(p+ νp+ kpµ)k!
(−x)k, (3.2)

and

In,p(z =) i−nJn,p(iz). (3.3)
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Now from (2.1), we consider

∞∑

n=0

G(n) tn =

( ∞∑

n=0

1

Γp(β − pnα+ p) n!
tn

)( ∞∑

k=0

F (k) tmk

)
, (3.4)

and

∞∑

n=0

(γ)n,p G(n) tn =
∞∑

k=0

(γ)mk,p
Γp(β + p)

F (k) tmk

×
∞∑

n=0

(−1)nα(γ +mkp)n,p(−β)nα,p
n!

tn. (3.5)

By specializing α, β and F (k) appropriately, we obtain generating function

relations of the aforementioned polynomials.

(I) Generating function relations of pEJP and pBP.

The substitution

F (n) =
(−1)mn(α1)n,p(α2)n,p · · · (αp)n,p

(β1)n,p(β2)n,p · · · (βq)n,p n!
xn

in (3.4) implies

G(n) =
H(α,β)
n,mα,m,p[α1, α2, · · · , αp;β1, β2, · · · , βq : x]

Γp(p+ β − pnα) n!

and consequently we are led to the generating function relation:

∞∑

n=0

(−1)nα(−β)nα,p
n!

H(α,β)
n,mα,m,p[α1, α2, · · · , αp;β1, β2, · · · , βq : x] tn

=

( ∞∑

n=0

(−1)nα(−β)nα,p
n!

tn

)( ∞∑

k=0

(α1)k,p(α2)k,p · · · (αp)k,p
(β1)k,p(β2)k,p · · · (βq)k,pk!

xk (−t)mk
)

=

∞∑

n=0

(−1)nα(−β)nα,p
n!

tn rFs ((α1, · · · , αp), p, (β1, · · · , βq), p) (x(−t)m)

(3.6)

in view of (1.11). Here for α = 0, the first series on the right hand side

converges for |t| < ∞ and for α = 1, it converges for |t| < 1/p. For

α = 1, the above GFR takes more elegant form:

∞∑

n=0

H(1,β)
n,m,m,p[α1, α2, · · · , αp;β1, β2, · · · , βq : x] (−β)n,p

(−t)n
n!

(1 += tp)
β
p
rFs ((α1, · · · , αp), p, (β1, · · · , βq), p) (x(−t)m) . (3.7)



234p-DEFORMATION OF A GENERAL CLASS OF POLYNOMIALS...

On the other hand, the case α = 0 (hence l = 0) leads us to the GFR

of pBP which is given by
∞∑

n=0

Bmn,p[α1, α2, . . . , αp;β1, β2, . . . , βq : x]
tn

n!

= et rFs ((α1, . . . , αp), p, (β1, . . . , βq), p) (x(−t)m) .

The special case p = 1 reduces to the generating function relation

occurring in [9, Ex. 67, p.199]. Next, taking α = 0, β = 0, and

F (n) =
(−1)mn(α1)n,p(α2)n,p · · · (αp)n,p

(β1)n,p(β2)n,p, · · · , (βq)n,pn!
xn

in (3.5), we get

G(n) =
1

n!
Bmn,p[α1, α2, · · · , αp;β1, β2, · · · , βq : x].

Hence in view of (1.13), we find yet another relation:

∞∑

n=0

(γ)n,p B
m
n,p[α1, α2, . . . , αp;β1, β2, . . . , βq : x]

tn

n!

= (1− pt)−γ/p
∞∑

k=0

(γ)mk,p(α1)k,p(α2)k,p · · · (αp)k,p
(β1)k,p(β2)k,p · · · (βq)k,pn!

×(1− pt)−mkxk(−t)mk. (3.8)

By making use of (1.13) together with property (1.10) and (1.9) in

(3.8), we get (cf. [9, Eq.(2), p.136] with p=1)

∞∑

n=0

Bmn,p[α1, α2, · · · , αp;β1, β2, · · · , βq : x]
(γ)n,p t

n

n!
= (1− pt)−γ/p

m+pFq ((4p(m; γ), α1, α2, · · · , αp) , p, (β1, β2, · · · , βq))
(

(−mt)mx
(1− pt)m

)
.

(3.9)

For m+ p ≤ q + 1 , this yields divergent generating function relations.

(II) Generating function relations of EpKP and EpLP.

If we take α = 0, β = 1 and F (n) = (−1)mnxln/Γp(p+ α+ pnl)n! in

(3.4), then we have G(n) = Zαn,m,p(x; l)/(p + α)nl,pΓp(p + α) which

consequently leads us to the GFR:
∞∑

n=0

Zαn,m,p(x; l)

(p+ α)nl,p
tn =

etΓp(p+ α)

Γp(1 + p)
J lα
p ,p

(
(−1)m+1xltm

)
(3.10)

involving the p-deformed generalized Bessel function (3.2). The par-

ticular case p = 1, m = 1 provides us the generating function relation

obtained in [9, Ex. 65, p. 198]. Yet another generating function
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relation is obtainable by making the substitutions α = 0, β = 1,

and F (n) = (−1)mn xln/Γp(p+ α+ pnl)n! in (3.5). In this case,

G(n) = Zαn,m,p(x; l)/(p+ α)nl,pΓp(p+ α) and we find that

∞∑

n=0

(γ)n,p
(p+ α)nl,p

Z(α)
n,m,p(x; l) tn =

(1− pt)−γ/p
Γp(1 + p)

×mFl (4p(m; γ), p,4p (l;α+ p) , p)

((x
l

)l( −mt
1− pt

)m)
. (3.11)

The divergent generating function relations occur for m > l + 1. This

also reduces to the generating function relation noted in [9, Ex. 66, p.

198] with p = 1 and m = 1.

As noted in Section-1, the case l = 1 of (1.17) is the extended p-

deformed Laguerre polynomial L
(α)
n,m,p(x). Hence the GFRs (3.10) and

(3.11) when l = 1, will reduce to those corresponding to the EpLP. They

are however also directly deducible from (3.4) with α = 0, β = 1, and

F (n) = (−1)mnxn/(p + α)n,p n! and thereby G(n) = L
(α)
n,m,p(x)/(p +

α)n,p. In either case, we have

∞∑

n=0

L
(α)
n,m,p(x)

(p+ α)n,p
tn =

etΓp(p+ α)

Γp(1 + p)

∞∑

k=0

(−1)mk

Γp(p+ α+ kp)k!
(xtm)k. (3.12)

Here the cases m = 2r and m = 2r+1, r ∈ N∪{0}, are worth mention-

ing. If we take m = 2r + 1, then we have the following GFR involving

(3.1).

∞∑

n=0

L
(α)
n,2r+1,p(x)

(p+ α)n,p
tn =

et Γp(p+ α) (tr
√
xt)−α/p

Γp(1 + p)
Jα
p ,p

(2tr
√
xt). (3.13)

When p = 1 and r = 0, this further reduces to the GFR as obtained

in [6, Eq.(2), p.201], whereas for m = 2r, the following GFR occurs

which involves p-deformed modified Bessel function (3.3).

∞∑

n=0

L
(α)
n,2r,p(x)

(p+ α)n,p
tn =

et Γp(p+ α) (
√
x(t)2r)−α/p

Γp(1 + p)
Iα
p ,p

(2tr
√
x)). (3.14)

Similarly, if α = 0, β = 1, and F (n) = (−1)mnxn/Γp(p+ α+ np) n!,

then G(n) = L
(α)
n,m,p(x)/(p+α)n,pΓp(p+α) and (3.5) yield the relation:

∞∑

n=0

(γ)n,pL
(α)
n,m,p(x)

(p+ α)n,p
tn

=
(1− pt)−γ/p

Γp(1 + p)

∞∑

k=0

m∏
j=1

(
γ + jp− p

m

)

k,p

(p+ α)k,p k!
xk
( −mt

1− pt

)mk
. (3.15)
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Here the series on the right hand side converges for m = 1, 2. These

cases are illustrated below.

∞∑

n=0

(γ)n,pL
(α)
n,1,p(x)

(p+ α)n,p
tn

=
(1− pt)−γ/p

Γp(1 + p)
1F1(γ, p, α+ p, p)

( −xt
1− pt

)
, (3.16)

and

∞∑

n=0

(γ)n,pL
(α)
n,2,p(x)

(p+ α)n,p
tn =

(1− pt)−γ/p
Γp(1 + p)

×2F1 (4p (2; γ) , p, α+ p, p)

( −4xt2

(1− pt)2
)
, (3.17)

where

∣∣∣∣
4xt2

(1− pt)2
∣∣∣∣ < 1. If p = 1 and γ is replaced by c, then (3.16)

reduces to the GFR given in [6, Eq.(3), p.202]. Further, for γ = p+α,

it reduces to the GFR:
∞∑

n=0

L
(α)
n,1,p(x)tn =

(1− pt)−(p+α)/p
Γp(1 + p)

exp

( −xt
1− pt

)
(3.18)

whose particular case p = 1 appears in [6, Eq.(4), p.202].

In (3.17), the substitution γ = 2α+ p gives an elegant form:

∞∑

n=0

(2α+ p)n,pL
(α)
n,2,p(x)

(p+ α)n,p
tn =

(1− pt)−(2α+p)/p
Γp(1 + p)

×
(

1− 4pxt2

(pt− 1)2

)−(2α+p)/2p
. (3.19)

4. Differential equation

With the help of (1.12), we derive the differential equation satisfied by the

special case of (1.14) corresponding to the choice {1/k!} of the sequence {λk}.
The particular polynomial thus obtained is denoted by Rmn,p(x; l) whose explicit

series representation is given by

Rmn,p(x; l) =

bn/mc∑

k=0

{
m∏
j=1

(−np+ jp− p
m

)

k,p

}

k!

{
l∏

j=1

(
β − pnα+ jp

l

)

k,p

}
(
mmxp−m

ll

)k

= mFl (4p(m;−np), p,4p(l; p+ β − pnα), p)

(
mmxp−m

ll

)
. (4.1)
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Now comparing this with (1.12), we obtain in straight forward manner, the

differential equation:

[D (lpD + β − pnα+ p− lp) (lpD + β − pnα+ 2p− lp) · · · (lpD + β − pnα)

− x (mD − n) (mD − n+ 1) · · · (mD − n+m− 1)]Rmn,p(x; l) = 0. (4.2)

This may be further reduced to the differential equations satisfied by pEJP and

EpKP by specializing the parameters appropriately.

5. Combinatorial identities

It is interesting to note that Theorem 2.1 provides us p-deformed inverse

series of certain combinatorial identities studied by John Riordan [7]. It may

be noted here that the p-deformation of n! is deducible from (1.3) by putting

z = p or z = 1. In the former case, we have (p)n,p = pn n! whereas in the later

case, (1)n,p = pn (1/p)n. In both the cases, p = 1 yields (1)n,1 = n!

Now, if we take α = 0, β = p and m = 1, then choosing F (n), G(n) appropri-

ately, we obtain from (2.1) and (2.2) of Theorem 2.1, the inverse pairs corre-

sponding to the choice z = 1 in (1.3) which are tabulated below. (cf. [7, Ch.2,

Table 2.1, p.49] with p = 1).

Table-1 p-deformed Simplest Inverse pairs-I

F (n) =
∑
An,k G(k); G(n) =

∑
(−1)n+kBn,k F (k)

No. F(n) p G(n) An,k Bn,k

1.
an

(1)n,p

bn
(1)n,p

(1)n,p

(n− k)! (1)k,p

(1)n,p

(n− k)! (1)k,p

2.
an

(1)r+n,p

bn
(1)r+n,p

(1)r+n,p

(n− k)! (1)r+k,p

(1)r+n,p

(n− k)! (1)r+k,p

3.
an

(1)n,p (1)n−1,p

bn
(1)n,p (1)n−1,p

(1)n,p (1)n−1,p

(n− k)! (1)k−1,p (1)k,p

(1)n,p (1)n−1,p

(n− k)! (1)k−1,p (1)k,p

Further, in [7] the following combinatorial identities are derived in the form of

inverse pairs [7, Problem 4, 5, p. 71, 72, 74].

2−2n

n! n!
=

2n∑

k=0

(−1)k 2−k

(2n− k)! k!

(
2k

k

)
;

2−n

n!

(
2n

n

)
=

bn/2c∑

k=0

2−2k

(n− 2k)! k! k!
, (5.1)

an =

bn/2c∑

k=0

(
n

2k

)
b2k ; b2n =

2n∑

k=0

(−1)k
(

2n

k

)
ak, (5.2)
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and

βn =

bn/2c∑

k=0

n!

(n− 2k)! k! k!
;

1

n! n!
=

2n∑

k=0

(−1)kβk
(2n− k)! k!

. (5.3)

Here, with the aid of Theorem 2.1, we obtain their p-deformed versions as

follows.

When α = 0,m = 2, β = p F (n) = ((1)n,p (1)n,p 2n)−1 and

G(n) =
(1)2n,p

p 2n (1)n,p (1)n,p (1)n,p

then the theorem yields the inverse pair:

2−2n

(1)n,p (1)n,p
=

2n∑

k=0

(−1)k2−k (1)2k,p
(2n− k)! (1)k,p (1)k,p (1)k,p

(5.4);

2−n (1)2n,p
(1)n,p (1)n,p (1)n,p

=

bn/2c∑

k=0

2−2k

(n− 2k)! (1)k,p (1)k,p
. (5.5)

When p = 1, this gives (5.1). Next, by making use of the substitutions α =

0, m = 2, β = p, pG(n) = an/(1)n,p and F (n) = b2n/(1)2n,p, the theorem

reduces to the inversion pair:

an =

bn/2c∑

k=0

(1)n,p
(n− 2k)! (1)2k,p

b2k ; b2n =
2n∑

k=0

(−1)k (1)2n,p
(2n− k)! (1)k,p

ak (5.6)

which yields (5.2) when p = 1. Similarly, with α = 0,m = 2, β = p, pG(n) =

βn/(1)n,p and F (n) = 1/(1)n,p (1)n,p, we obtain

βn =

bn/2c∑

k=0

(1)n,p
(n− 2k)! (1)k,p (1)k,p

;
1

(1)n,p (1)n,p
=

2n∑

k=0

(−1)kβk
(2n− k)! (1)k,p

. (5.7)

Again for p = 1, this coincides with (5.3).

Now exploiting the possibility z = p in (1.3), and substituting α = 0, β =

p, m = 1 in (2.1) and (2.2) of the theorem, we find yet other p-deformed

versions of the Simplest Inverse pairs which are tabulated below (cf. [7, Ch.2,

Table 2.1, p.49] with p = 1).

Table-2 p-deformed Simplest Inverse pairs-II

F (n) =
∑
An,k G(k); G(n) =

∑
(−1)n+kBn,k F (k)
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No. F(n) p G(n) An,k Bn,k

1.
an

(p)n,p

bn
(p)n,p

(p)n,p

(n− k)! (p)k,p

(p)n,p

(n− k)! (p)k,p

2.
an

(p)r+n,p

bn
(p)r+n,p

(p)r+n,p

(n− k)! (p)r+k,p

(p)r+n,p

(n− k)! (p)r+k,p

3.
an

(p)n,p (p)n−1,p

bn
(p)n,p (p)n−1,p

(p)n,p (p)n−1,p

(n− k)! (p)k−1,p (p)k,p

(p)n,p (p)n−1,p

(n− k)! (p)k−1,p (p)k,p

Further, when α = 0,m = 2, β = p, F (n) = 1/2n (p)n,p(p)n,p and

G(n) =
(p)2n,p

p 2n (p)n,p (p)n,p(p)n,p
,

then the theorem yields the inverse pair (cf. [7, Problem 4, p. 71], or (5.1)

when p = 1):

2−2n

(p)n,p (p)n,p
=

2n∑

k=0

(−1)k2−k (p)2k,p
(2n− k)! (p)k,p (p)k,p (p)k,p

; (5.8)

2−n (p)2n,p
(p)n,p (p)n,p (p)n,p

=

bn/2c∑

k=0

2−2k

(n− 2k)! (p)k,p (p)k,p
. (5.9)

Similarly, by making use of substitutions α = 0, m = 2, β = p, pG(n) =

an/(p)n,p and F (n) = b2n/(p)2n,p, the theorem reduces to the pair (cf. [7,

Problem 4, p. 71-72] or (5.2) with p = 1 ):

an =

bn/2c∑

k=0

(p)n,p
(n− 2k)! (p)2k,p

b2k ; b2n =
2n∑

k=0

(−1)k (p)2n,p
(2n− k)! (p)k,p

ak. (5.10)

Finally, with α = 0,m = 2, β = p, pG(n) = βn/(p)n,p and F (n) = 1/(p)n,p (p)n,p,

we obtain (cf. [7, Problem 5(b), p. 74] or (5.3) with p = 1):

βn =

bn/2c∑

k=0

(p)n,p
(n− 2k)! (p)k,p (p)k,p

;
1

(p)n,p (p)n,p
=

2n∑

k=0

(−1)kβk
(2n− k)! (p)k,p

. (5.11)

Many such inversion pairs can be deduced by specializing the parameters

α, β, m and the sequences {Fn}, {Gn} appropriately.
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED
POLYNOMIALS INCLUDING ASKEY SCHEME

Rajesh V. Savalia

Abstract. We construct a general bi-basic inverse series relation which
provides extension to several q-polynomials including the Askey-Wilson
polynomials and the q-Racah polynomials. We introduce a general class
of polynomials suggested by this general inverse pair which would unify
certain polynomials such as the q-extended Jacobi polynomials and q-
Konhauser polynomials. We then emphasize on applications of the gen-
eral inverse pair and obtain the generating function relations, summa-
tion formulas involving the associated polynomials and derive the p-
deformation of some of the q-analogues of Riordan’s classes of inverse
series relations. We also illustrate the companion matrix corresponding
to the general class of polynomials; this is followed by a chart showing
the reducibility of the extended p-deformed Askey-Wilson polynomials as
well as the extended p-deformed q-Racah polynomials.

1. Introduction

Recently, Díaz and Teruel [5] introduced two parameter deformation of the
classical gamma function by means of the q, k-Pochhammer symbol which is
denoted and defined by [5, Def. 4, p. 121]

[t]n,k =

n−1∏

j=0

[t+ jk]q, t > 0, k > 0,(1)

where [a]q = 1−qa. Using this, the q, k-generalized gamma function was defined
in the form [5, Def. 6, p. 122]:

Γq,k(t) =

(
1− qk

) t
k−1
q,k

(1− q) tk−1
, t > 0, k > 0,

where (1 + x)tq,k =
(1+x)∞q,k

(1+xqkt)∞q,k
and (x+ y)nq,k =

∏n−1
j=0 (x+ yqjk).

Received October 7, 2018; Revised December 28, 2018; Accepted January 4, 2019.
2010 Mathematics Subject Classification. Primary 33D15, 33D45, 33D65.
Key words and phrases. q, p-gamma function, q, p-Pochhammer symbol, p-deformed q-

polynomial, q-inverse series.
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2 RAJESH V. SAVALIA

Alternatively [5, Lem-2, p. 122],

Γq,k(t) =

(
1− qk

)∞
q,k

(1− qt)∞q,k (1− q) tk−1
, t > 0, k > 0.(2)

As q → 1− from within the interval (0, 1), the defining expressions in (1) and (2)
yield the k-generalized Pochhammer symbol (t)n,k and the k-deformed classical
gamma function Γk(t) ([5, p. 119] and [4]).

Having motivated by the works of R. Diaz and C. Teruel [5], and R. Diaz and
E. Pariguan [4], we provide here the extension to certain classical q-polynomials
in the sense of k-deformation and derive their inverse series relation. Further,
we obtain the generating function relations of these polynomials; and using the
inverse series, we deduce certain summation formulas involving the correspond-
ing polynomials.

2. Notations, formulas and definitions

We replace in the present work, k by p, and write (qt; q)n,p in stead of [t]n,k,
where t ∈ C. In the notations of (1) and (2), we have

(qt; q)n,p = (1− qt)(1− qt+p)(1− qt+2p) · · · (1− qt+(n−1)p),(3)

Γq,p(t) =
(qp; q)∞,p(1− q)1−t/p

(qt; q)∞,p
, <(t) > 0, p > 0,(4)

where

(qa; q)n,p =





1, if n = 0,
(1− a)(1− aqp) · · · (1− aqp(n−1)), if n ∈ Z>0,

[(1− aq−p)(1− aq−2p) · · · (1− aqnp)]−1, if n ∈ Z<0,
(a; q)∞,p/(aqnp; q)∞,p, if n ∈ C,

and

(qα; q)∞,p =

∞∏

n=0

(1− qα+np), |q| < 1.

We shall adopt the convention that for a parameter α ∈ C, qα will be denoted
as α.

In what follows, the following formulas will be used in the work. For 0 <
q < 1,

(a; q)n+m,p = (a; q)n,p(aq
np; q)m,p, m, n ∈ N,(5)

(aq−np; q)n,p = (−1)nanq−pn(n+1)/2

(
qp

a
; q

)

n,p

,(6)

(a; q)n−k,p =

(
−1

a

)k
qpk(k+1)/2−nkp (a; q)n,p

(qp−np/a; q)k,p
,(7)
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(a; q)−k,p =

(
−1

a

)k
qpk(k+1)/2 1

(qp/a; q)k,p
.(8)

When p = 1, these formulas get reduced to those listed in [6, Appendix I,
pp. 233–234]. For λ 6= 0, a general q-binomial coefficient is given as

[
u

v

]

λ

=
(qλ; qλ)u

(qλ; qλ)v(qλ; qλ)u−v
.

There are two q-exponential functions [6, Eq. (1.3.16), p. 9]:

(9) Eq(x) =

∞∑

n=0

q(
n
2) xn

(q; q)n
, (x ∈ R, |q| < 1),

and [6, Eq. (1.3.15), p. 9]

(10) eq(x) =

∞∑

n=0

(0; q)n
(q; q)n

xn =
1

(x; q)∞
, (|x| < 1, |q| < 1).

These two functions are contained in [7, Eq. (3.1), p. 1011]

(11) εq(x) =

∞∑

n=0

xn

[n]q!
,

where the series converges for |x| < 1
|1−q| if |q| < 1 and converges for every

x ∈ C for |q| > 1 or q = 1. The notation

[n]q! =

n∏

j=1

(1− qj)
(1− q)j

for q 6= 1 and if q = 1, then [n]q! = n!.
In fact [7, Pr. 5.2, p. 1021], εq(x) = eq((1 − q)x) for |q| < 1 and ε1/q(x) =

Eq((1− q)x) for 0 < |q| < 1.
The q-binomial series for |z| < 1 and |q| < 1 is

∞∑

n=0

(a; q)n
(q; q)n

zn = 1φ0(a;−; q, z) =
(az; q)∞
(z; q)∞

,(12)

the summation formula [6, Eq. (II.5), p. 236]:

1φ1(a; c; q, c/a) =
(c/a; q)∞
(c; q)∞

,(13)

and the q-binomial theorem [6, Ex. 1.2(vi), p. 20]
n∑

k=0

(−1)kqk(k−1)/2
[
n

k

]
zk = (z; q)n.(14)

Next, Diaz and Pariguan [4] defined the following generalization of the gener-
alized hypergeometric series.
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4 RAJESH V. SAVALIA

Definition. For (a) = (a1, a2, . . . , ar) ∈ Cr, (k) = (k1, k2, . . . , kr) ∈ (R+)r,
(b) = (b1, b2, . . . , bs) ∈ Cs \ (kZ−)s and l = (l1, l2, . . . , ls) ∈ (R+)s,

rFs(a, k, b, l)(x) =

∞∑

n=0

(a1)n,k1(a2)n,k2 · · · (ar)n,kr
(b1)n,l1(b2)n,l2 · · · (bs)n,lsn!

xn.(15)

This infinite series converges for all x if r ≤ s, diverges if r > s + 1, and if
r = s+ 1, it converges for |x| < (l1l2 · · · ls)/(k1k2 · · · kr).

We define its q-analogue in the form of bi-basic series with k1 = k2 = · · · =
kr = l1 = l2 = · · · = ls = p ∈ R+ as follows.

Definition. If (a) stands for the array of r parameters a1, a2, . . . , ar ∈ Cr, (b)
stands for the array of s parameters b1, b2, . . . , bs ∈ Cs \ (Z−)s, p, α ∈ R+ and
|q| < 1, then

rφs((a); (b) ; qp)(x|q, qα)(16)

=

∞∑

n=0

(a1; q)n,p(a2; q)n,p · · · (ar; q)n,p
(b1; q)n,p(b2; q)n,p · · · (bs; q)n,p(qα; qα)n

(
(−1)nqα(n2)

)1+s−r
xn.

Note. The case:

lim
q→1−

rφs((a); (b) ; qp)
(

(1− q)1+s−rx
∣∣ q, qα

)
= rFs((a), p, (b), p)(x).

The series behaves similarly as the series (15). In fact, if

rφs((a); (b) ; p)(x|qα) =

∞∑

n=0

Anx
n,

then by d’ Alembert’s ratio test,

lim
n→∞

∣∣∣∣
An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣
(1− a1qnp)(1− a2qnp) · · · (1− arqnp)qαn(s+1−r)

(1− b1qnp)(1− b2qnp) · · · (1− bsqnp)(1− qα(n+1))
x

∣∣∣∣.

From this, it follows that the series converges for all x if r ≤ s, and it diverges
when r > s+ 1 and x 6= 0. If r = s+ 1, then it converges for |x| < 1.

In the present work, we propose a general class of q, p-polynomials involving
the function (4) and the symbol (3), as follows.

Definition. For a ∈ C, m ∈ N, n ∈ N ∪ {0}, 0 < q < 1 and p > 0,

Ban,m,p(x|q; l) =

bn/mc∑

k=0

qkl(q−nl/m; ql/m)mk(qa+np; q) kl
p ,p

γkx
k,(17)

in which l = r−m, r ∈ C\{m}, and the floor function buc = floor u, represents
the greatest integer ≤ u.

This general class extends the q-extended Jacobi polynomials [2, Eq. (3.8)]
and hence the q-Brafman polynomials and the little q-Jacobi polynomials [8,
Eq. (3.12.1, p. 92)] (also [6, Ex. 1.32, p. 27]). As a limiting case, this general
class also extends the q-Konhauser polynomials [1, Eq. (3.1), p. 3] and hence
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 5

the q-Laguerre polynomials [10]. The main objective of the work is to estab-
lish a general inverse series relations (GISR) which would invert the aforesaid
polynomials; and furthermore, this GISR would also extend and invert the well
known orthogonal polynomials in 4φ3-function forms namely, the Askey-Wilson
polynomials [8, Eq. (3.1.1), p. 63] (also [6, Ex. 2.11, p. 51]) and the q-Racah
polynomials [8, Eq. (3.2.1), p. 66] (also [6, Ex. 2.10, p. 51]). It is interesting
to note that the q-analogues of some of the Riordan’s classes of inverse series
relations [3] also assume extension by means of this GISR.

The GISR, as a main result, will be stated and proved in Section 3 using
Lemma 3.1. Section 4 incorporates several alternative forms of GISR by means
of which various particular polynomials will be deduced. In Section 5, we em-
phasis on applicability of both series of GISR; the one for obtaining generating
function relations (GFR) in subsection 5.1 and the other, that is the inverse
series, for deducing the summation formulas in Subsection 5.2. Some of the
q-analogues of Riordan’s inverse pairs [3] admit deformation which are tabu-
lated in Section 6. In Section 7, the companion matrix [9] for the general class
(17) is illustrated. A chart showing the reducibility of the p-deformed Askey-
Wilson polynomials and the p-deformed q-Racah polynomials to a number of
polynomials is given in the last section that is, in Section 8. This also includes
the inter-connections amongst these particular polynomials.

3. Inverse series relations

While proving the main theorem, we shall require the following inverse pair.

Lemma 3.1. For 0 < q < 1, M ∈ N ∪ {0}, m ∈ N, α ∈ C, λ ∈ C \ {0} and
p > 0,

g(M) =
M∑

k=0

(−1)kqkλ(k−1)/2
[
M

k

]

qλ

(1− qα+kλ+mjλ−kp−mjp)
(qα+(M+mj)λ−kp−mjp; q)∞,p

f(k)(18)

⇔

f(M) =
M∑

k=0

(−1)kqkλ(k−2M+1)/2

[
M

k

]

qλ
(qα+kλ+mjλ+p−(M+mj)p; q)∞,p g(k).(19)

Proof. We first note that the diagonal elements of the coefficient matrix of the
first series are

(−1)iqiλ(i−1)/2(1− qα+iλ+mjλ−ip−mjp)/(qα+(i+mj)λ−ip−mjp; q)∞,p

and those of the second series are

(−1)iqiλ(1−i)/2(qα+iλ+mjλ+p−(i+mj)p; q)∞,p.

Since these elements are all non zero; it follows that these matrices have unique
inverse. Hence, it suffice to prove that one of these series implies the other. We
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6 RAJESH V. SAVALIA

prefer to show that (18) implies (19). For that we denote the right hand side
of (19) by Φ(M) and substitute for g(k) from (18) to get

Φ(M) =

M∑

k=0

(−1)kqkλ(k−2M+1)/2

[
M

k

]

qλ

(
qα+kλ+mjλ+p−(M+mj)p; q

)
∞,p

×
k∑

i=0

(−1)iqiλ(i−1)/2
[
k

i

]

qλ

(1− qα+iλ+mjλ−ip−mjp)
(qα+(k+mj)λ−ip−mjp; q)∞,p

f(i)

= f(M) +

M−1∑

i=0

[
M

i

]

qλ
qiλ(i−M)/2(1− qα+iλ+mjλ−ip−mjp)f(i)

M−i∑

k=0

(−1)k

× qkλ(k+2i−2M+1)/2

[
M − i
k

]

qλ

(qα+(k+i)λ+mjλ+p−(M+mj)p; q)∞,p
(qα+(k+i+mj)λ−ip−mjp; q)∞,p

.

Here, the ratio

(qα+(k+i)λ+mjλ+p−(M+mj)p; q)∞,p
(qα+(k+i+mj)λ−ip−mjp; q)∞,p

=

M−i−1∑

l=0

Al q
λkl

say, represents a polynomial of degree M − i− 1 in k, hence we further have

Φ(M) = f(M) +

M−1∑

i=0

[
M

i

]

qλ
qiλ(i−M)/2(1− qα+iλ+mjλ−ip−mjp)f(i)(20)

×
M−i−1∑

l=0

Al

M−i∑

k=0

(−1)kqkλ(k−1)/2
[
M − i
k

]

qλ
qλk(l+i−M+1).

The inner most series on the right hand side in (20) may be summed up by
means of the q-binomial theorem (14), then we have

Φ(M) = f(M) +

M−1∑

i=0

[
M

i

]

qλ
qiλ(i−M)/2(1− qα+iλ+mjλ−ip−mjp)f(i)

×
M−i−1∑

l=0

Al (qλ(l+i−M+1); qλ)M−i

= f(M).

This completes the proof. �

Interestingly, this lemma gives rise to the q-series orthogonality relation. In
fact, the substitution

[
0
M

]
qλ

for either f(M) or g(M) yields this property. In
particular, the following corollary is of our use.

Corollary 3.2. For 0 ≤ j ≤ n,m ∈ N, λ ∈ C\{0} and p > 0,
[

0

M

]

qλ
=

M∑

k=0

(−1)kqkλ(k−1)/2
[
M

k

]

qλ

(1− qα+kλ+mjλ−kp−mjp)
(qα+mnλ−kp−mjp; q)∞,p

(21)
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 7

× (qα+mjλ+p−kp−mjp; q)∞,p.

Proof. In (18), the substitution g(k) =
[
0
k

]
qλ

gives

f(k) = (qα+mjλ+p−kp−mjp; q)∞,p,

and with these f(k) and g(k), (19) yields the series orthogonality relation. �

We now establish the main GISR as:

Theorem 3.3. For 0 < q < 1, λ ∈ C \ {0}, α ∈ C, n ∈ N ∪ {0}, m ∈ N and
p > 0,

F (n) =

bn/mc∑

k=0

(−1)mkqmkλ(mk−2n+1)/2 (qα+mkλ+p−np; q)∞,p
(qλ; qλ)n−mk

G(k)(22)

⇔

G(n) =

mn∑

k=0

(−1)kqkλ(k−1)/2
(1− qα+kλ−kp)

(qλ; qλ)mn−k(qα+mnλ−kp; q)∞,p
F (k)(23)

and for n 6= mr, r ∈ N,
n∑

k=0

(−1)kqkλ(k−1)/2
(1− qα+kλ−kp)

(qλ; qλ)n−k(qα+nλ−kp; q)∞,p
F (k) = 0.(24)

Proof. We first show that (22)⇒(23). We denote the right hand side of (23)
by V (n) and then substitute for F (k) from (22) to get

V (n) =

mn∑

k=0

(−1)kqkλ(k−1)/2
(1− qα+kλ−kp)

(qλ; qλ)mn−k(qα+mnλ−kp; q)∞,p

×
bk/mc∑

j=0

(−1)mjqmjλ(mj−2k+1)/2 (qα+mjλ+p−kp; q)∞,p
(qλ; qλ)k−mj

G(j).

Here making use of the double series relation [14]:
mn∑

k=0

bk/mc∑

j=0

A(k, j) =

n∑

j=0

mn−mj∑

k=0

A(k +mj, j),

we further get

V (n) =

n∑

j=0

mn−mj∑

k=0

(−1)kq(k+mj)λ(k+mj−1)/2+mjλ(mj−2k−2mj+1)/2(25)

× (1− qα+kλ+mjλ−kp−mjp)(qα+mjλ+p−kp−mjp; q)∞,p
(qλ; qλ)mn−mj−k(qα+mnλ−kp−mjp; q)∞,p(qλ; qλ)k

G(j)

= G(n) +

n−1∑

j=0

G(j)

(qλ; qλ)mn−mj

mn−mj∑

k=0

(−1)kqkλ(k−1)/2
[
mn−mj

k

]

qλ
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8 RAJESH V. SAVALIA

× (1− qα+kλ+mjλ−kp−mjp) (qα+mjλ+p−kp−mjp; q)∞,p
(qα+mnλ−kp−mjp; q)∞,p

.

We now show that the inner series in this last expression vanishes. For that
we replace (qα+mjλ+p−kp−mjp; q)∞,p by f(k) and denote the inner series by
g(mn−mj), then we have

g(mn−mj) =

mn−mj∑

k=0

(−1)kqkλ(k−1)/2
[
mn−mj

k

]

qλ
(26)

× (1− qα+kλ+mjλ−kp−mjp)
(qα+mnλ−kp−mjp; q)∞,p

f(k).

The inverse companion of this series follows at once from Lemma 3.1 in the
form:

f(mn−mj) =

mn−mj∑

k=0

(−1)kqkλ(k−2mn+2mj+1)/2

[
mn−mj

k

]

qλ
(27)

× (qα+kλ+mjλ+p−mnp; q)∞,p g(k).

As suggested by Corollary 3.2, we set g(k) =
[
0
k

]
qλ

in series (27), we then get
f(k) = (qα+mjλ+p−kp−mjp; q)∞,p back, and with these f(k) and g(k), the series
orthogonality relation occurs from (26) as given below.
[

0

mn−mj

]

qλ
=

mn−mj∑

k=0

(−1)kqkλ(k−1)/2
[
mn−mj

k

]

qλ

(1− qα+kλ+mjλ−kp−mjp)
(qα+mnλ−kp−mjp; q)∞,p

× (qα+mjλ+p−kp−mjp; q)∞,p.

Using this in (25), we get

V (n) = G(n) +

n−1∑

j=0

G(j)

(qλ; qλ)mn−mj

[
0

mn−mj

]

qλ
= G(n).

Thus, (22)⇒(23). We now show that (22)⇒(24). For that let R(n) denote the
right hand side of (24) that is,

R(n) =

n∑

k=0

(−1)k qkλ(k−1)/2
(1− qα+kλ−kp)

(qλ; qλ)n−k(qα+nλ−kp; q)∞,p
F (k).(28)

Proceeding as before, that is, substituting for F (k) from (22), we have

R(n) =

n∑

k=0

(−1)k qkλ(k−1)/2
(1− qα+kλ−kp)

(qλ; qλ)n−k(qα+nλ−kp; q)∞,p
(29)

×
bk/mc∑

j=0

(−1)mj qmjλ(mj−2k+1)/2 (qα+mjλ+p−kp; q)∞,p
(qλ; qλ)k−mj

G(j)
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 9

=

bn/mc∑

j=0

G(j)

(qλ; qλ)n−mj

n−mj∑

k=0

(−1)kqkλ(k−1)/2
[
n−mj

k

]

qλ

× (1− qα+kλ+mjλ−kp−mjp)
(qα+nλ−kp−mjp; q)∞,p

(qα+mjλ+p−kp−mjp; q)∞,p.

We see that the inner series on the right hand side in this last expression differs
slightly from the one occurring in (25); that is, instead of mn−mj, it is n−mj
here. Accordingly, the series orthogonality relation occurs in the form:

n−mj∑

k=0

(−1)kqkλ(k−1)/2
[
n−mj

k

]

qλ

(1− qα+kλ+mjλ−kp−mjp)
(qα+nλ−kp−mjp; q)∞,p

(qα+mjλ+p−kp−mjp; q)∞,p

=

[
0

n−mj

]

qλ
.

This leads us to

R(n) =

bn/mc∑

j=0

G(j)

(qλ; qλ)n−mj

[
0

n−mj

]

qλ
.

If n 6= mr, r ∈ N, then the right hand member in (29) vanishes and thus
(22)⇒(24); which completes the proof of the first part. For the converse part,
assume that (23) and (24) both hold true. In view of (24),

R(n) = 0, n 6= mr, r ∈ N,(30)

and also,

R(mn) = G(n)(31)

by comparing (23) with (28). Now, from the inverse pair (26) and (27), taking
j = 0 and m = 1, we find that

R(n) =

n∑

k=0

(−1)k qkλ(k−1)/2
(1− qα+kλ−kp)

(qα+nλ−kp; q)∞,p(qλ; qλ)n−k
Fk

⇒ Fn =

n∑

k=0

(−1)k qkλ(k−2n+1)/2 (qα+kλ+p−np; q)∞,p
(qλ; qλ)n−k

R(k).

Hence, in view of the relations (30) and (31), we arrive at

R(mn) =

mn∑

k=0

(−1)k qkλ(k−1)/2
(1− qα+kλ−kp)

(qα+mnλ−kp; q)∞,p(qλ; qλ)mn−k
Fk

⇒ Fn =

bn/mc∑

k=0

(−1)mk qmkλ(mk−2n+1)/2 (qα+mkλ+p−np; q)∞,p
(qλ; qλ)n−mk

R(mk).

Thus, the series in (23) with R(n) = 0, n 6= mr for r ∈ N, implies the series in
(22). This proves the converse part and hence the theorem. �
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4. Particular cases

In this section, we obtain the alternative forms of Theorem 3.3 by assuming
that the condition (24) holds true. Hence for the sake of brevity, we shall
not mention the condition (24) in each of the following inverse pairs. These
alternative forms will be used to deduce the basic analogues of the general
class of q, p-polynomials (17) and its particular cases along with their inverse
series relations. Besides this, one of such alternative forms will also be used
to deduce the extended p-deformed Askey-Wilson polynomials and the extended
p-deformed q-Racah polynomials together with their inverse series.

We begin with Theorem 3.3 and apply the formula

(q−1; q−1)n = (−1)nq−n(n+1)/2(q; q)n,

in it to get

F (n) =

bn/mc∑

k=0

(−1)nqλ(2mk−n(n+1)/2) (qα+mkλ+p−np; q)∞,p
(q−λ; q−λ)n−mk

G(k)

⇔ G(n) =

mn∑

k=0

(−1)mnqλ(2kmn−mn(mn+1))/2 (1− qα+kλ−kp)
(qα+mnλ−kp; q)∞,p(q−λ; q−λ)mn−k

F (k).

Next, using the formula

(q−n; q)k(q; q)n−k = (−1)kqk(k−2n−1)/2(q; q)n

with q is replaced by q−λ and k by mk in this pair, it transforms to

F (n) =

bn/mc∑

k=0

(−1)n−mkq−λ(n(n+1)−mk(mk−1)+2mnk−2mk)/2 (qnλ; q−λ)mk
(q−λ; q−λ)n

× (qα+mkλ+p−np; q)∞,p G(k)

⇔ G(n) =

mn∑

k=0

(−1)mn−kq−λ(mn(mn+1)−k(k−1))/2 (qmnλ; q−λ)k(1− qα+kλ−kp)
(qα+mnλ−kp; q)∞,p(q−λ; q−λ)mn

F (k).

Here replacing F (n) by q−λn(n+1)/2F (n) and G(n) by

(q−λ(mn(mn+1)/2)/(qα+mnλ+p; q)∞,p) G(n),

we obtain after little simplification, the pair:

F (n) =

bn/mc∑

k=0

q−λmnk
(qnλ; q−λ)mk

(qα+mkλ+p; q)−n,p(q−λ; q−λ)n
G(k)

⇔ G(n) =

mn∑

k=0

q−kλ
(qmnλ; q−λ)k(1− qα+kλ−kp)(qα+mnλ+p; q)−k,p

(q−λ; q−λ)mn(1− qα+mnλ−kp) F (k).

But since
q−λmnk

(qα+mkλ+p; q)−n,p
=

q−λmnk(qp−α−mkλ−p; q)n,p
(−1)nqpn(n+1)/2−(α+mkλ+p)n
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 11

= (−1)nq−pn(n+1)/2+(α+p)n(q−α−mkλ; q)n,p

and

q−kλ(qα+mnλ+p; q)−k,p =
(−1)kq−kλqpk(k+1)/2−(α+mnλ+p)k

(qp−α−mnλ−p; q)k,p

=
(−1)kq−kλ−mnkλqpk(k+1)/2−(α+p)k

(q−α−mnλ; q)k,p
,

consequently, the above pair changes to

F (n) =

bn/mc∑

k=0

(−1)nq−pn(n+1)/2+(α+p)n (qnλ; q−λ)mk(q−α−mkλ; q)n,p
(q−λ; q−λ)n

G(k)

⇔ G(n) =

mn∑

k=0

(−1)kq−kλ−mnkλqpk(k+1)/2−(α+p)k (qmnλ; q−λ)k(1− qα+kλ−kp)
(q−λ; q−λ)mn(1− qα+mnλ−kp)

× F (k)

(q−α−mnλ; q)k,p
.

Further, replacing F (n) by (−1)nq−pn(n+1)/2+(α+p)nF (n)/(q−λ; q−λ)n, and
noticing that

q−kλ(1− qα+kλ−kp)
(1− qα+mnλ−kp)(q−α−mnλ; q)k,p

=
q−kλqα+kλ−kp(1− q−α−kλ+kp)

qα+mnλ−kp(1− q−α−mnλ+kp)(q−α−mnλ; q)k,p

=
(1− q−α−kλ+kp)

qmnλ(q−α−mnλ; q)k+1,p
,

the above pair assumes the form:

F (n) =

bn/mc∑

k=0

(qnλ; q−λ)mk(q−α−mkλ; q)n,p G(k)

⇔ G(n) =

mn∑

k=0

q−mnkλ(qmnλ; q−λ)k(1− q−α−kλ+kp)
qmnλ(q−λ; q−λ)mn(q−α−mnλ; q)k+1,p(q−λ; q−λ)k

F (k).

Finally, replacing

G(n) by G(n)/(qmnλ(q−α−mnλ; q)∞,p), F (n) by F (n)/(qa+np; q)∞,p

and substituting α = −a, mλ = −l, where l = r − m, in this last pair, we
obtain

F (n) =

bn/mc∑

k=0

qkl(q−nl/m; ql/m)mk(qa+np; q) kl
p ,p

G(k)(32)

⇔
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G(n) =

mn∑

k=0

qnkl(qnl; ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
F (k).(33)

We first deduce the inverse series of the polynomials (17). In fact, the choice
G(n) = γnx

n in (32) yields the polynomials (17); whereas the same substitution
in (33) yields its inverse series:

γnx
n =

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p(x|q; l).(34)

Next, regarding l ∈ C, and putting a = e and

γn = (qα1 ; q)n,p · · · (qαc ; q)n,p/((qβ1 ; q)n,p · · · (qβd ; q)n,p(q
l/m; ql/m)n)

in (17) and (34) provides the basic analogue of the p-deformed extended Jacobi
polynomials F (e)

n,m,p,l[(α); (β) : x|q] and its inverse series:

F (e)
n,m,p,l[(α); (β) : x|q](35)

=

bn/mc∑

k=0

qkl
(q−n(l/m); ql/m)mk(qe+np; q) kl

p ,p
(qα1 ; q)k,p · · · (qαc ; q)k,p

(qβ1 ; q)k,p · · · (qβd ; q)k,p(ql/m; ql/m)k
xk

⇔
(qα1 ; q)n,p · · · (qαc ; q)n,p

(qβ1 ; q)n,p · · · (qβd ; q)n,p(ql/m; ql/m)n
xn(36)

=

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qe+Lk+kp)
(ql/m; ql/m)mn(qe+kp; q) ln

p +1,p(q
l/m; ql/m)k

F (e)
k,m,p,l[(α); (β) : x|q],

where (α) indicates the array of c parameters α1, α2, . . . , αc and (β) indicates
the array of d parameters β1, β2, . . . , βd. Here the limit qe → 0 leads us to the
bi-basic p-deformed q-Brafman polynomials and its inverse series as follows.

Bmn,p[(α); (β) : xql|q]

=

bn/mc∑

k=0

qkl
(q−n(l/m); ql/m)mk(qα1 ; q)n,p · · · (qαc ; q)n,p

(qβ1 ; q)k,p · · · (qβd ; q)k,p(ql/m; ql/m)k
xk

⇔ (qα1 ; q)n,p · · · (qαc ; q)n,p
(qβ1 ; q)n,p · · · (qβd ; q)n,p(ql/m; ql/m)n

xn

=

mn∑

k=0

qnkl
(q−mn(l/m); ql/m)k

(ql/m; ql/m)mn(ql/m; ql/m)k
Bmk,p[(α); (β) : qlx|q].

the bi-basic p-deformed q-Brafman polynomials and its inverse series tends to
the p-deformed Brafman polynomial [13, Eq. (1.16), p. 228] and its inverse
series relation [13, p. 232] as q → 1 with l = m. The extended p-deformed little
q-Jacobi polynomials (cf. [6, p. 27] with m = l = p = 1) and its inverse series
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 13

may be deduced from (17) and (34) by replacing a by a + b + p and taking
γn = 1/((aqp; q)n,p(q

l/m; ql/m)n) which are stated below.

pn,m,p,l(x; a, b; q)

=

bn/mc∑

k=0

qkl
(q−n(l/m); ql/m)mk(abqnp+p; q) kl

p ,p

(aqp; q)k,p(ql/m; ql/m)k
xk

⇔ xn

(aqp; q)n,p(ql/m; ql/m)n

=

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− abqk(l/m)+kp+p)

(abqkp+p; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
pk,m,p,l(x; a, b; q).

Next, in (17) and (34), making the limit qa → 0, putting

γn = qln(α+1)−lmn+ln(ln−1)/2/(pα; q)nl,p(q
l; ql)mn,

and replacing l and x by lm and (xqn)l respectively, lead us to the inverse pair
of the extended p-deformed q-Konhauser polynomial (cf. [1] with p = 1 and
m = 1) and its inverse series:

Z(α)
n,m,p(x; l|q) =

(pα; q)nl,p
(ql; ql)n

bn/mc∑

k=0

qkl(α+n+1)+kl(kl−1)/2 (q−nl; ql)mk
(pα; q)kl,p(ql; ql)mk

xkl(37)

⇔

qln(α+1)−lmn+ln(ln−1)/2

(pα; q)nl,p(ql; ql)mn
xln =

mn∑

k=0

(−1)kqkl(kl−1)/2 Z(α)
k,m,p(x; l|q)

(αqp; q)kl,p(ql; ql)mn−k
.(38)

The series in (37) and (38) provide basic analogues of the extended p-deformed
Konhauser polynomial [13, Eq. (1.17), p. 229] and its inverse series [13, Eq. (2.8),
p. 232]. The instance l = 1 is the pair of inverse series relations involving the
extended p-deformed q-Laguerre polynomials (cf. [10] with m = p = 1):

L(α)
n,m,p(x|q) =

(pα; q)n,p
(q; q)n

bn/mc∑

k=0

(q−n; q)mk q
k(α+n+1)+k(k−1)/2

(pα; q)k,p(q; q)mk
xk

⇔ qn(α+1)−mn+n(n−1)/2

(pα; q)n,p(q; q)mn
xn =

mn∑

k=0

(−1)kqk(k−1)/2

(pα; q)k,p(q; q)mn−k
L
(α)
k,m,p(x|q).

It is noteworthy that the inverse pair (32) and (33) provides the extension to
the Askey-Wilson polynomials and q-Racah polynomials to which we call the
extended p-deformed Askey-Wilson polynomials and the extended p-deformed
q-Racah polynomials; and denote them by

pn,l,m,p(cos θ; a, b, c, d | q) and Rn,m,p,l(q−x + cdqx+1; a, b, c, d | q),
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14 RAJESH V. SAVALIA

respectively. These polynomials may be deduced from (32) and (33) as follows.
First replacing a by a+ b+ c+ d− p and then choosing

G(n) = (aeiθ; q)n,p(ae
−iθ; q)n,p/((ab; q)n,p(ac; q)n,p(ad; q)n,p(q

l/m; ql/m)n),

F (n) = pn,l,m,p(cos θ; a, b, c, d|q)an/((ab; q)n,p(ac; q)n,p(ad; q)n,p)

yield the pair:
pn,l,m,p(cos θ; a, b, c, d|q)an
(ab; q)n,p(ac; q)n,p(ad; q)n,p

(39)

=

bn/mc∑

k=0

qkl
(q−n(l/m); ql/m)mk

(ql/m; ql/m)k

× (abcdqnp−p; q)kl/p,p (aeiθ; q)k,p (ae−iθ; q)k,p
(ab; q)k,p(ac; q)k,p(ad; q)k,p

⇔
(aeiθ; q)n,p(ae

−iθ; q)n,p
(ab; q)n,p(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n

(40)

=

mn∑

k=0

qnkl
(q−mn(l/m); ql/m)k

(ql/m; ql/m)k

× (1− abcdqkL+kp−p) ak p
k,l,m,p

(cos θ; a, b, c, d|q)
(abcdqkp−p; q) ln

p +1,p(ab; q)k,p(ac; q)k,p(ad; q)k,p(ql/m; ql/m)mn
.

Likewise, in the inverse pair (32) and (33) if a is replaced by a+ b+p and G(n)
is chosen as

(q−x; q)n,p(cdq
x+p; q)n,p/((aq

p; q)n,p(bdq
p; q)n,p(cq

p; q)n,p(q
l/m; ql/m)n),

then F (n) = Rn,m,p,l(q
−x + cdqx+1; a, b, c, d|q) yields the inverse pair:

Rn,m,p,l(q
−x + cdqx+1; a, b, c, d|q)(41)

=

bn/mc∑

k=0

qkl
(q−n(l/m); ql/m)mk

(ql/m; ql/m)k

(abqnp+p; q) kl
p ,p

(q−x; q)k,p(cdq
x+p; q)k,p

(aqp; q)k,p(bdqp; q)k,p(cqp; q)k,p

⇔
(q−x; q)n,p(cdq

x+p; q)n,p
(aqp; q)n,p(bdqp; q)n,p(cqp; q)n,p(ql/m; ql/m)n

(42)

=

mn∑

k=0

qnkl
(q−mn(l/m); ql/m)k

(ql/m; ql/m)k

(1− abqkL+kp+p)
(abqkp+p; q)ln/p+1,p(ql/m; ql/m)mn

×Rk,m,p,l(q−x + cdqx+1; a, b, c, d|q),
These p-deformed q-polynomials provide p-extension to a number of particular
q-polynomials (see [8, pp. 61–62] for complete reducibility chart and [8, Ch. 3]).
They include the q-Hahn, dual q-Hahn, continuous q-Hahn, continuous dual
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 15

q-Hahn, Meixner-Pollaczek, Meixner, Krawtchouk and Charlier polynomials
together with their inverse series relations.

5. Application

We now apply the first series of Theorem 3.3 to derive the generating function
relations for the particular q-polynomials; and then apply the second series
that is, the inverse series to obtain the summation formulas involving these
q-polynomials.

5.1. Generating function relations

The generating function relations for the general class of q-polynomials
(17), the extended p-deformed Askey-Wilson polynomials and the extended
p-deformed q-Racah polynomials will be derived with the help of the alterna-
tive form (32) as follows.

∞∑

n=0

qln(n−1)/2m(a; q)n,p
F (n)

(ql/m; ql/m)n
tn

=

∞∑

n=0

bn/mc∑

k=0

qln(n−1)/2m
(q−ln/m; ql/m)mk

(ql/m; ql/m)n
(a; q)n+ kl

p ,p
qklpG(k) tn.

Now, in formula (7), replacing k by mk and taking p = 1, it changes to

(ql/m; ql/m)n−mk = (−1)mkqlk(mk+1)/2−lk−lnk (ql/m; ql/m)n
(q−ln/m; ql/m)mk

,

from which we have
∞∑

n=0

qln(n−1)/2m(a; q)n,p
F (n)

(ql/m; ql/m)n
tn

=

∞∑

n=0

bn/mc∑

k=0

(−1)mkqln(n−1)/2m+lk(mk−1)/2−lnk
(a; q)n+ kl

p ,p

(ql/m; ql/m)n−mk
qklG(k) tn.

Here the double sum may be replaced by means of the identity [14, Eq. (5),
p. 101] (also [11, Eq. (7), p. 57] for m = 2):

∞∑

n=0

bn/mc∑

k=0

A(k, n) =

∞∑

n=0

∞∑

k=0

A(k, n+mk),

to get
∞∑

n=0

qln(n−1)/2m(a; q)n,p
F (n)

(ql/m; ql/m)n
tn(43)

=

∞∑

n=0

∞∑

k=0

(−1)mkqln(n−1)/2m
(a; q)n+mk+ kl

p ,p

(ql/m; ql/m)n
G(k) tn+mk.

Ah
ea

d 
of

 P
rin

t



16 RAJESH V. SAVALIA

From this, we deduce the GFR of the q-polynomials with the assumption that
|t| < 1.

(i) GFR of Ban,m,p(x|q; l).
In (43), the choice G(n) = γnx

n ⇒ F (n) = Ban,m,p(x|q; l) which yields a general
generating function relation:

∞∑

n=0

qln(n−1)/2m
(a; q)n,p

(ql/m; ql/m)n
Ban,m,p(x|q; l) tn(44)

=

∞∑

k=0

(−1)mk(a; q)mk+ kl
p ,p

1φ1
(
aqmkp+kl; 0; p

)
(t
∣∣q, ql/m) γk ((−t)mx)

k
,

in which we have used (5). This relation when further specialized appropriately,
provides us the GFR of the particular polynomials which are illustrated below.

(ii) GFR of F(e)
n,m,p,l[(α); (β) : x|q].

Next, choosing l ∈ C, a = e and

γn = (α1; q)n,p · · · (αc; q)n,p/((β1; q)n,p · · · (βd; q)n,p(ql/m; ql/m)n)

in (44), we immediately obtain the GFR
∞∑

n=0

q(l/m)n(n−1)/2F (e)
n,m,p,l[(α); (β) : x|q] (e; q)n,p

(ql/m; ql/m)n
tn

=

∞∑

k=0

1φ1
(
eqmkp+kl; 0; p

)
(t
∣∣q, ql/m)

(α1; q)k,p · · · (αc; q)k,p ((−t)mx)
k

(β1; q)k,p · · · (βd; q)k,p(ql/m; ql/m)n
.

The limiting case e ≡ qe → 0 of this yields
(iii) GFR of Bmn,p[(α); (β) : xql|q].

We find using (10), that
∞∑

n=0

qln(n−1)/2m Bmn,p[(α); (β) : xql|q] tn

(ql/m; ql/m)n

= εq−l/m(t) cφd((α); (β) ; p)
(
x(−t)mq−lx

∣∣q, ql/m
)
,

wherein c = d+1 for convergence as well as the validity of the function notation.
(iv) GFR of pn,m,p,l(x; a, b; q).

In (44), we replace a by a+b+p and substitute γn = 1/((ap; q)n,p(q
l/m; ql/m)n)

to get
∞∑

n=0

qln(n−1)/2m
(abqp; q)n,p

(ql/m; ql/m)n
pn,m,p,l(x; a, b; q) tn

=

∞∑

k=0

(abqp; q)mk+ kl
p ,p

(ql/m; ql/m)k
1φ1

(
abqp+mkp+kl; 0; p

)
(t|q, ql/m).
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 17

(v) GFR of Z(α)
n,m,p(x; l|q).

In (44), taking limit qa → 0, replacing l and x by lm and (xqn)l, l ∈ N, and
putting γn = qln(α+1)−lmn+ln(ln−1)/2/(pα; q)nl,p(q

l; ql)mn, we get

∞∑

n=0

qln(n−1)/2
Z

(α)
n,m,p(x; l|q)
(pα; q)nl,p

tn

=

∞∑

n=0

∞∑

k=0

(−1)mkqnl(n−1)/2−klm
qkl(α+n+1)−klm+kl(kl−1)/2

(pα; q)kl,p(ql; ql)mk(ql; ql)n
qmklxkl tn+mk.

Here we may put kl = s to get elegant form:
∞∑

n=0

qln(n−1)/2
Z

(α)
n,m,p(x; l|q)
(pα; q)nl,p

tn = εq−l(t)

∞∑

s=0

q(α+n+1)s+s(s−1)/2−ms

(pα; q)s,p(ql; ql)ms
xs(−t)ms/l.

(vi) GFR of L(α)
n,m,p(x|q).

It is the straightforward case l = 1 the GFR 5.
The GFR of the polynomials (39) and (41) follow from (43). Here also we

assume that |t| < 1. Now, if a is replaced by a+ b+ c+ d− p and if

G(n) = (aeiθ; q)n,p(ae
−iθ; q)n,p/((ab; q)n,p(ac; q)n,p(ad; q)n,p(q

l/m; ql/m)n),

then F (n) = pn,l,m,p(cos θ; a, b, c, d|q)an/((ab; q)n,p(ac; q)n,p(ad; q)n,p) leads us
to

∞∑

n=0

qln(n−1)/2m(abcdq−p; q)n,p
pn,l,m,p(cos θ; a, b, c, d|q)an

(ab; q)n,p(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n
tn

=

∞∑

k=0

(abcdq−p; q)mk+ kl
p ,p

(aeiθ; q)k,p(ae
−iθ; q)k,p

(ab; q)k,p(ac; q)k,p(ad; q)k,p(ql/m; ql/m)k

×1 φ1
(
abcdqmkp+kl−p; 0; p

)
(t|q, ql/m)(−t)mk.

Likewise, replacing a by a+ b+ p and choosing

G(n) = (q−x; q)n,p(cdq
x+p; q)n,p/((aq

p; q)n,p(bdq
p; q)n,p(cq

p; q)n,p(q
l/m; ql/m)n)

in (43) implies F (n) = Rn,m,p,l(q
−x + cdqx+1; a, b, c, d|q). We then find the

following GFR.
∞∑

n=0

qln(n−1)/2m
(abqp; q)n,p

(ql/m; ql/m)n
Rn,m,p,l(q

−x + cdqx+1; a, b, c, d|q) tn

=

∞∑

k=0

(q−x; q)k,p(cdq
x+p; q)k,p(abq

p; q)mk+ kl
p ,p

(aqp; q)k,p(bdqp; q)k,p(cqp; q)k,p(ql/m; ql/m)k

×1 φ1
(
abqp+mkp+kl; 0; p

)
(t|q, ql/m) (−t)mk.
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18 RAJESH V. SAVALIA

5.2. Summation formulas

In this section, we illustrate the application of the inverse series of the GISR
and in particular the inverse series of the general class (17), to deduce cer-
tain summation formulas. The inverse series (23) of Theorem 3.3 provides the
sums involving the p-Askey-Wilson polynomials (39) and p-q-Racah polynomi-
als (41); whereas the inverse series (34) takes care of the sums involving the
other polynomials.

We begin with the inverse series (34) with the assumption that γn 6= 0,∀n =
0, 1, 2, . . ., then we have

(45)
1

γn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p(x|q; l) = xn.

In this, multiplying both sides by (a; q)n/(q; q)n and taking summation from
n = 0 to ∞ and then using (12) with |x| < 1, we get

∞∑

n=0

(a; q)n
(q; q)nγn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p(x|q; l)

=
(ax; q)∞
(x; q)∞

.

If x = 0, then Bak,m,p(0|q; l) = γ0 simplifies this sum to the form:
∞∑

n=0

(a; q)nγ0
(q; q)nγn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
= 1.

Next, multiplying both sides by 1/[n]q! = 1/(q; q)n and taking summation from
n = 0 to ∞, in (45) provides
∞∑

n=0

qn(n−1)/2

γn(q; q)n

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p(x|q; l) = εq(x),

using (11). Taking summation n = 0 to ∞ and assuming |x| < 1 in (45) yields
∞∑

n=0

1

γn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p(x|q; l) =

1

1− x.

By assigning different values to x from (−1, 1), a number of particular summa-
tion formulas can be derived. For example, x = 1/2 in this formula gives the
following one.
∞∑

n=0

1

γn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p

(
1

2

∣∣∣q; l
)

= 2.

The sum of 1φ1[∗] in (13) enables us to obtain one more summation formula by

multiplying (−1)nq(
n
2)(a;q)n

(c;q)n(q;q)n
to both sides of (45), replacing x by c/a and then
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A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS 19

summing-up from n = 0 to ∞. We then obtain
∞∑

n=0

(−1)nq(
n
2)(a; q)n

γn(c; q)n(q; q)n

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)

(qa+kp; q) ln
p +1,p(q

l/m; ql/m)mn(ql/m; ql/m)k
Bak,m,p

( c
a

∣∣∣q; l
)

=
(c/a; q)∞
(c; q)∞

.

The reducibility to all these summation formulas to the particular polynomials
may be obtained by making the substitutions as specified in Section 4.
Illustration. Taking a = e and

γn = (qα1 ; q)n,p · · · (qαc ; q)n,p/((qβ1 ; q)n,p · · · (qβd ; q)n,p(q
l/m; ql/m)n,p)

in (45) yields the summation formula involving the p-deformed extended q-
Jacobi polynomials as follows.

(β1; q)n,p · · · (βd; q)n,p(ql/m; ql/m)n,p
(α1; q)n,p · · · (αc; q)n,p

mn∑

k=0

qkln
(q−mn(l/m); ql/m)k

(ql/m; ql/m)mn

× (1− qe+Lk+kp)
(qe+kp; q) ln

p +1,p(q
l/m; ql/m)k

F (e)
k,m,p,l[(α); (β) : x|q] = xn.

We now obtain summation formulas involving the extended p-deformed Askey-
Wilson polynomials and p-deformed extended q-Racah polynomials. While
illustrating the sums, we require the deformed versions of the q-Gauss sum
[6, Eq. (1.5.1), p. 10] and corresponding q-Vandermonde’s sum [6, Eq. (1.5.2),
p. 11] :

2φ1

(
a, b; c; q,

c

ab

)
=

(c/a; q)∞ (c/b; q)∞
(c; q)∞ (c/ab; q)∞

and

2φ1

(
q−n, b; c; q,

cqn

b

)
=

(c/b; q)n
(c; q)n

,

respectively. For that we notice the relation (a; q)n,p = (a; qp)n, p > 0, thereby
transform these sums to the forms:

(46) 2φ1

(
a, b; c; qp,

c

ab

)
=

(c/a; q)∞,p (c/b; q)∞,p
(c; q)∞,p (c/ab; q)∞,p

and

2φ1

(
q−np, b; c; qp,

cqnp

b

)
=

(c/b; q)n,p
(c; q)n,p

.(47)

We rewrite the inverse series (40) by introducing (qp; q)n,p to get

(ac; q)n,p(ad; q)n,p(q
l/m; ql/m)n

(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abcdqkL+kp−p)
(abcdqkp−p; q) ln

p +1,p(ab; q)k,p(ac; q)k,p
(48)
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× akpk,l,m,p(cos θ; a, b, c, d|q)
(ad; q)k,p(ql/m; ql/m)mn(ql/m; ql/m)k

=
(aeiθ; q)n,p(ae

−iθ; q)n,p
(ab; q)n,p(qp; q)n,p

.

We intend to use (46), and for that we multiply both side of (48) by

qn(b−a−2 cos θ)

and then take sum from n = 0 to ∞, then after little simplification, we find
∞∑

n=0

(ac; q)n,p(ad; q)n,p(q
l/m; ql/m)n

(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abcdqkL+kp−p)
(abcdqkp−p; q) ln

p +1,p(ab; q)k,p(ac; q)k,p

× akpk,l,m,p(cos θ; a, b, c, d|q)
(ad; q)k,p(ql/m; ql/m)mn(ql/m; ql/m)k

qn(b−a−2 cos θ)

=

(
be−iθ; q

)
∞,p

(
beiθ; q

)
∞,p

(ab; q)∞,p (qb−a−2 cos θ; q)∞,p
.

In (48), we transfer (ae−iθ; q)n,p to the other side to get

(ac; q)n,p(ad; q)n,p(q
l/m; ql/m)n

(ae−iθ; q)n,p(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abcdqkL+kp−p)
(abcdqkp−p; q) ln

p +1,p(ab; q)k,p(ac; q)k,p

× akpk,l,m,p(cos θ; a, b, c, d|q)
(ad; q)k,p(ql/m; ql/m)mn(ql/m; ql/m)k

=
(aeiθ; q)n,p

(ab; q)n,p(qp; q)n,p
.

In this, multiplying both sides by (q−jp; q)n,p(qjpbe−iθ)n and then taking the
sum from n = 0 to j, then using (47) on the right hand side, we obtain

j∑

n=0

(ac; q)n,p(ad; q)n,p(q
l/m; ql/m)n

(ae−iθ; q)n,p(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abcdqkL+kp−p)
(abcdqkp−p; q) ln

p +1,p(ab; q)k,p(ac; q)k,p

× akpk,l,m,p(cos θ; a, b, c, d|q)
(ad; q)k,p(ql/m; ql/m)mn(ql/m; ql/m)k

(q−jp; q)n,p(q
jpbe−iθ)n =

(
be−iθ; q

)
j,p

(ab; q)j,p
.

We proceed in a similar manner to derive summation formulas from the inverse
series (42). We rewrite it by introducing the factor (qp; q)n,p and transfer the
factors (cdqx+p; q)n,p, (bdq

p; q)n,p, (cq
p; q)n,p and (ql/m; ql/m)n to the other side

to get

(bdqp; q)n,p(cq
p; q)n,p(q

l/m; ql/m)n
(cdqx+p; q)n,p(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abqkL+kp+p)
(abqkp+p; q) ln

p +1,p(q
l/m; ql/m)mn

× Rk,m,p,l(q
−x + cdqx+1; a, b, c, d|q)
(ql/m; ql/m)k

=
(q−x; q)n,p

(aqp; q)n,p(qp; q)n,p
.

Now multiplying both sides by (q−jp; q)n,p(axqjp+p)n and then taking the sum-
mation from n = o to j, we obtain
j∑

n=0

(bdqp; q)n,p(cq
p; q)n,p(q

l/m; ql/m)n
(cdqx+p; q)n,p(qp; q)n,p

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− abqkL+kp+p)
(abqkp+p; q) ln

p +1,p(q
l/m; ql/m)mn
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× (q−jp; q)n,p(axqjp+p)n

(ql/m; ql/m)k
Rk,m,p,l(q

−x + cdqx+1; a, b, c, d|q) =
(aqx+p; q)j,p
(aqp; q)j,p

.

6. Extension of Riordan’s q-inverse pairs

Apart from yielding the extended p-deformed q-polynomials, Theorem 3.3
and its alternative forms also provide an effective tool for carrying out the ex-
tension of certain inverse series relations belonging to q-Riordan’s classification
[3, Tables 2, 5, 7, pp. 17–20] in the sense of p-deformation (also see [12] for
ordinary forms). For instance, replacing G(n) and F (n) by

q−λmn(mn+1)/2(qp; q)α/p+λmn−mn,pG(n)/(qp; q)∞,p and q−λn(n+1)/2(−1)nF (n)

in (32) and (33), yield the
∗ Inverse pair - 1

F (n) =

bn/mc∑

k=0

q−λ(mk(mk−1))/2)
(qp; q)α+λmk−mkp

p ,p

(qp; q)α+mkλ−np
p ,p(q

−λ; q−λ)n−mk
G(k)

⇔ G(n) =

mn∑

k=0

(−1)mn+kq−λk(k−2mn+1)/2
(1− qα+kλ−kp)(qp; q)α+mnλ−kp−p

p ,p

(qp; q)α+λmn−mnp
p ,p(q

−λ; q−λ)mn−k
F (k).

Next, replacing α by α+ p, F (n) by F (n)/(1− qα+λn−np+p) and G(n) by
G(n)/(1− qα+λmn−mnp+p) in inverse pair - 1, yields
∗ Inverse pair - 2

F (n) =

bn/mc∑

k=0

q−λmk(mk−1)/2)
(1− qα+λn−np+p)(qp; q)α+λmk−mkp

p ,p

(qp; q)α+mkλ−np+p
p ,p(q

−λ; q−λ)n−mk
G(k)

⇔ G(n) =

mn∑

k=0

(−1)mn+kq−λk(k−2mn+1)/2
(qp; q)α+mnλ−kp

p ,p

(qp; q)α+λmn−mnp
p ,p(q

−λ; q−λ)mn−k
F (k).

Here inverting the base q, and then replacing G(n) by

G(n)/(q−α−λmn+mn−1; q−1)∞,p,

this pair transforms to the
∗ Inverse pair - 3

F (n) =

bn/mc∑

k=0

qλmk(mk−1)/2)
(qp; q)−α+np−λmk−p

p ,p

(qp; q)−α−mkλ+mkp−p
p ,p(q

λ; qλ)n−mk
G(k)

⇔ G(n) =

mn∑

k=0

(−1)mn+kqλk(k−2mn+1)/2
(1− q−α−λk+kp)(qp; q)−α−λmn+mnp−p

p ,p

(qp; q)−α−λmn+kp
p ,p(q

λ; qλ)mn−k
F (k).
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Finally, replacing F (n) by F (n)/(1− q−α−λnp+np) in this last pair, we get
∗ Inverse pair - 4

F (n) =

bn/mc∑

k=0

qλmk(mk−1))/2
(1− q−α−λn+np)(qp; q)−α+np−λmk−p

p ,p

(qp; q)−α−mkλ+mkp
p ,p(q

λ; qλ)n−mk
G(k)

⇔ G(n) =

mn∑

k=0

(−1)mn+kqλk(k−2mn+1)/2
(qp; q)−α−mnλ+mnp

p ,p

(qp; q)−α−λmn+kp
p ,p(q

λ; qλ)mn−k
F (k).

Inverse pairs - 1 to 4 lead us to the p-deformed versions of certain inverse pairs
of q-Riordan classes as shown in the following table.

Table 1. p-deformed extension of certain q-Riordan inverse pairs

F (n) =

bn/mc∑

k=0

qβmk(mk−1)/2An,kG(k);

G(n) =

mn∑

k=0

(−1)mn+kqβk(k−2mn+1)/2Bn,kF (k)

Inverse β α λ An,k Bn,k p-deformed
pair - extension of q-class

(inverse pair no.)
as in Table 2, 5 and 7 [3]

1 −l α l
(qp;q)α+lmk−mkp

p
,p

(qp;q)α+lmk−np
p

,p

(1−qα+lk−kp)
(qp;q)α+lmn−mnp

p
,p

q-Gold class(1)

× 1

(q−l;q−l)n−mk
×

(qp;q)α+lmn−kp−p
p

,p

(q−l;q−l)mn−k
Table 2

2 −l α l (1−qα+ln−np+p)
(qp;q)α+lmk−np+p

p
,p

(qp;q)α+lmn−kp
p

,p

(qp;q)α+lmn−mnp
p

,p

q-Gold class(2)

×
(qp;q)α+lmk−mkp

p
,p

(q−l;q−l)n−mk
× 1

(q−l;q−l)mn−k
Table 2

3 p− 2 −α− p p− 2
(qp;q)α+np+2mk−mkp

p
,p

(qp;q)α+2mk
p

,p

(1−qα+2k+p)
(qp;q)α+2mn−mnp+kp+p

p
,p

q-Simpler Legendre

× 1

(q(p−2);q(p−2))n−mk
×

(qp;q)α+2mn
p

,p

(q(p−2);q(p−2))mn−k
Class(1) Table 5

4 p− 2 −α p− 2 (1−qα+2n)
(qp;q)α+2mk

p
,p

(qp;q)α+2mn
p

,p

(qp;q)α+2mn−mnp+kp
p

,p

q-Simpler Legendre

×
(qp;q)α+np−mkp+2mk−p

p
,p

(q(p−2);q(p−2))n−mk
× 1

(q(p−2);q(p−2))mn−k
Class(2) Table 5

4 p− c −α p− c (1−qα+cn)
(qp;q)α+cmk

p
,p

(qp;q)α+cmn
p

,p

(qp;q)α+cmn−mnp+kp
p

,p

q-Legendre-Chebyshev

×
(qp;q)α+np+cmk−mkp−p

p
,p

(q(p−c);q(p−c))n−mk
× 1

(q(p−c);q(p−c))mn−k
Class(1) Table 7

1 −p− c α p+ c
(qp;q)α+cmk

p
,p

(qp;q)α+cmk+mkp−np
p

,p

(1−qα+ck)
(qp;q)α+cmn

p
,p

q-Legendre -Chebyshev

× 1

(q−(c+p);q−(c+p))n−mk
×

(qp;q)α+cmn+mnp−kp−p
p

,p

(q−(c+p);q−(c+p))mn−k
Class(3) Table 7

3 p− c −α− p p− c
(qp;q)α+np+cmk−mkp

p
,p

(qp;q)α+cmk
p

,p

(1−qα+ck+p)
(qp;q)α+cmn−mnp+kp+p

p
,p

q-Legendre-Chebyshev
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Table 1. – Continue
Inverse β α λ An,k Bn,k p-deformed
pair - extension of q-class

(inverse pair no.)
as in Table 2, 5 and 7[3]

× 1

(q(p−c);q(p−c))n−mk
×

(qp;q)α+cmn
p

,p

(q(p−c);q(p−c))mn−k
Class(5) Table 7

2 −p− c α p+ c (1−qα+cn+p)
(qp;q)α+cmk+mkp−np+p

p
,p

(qp;q)α+cmn+mnp−kp
p

,p

(qp;q)α+cmn
p

,p

q-Legendre-Chebyshev

×
(qp;q)α+cmk

p
,p

(q(c+p);q(c+p))n−mk
× 1

(q(c+p);q(c+p))mn−k
Class(7) Table 7

7. Companion matrix

The companion matrix of a polynomial is defined as follows [9, p. 39].

Definition. If a polynomial f(x) = δ
0

+ δ
1
x + δ

2
x2 + · · · + δ

j−1
xj−1 + xj ∈

K[X],K is a field, then to f there is associated the j×j matrix C(f(x)), called
the companion matrix of f(x), is denoted and defined by

C(f(x)) =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
−δ

0
−δ

1
−δ

2
. . . −δ

j−1



.

Note. The eigenvalues of the companion matrix C(f(x)) are precisely the zeros
of f(x), counting the multiplicity. The characteristic polynomial of C(f(x)) is
therefore, f(x).

We have the following [9, Prop. 1.5.14, p. 39].

Proposition. If f(x) ∈ K[X] is non constant and A = C(f(x)) is the com-
panion matrix of f(x), then f(A) = O, where O is a zero matrix.

Taking bn/mc = N in (17) and converting it to the monic form B̃an,m,p(x|q; l),
we get

B̃an,m,p(x|q; l) =

N∑

k=0

δk x
k,

where

δk =
qkl(q−n(l/m); ql/m)mk(qa+np; q) kl

p ,p
γ
k

qlN (q−(l/m)n; q(l/m))n(qa+np; q)Nl
p ,p

γ
N

.

Thus, B̃an,m,p(x|q; l) is of the form as stated in Definition 7. The eigen values
of this matrix will be then precisely the zeros of the polynomial B̃an,m,p(x|q; l).
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Big q-Jacobi polynomials 
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q-Hahn polynomials 
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q-Hahn polynomials 

The extended p-deformed                  
q-Krawtchouk polynomials 
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Chihara polynomials 
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q-Charlier polynomials 
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Wigret polynomials 
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8. p-deformed polynomials’ reducibility chart

Scheme of p-deformed extended basic hypergeometric orthogonal polynomi-
als
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A GENERAL INVERSION PAIR AND p-DEFORMATION
OF ASKEY SCHEME

RAJESH V. SAVALIA AND B. I. DAVE

ABSTRACT.The present work incorporates the general inverse series relations involv-
ing p-Pochhammer symbol and p-Gamma function. A general class of p-polynomials
is introduced by means of this general inverse pair which is used to derive the gener-
ating function relations and summation formulas for certain p-polynomials belong-
ing to this general class. This includes the p-deformation of Jacobi polynomials, the
Brafman polynomials and Konhauser polynomials. Moreover, the orthogonal poly-
nomials of Racah and those of Wilson are also provided p-deformation by means of
the general inversion pair. The generating function relations and summation formu-
las for these polynomials are also derived. We then emphasize on the combinatorial
identities and obtain their p-deformed versions.

(Received: 16-10-2018, Accepted: )

1. INTRODUCTION

In 2007, Rafael and Pariguan [3] introduced one parameter deformation of the clas-
sical Gamma function in the form:

Γp(z) =
∫ ∞

0
tz−1e−

t p
p dt,

where z ∈ C, ℜ(z) > 0 and p > 0. In fact, the occurrence of the product of the form
x(x+ p)(x+ 2p) · · ·(x+(n− 1)p) in combinatorics of creation and annihilation op-
erators [2, 4] and the perturbative computation of Feynman integrals [1] led them to
generalize along with the Gamma function, the Pochhammer p-symbol in the form:

(z)n,p = z(z+ p)(z+2p) · · ·(z+(n−1)p), (1.1)

in which z ∈C, p ∈R and n ∈N. These generalizations lead us to the following prop-
erties.

Γp(z+ p) = zΓp(z),

2010 Mathematics Subject Classification. 05A19; 33C20; 33C45; 33C99.
Key words and phrases: p-Gamma function; p-Pochhammer symbol; p-Deformed polynomials;

Inverse series relation
c© Indian Mathematical Society, 2019.
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Γp(p) = 1,

(z)k,p =
Γp(z+ kp)

Γp(z)
,

(z)n−k,p =
(−1)k(z)n,p

(p− z−np)k,p
, (1.2)

(z)mn,p = mmn
m

∏
j=1

(
z+ jp− p

m

)

n,p
.

When p = 1, these identities reduce to the corresponding properties of the classical
Gamma function and the Pochhammer symbol (z)n [8,13]. In addition, we shall make
use of the notation:

4p(m;n) =
m

∏
j=1

(
n+ jp− p

m

)
.

which stands for the array of m parameters:

n
m
,

n+ p
m

, . . . ,
n+mp− p

m
.

In [3], the following generalization of the hypergeometric series is introduced.

rFs(a,k,b, l)(x) =
∞

∑
n=0

(a1)n,k1(a2)n,k2 · · ·(ar)n,kr

(b1)n,l1(b2)n,l2 · · ·(bs)n,ls n!
xn, (1.3)

where a = (a1,a2, · · · ,ar) ∈ Cr, k = (k1,k2, · · · ,kr) ∈ (R+)r, b = (b1,b2, · · · ,bs) ∈
Cs \ (kZ−)s and l = (l1, l2, · · · , ls) ∈ (R+)s. This series converges for all x if r≤ s, and
diverges if r > s+ 1, x 6= 0. If r = s+ 1, then the series converges for |x| < l1l2···ls

k1k2···kr
.

Further, for p > 0, a ∈ C and |x|< 1
p
,

∞

∑
n=0

(a)n,p

n!
xn = (1− px)−

a
p . (1.4)

This may be regarded as the p-deformed binomial series. Interestingly, the interval (or
disk) of convergence is not the unit length interval (or unit disk) but it can be magnified
or diminished by choosing p appropriately. Motivated by such remarkable feature, we
make an attempt to provide deformation of certain polynomials by means of a general
inverse series relation. We take up the properties such as generating function relations
(GFR) and summation formulas. Moreover, we derive the deformed versions of the
combinatorial identities due to John Riordan [9].

2. MAIN RESULT

While proving the main result, we shall require the following inverse pair.
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Lemma 2.1. For M ∈ N∪{0}, m ∈ N, α ∈ C, λ ∈ C and p > 0,

g(M) =
M

∑
k=0

(−1)k
(

M
k

)
(α + kλ +m jλ − kp−m jp)

×Γp(α +(M+m j)λ − kp−m jp) f (k) (2.1)

if and only if

f (M) =
M

∑
k=0

(−1)k
(

M
k

)
1

Γp(α + kλ +m jλ + p− (M+m j)p)
g(k). (2.2)

Proof. We first note that the diagonal elements of the coefficient matrix of the first
series are (−1)i(α + iλ +m jλ − ip−m jp)Γp(α +(i+m j)λ − kp−m jp) and those
of the second series are

(−1)i 1
Γp(α + iλ +m jλ + p− (i+m j)p)

.

Since these elements are all non zero; it follows that these matrices have unique in-
verse. Hence, it suffice to prove that one of these series implies the other. We prefer to
show that (2.1) implies (2.2). For that we denote the right hand side of (2.2) by Φ(M)

and substitute for g(k) from (2.1) to get

Φ(M) =
M

∑
k=0

(−1)k
(

M
k

)
1

Γp(α + kλ +m jλ + p− (M+m j)p)

k

∑
i=0

(−1)i
(

k
i

)

×(α + iλ +m jλ − ip−m jp)Γp(α +(k+m j)λ − ip−m jp) f (i)

=
M

∑
i=0

(
M
i

)
(α + iλ +m jλ − ip−m jp) f (i)

M−i

∑
k=0

(−1)k
(

M− i
k

)

× Γp(α +(k+ i+m j)λ − ip−m jp)
Γp(α +(k+ i)λ +m jλ + p− (M+m j)p)

.

Here, the ratio

Γp(α +(k+ i+m j)λ − ip−m jp)
Γp(α +(k+ i)λ +m jλ + p− (M+m j)p)

=
M−i−1

∑
l=0

Al kl

say, which represents a polynomial of degree M− i−1 in k, hence we further have

Φ(M) = f (M)+
M

∑
i=0

(
M
i

)
(α + iλ +m jλ − ip−m jp) f (i)

M−i−1

∑
l=0

Al

×
M−i

∑
k=0

(−1)k
(

M− i
k

)
kl .

Now, if P(a+bk) is a polynomial in k of degree less than N, then
N

∑
k=0

(−1)k
(

N
k

)
P(a+bk) = 0.

Thus, we get Φ(M) = f (M). This completes the proof of the inverse pair. �



4 RAJESH V. SAVALIA AND B. I. DAVE

This lemma gives rise to the orthogonality relation. In fact, the substitution
( 0

M

)

for either f (M) or g(M) yields this property. One of the orthogonality relations which
we later need, is

Corollary 2.2. For 0≤ j ≤ n,m ∈ N,λ ∈ C and p > 0,
(

0
M

)
=

M

∑
k=0

(−1)k
(

M
k

)
(α + kλ +m jλ − kp−m jp)

Γp(α +m jλ + p− kp−m jp)
Γp(α +mnλ − kp−m jp).

Proof. In (2.1), the substitution g(k) =
(0

k

)
gives f (k) = 1/(Γp(α +m jλ + p− kp−

m jp)), and with these f (k) and g(k), (2.2) yields the series orthogonality relation. �

As a main result, we establish the general inverse series relation as

Theorem 2.3. For λ ∈ C, α ∈ C, n ∈ N∪{0}, m ∈ N and p > 0,

F(n) =
bn/mc
∑
k=0

(−1)mk 1
Γp(α +mkλ + p−np)(n−mk)!

G(k) (2.3)

implies

G(n) =
mn

∑
k=0

(−1)k (α + kλ − kp)Γp(α +mnλ − kp)
(mn− k)!

F(k) (2.4)

and conversely, the series in (2.4) implies the series (2.3) if for n 6= mr, r ∈ N,
n

∑
k=0

(−1)k (α + kλ − kp)Γp(α +nλ − kp)
(n− k)!

F(k) = 0. (2.5)

Proof. We first show that (2.3) implies (2.4). We denote the right hand side of (2.4)
by V (n) and then substitute for F(k) from (2.3) to get

V (n) =
mn

∑
k=0

(−1)k (α + kλ − kp)Γp(α +mnλ − kp)
(mn− k)!

×
bk/mc
∑
j=0

(−1)m j 1
Γp(α +m jλ + p− kp)(k−m j)!

G( j).

Here making use of the double series relation ( [13] also [8, Lemma 10 and 11, p.56-
57]):

mn

∑
k=0

bk/mc
∑
j=0

A(k, j) =
n

∑
j=0

mn−m j

∑
k=0

A(k+m j, j),

we further get

V (n) =
n−1

∑
j=0

G( j)
(mn−m j)!

mn−m j

∑
k=0

(−1)k
(

mn−m j
k

)
Γp(α +mnλ − kp−m jp)

Γp(α +m jλ + p− kp−m jp)

×(α +(k+m j)λ − kp−m jp)+G(n). (2.6)
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We now show that the inner series in this last expression vanishes. For that we replace
1/Γp(α +m jλ + p− kp−m jp) by f (k) and denote the inner series by g(mn−m j),
then we have

g(mn−m j) =
mn−m j

∑
k=0

(−1)k
(

mn−m j
k

)
(α + kλ +m jλ − kp−m jp)

×Γp(α +mnλ − kp−m jp) f (k). (2.7)

The inverse series of this series follows from Lemma 2.1 in the form:

f (mn−m j) =
mn−m j

∑
k=0

(−1)k
(

mn−m j
k

)
1

Γp(α + kλ +m jλ + p−mnp)
g(k). (2.8)

According to Corollary 2.2, we set g(k) =
(0

k

)
in series (2.8), we then get f (k) =

1/Γp(α +m jλ + p−kp−m jp) back, and with these f (k) and g(k), the series orthog-
onality relation occurs from (2.9) as given below.

(
0

mn−m j

)
=

mn−m j

∑
k=0

(−1)k
(

mn−m j
k

)
(α + kλ +m jλ − kp−m jp)

Γp(α +m jλ + p− kp−m jp)

×ΓP(α +mnλ − kp−m jp). (2.9)

Using this in (2.6), we get

V (n) = G(n)+
n−1

∑
j=0

G( j)
(mn−m j)!

(
0

mn−m j

)
= G(n).

Thus, (2.3) implies (2.4). Our next aim is to show that (2.3) implies (2.5). For that let
R(n) denote the right hand side of (2.5) that is,

R(n) =
n

∑
k=0

(−1)k (α + kλ − kp)Γp(α +nλ − kp)
(n− k)!

F(k). (2.10)

Proceeding as before, that is, substituting for F(k) from (2.3) in (2.10), we have

R(n) =
n

∑
k=0

(−1)k (α + kλ − kp)Γp(α +nλ − kp)
(n− k)!

×
bk/mc
∑
j=0

(−1)m j 1
Γp(α +m jλ + p− kp)(k−m j)!

G( j)

=
bn/mc
∑
j=0

G( j)
(n−m j)!

n−m j

∑
k=0

(−1)k
(

n−m j
k

)
Γp(α +nλ − kp−m jp)

Γp(α +m jλ + p− kp−m jp)
.

×(α + kλ +m jλ − kp−m jp). (2.11)
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We see that the inner series on the right hand side in this last expression differs slightly
from the one occurring in (2.6); that is, instead of mn−m j, it is n−m j here. Accord-
ingly, the series orthogonality relation occurs in the form:

n−m j

∑
k=0

(−1)k
(

n−m j
k

)
(α + kλ +m jλ − kp−m jp)

Γp(α +m jλ + p− kp−m jp)
Γp(α +nλ − kp−m jp)

=

(
0

n−m j

)
.

This leads us to R(n) = 0 .
If n 6= mr,r ∈ N, then the right hand member in (2.11) vanishes and thus (2.3)

implies (2.5); which completes the proof of the first part. For the converse part, assume
that (2.4) and (2.5) both hold true. In view of (2.5),

R(n) = 0, n 6= mr, r ∈ N, and R(mn) = G(n). (2.12)

by comparing (2.4) with (2.10). Now, from the inverse pair (2.7) and (2.8), taking
j = 0 and m = 1, we find that

R(n) =
n

∑
k=0

(−1)k (α + kλ − kp)Γp(α +nλ − kp)
(n− k)!

Fk

implies

Fn =
n

∑
k=0

(−1)k 1
Γp(α + kλ + p−np)(n− k)!

R(k).

Hence, in view of the relations in (2.12), we arrive at

R(mn) =
mn

∑
k=0

(−1)k (α + kλ − kp)Γp(α +mnλ − kp)
(mn− k)!

Fk

implies

Fn =
bn/mc
∑
k=0

(−1)mk 1
Γp(α +mkλ + p−np)(n−mk)!

R(mk).

Thus, the series in (2.4) with R(n) = 0,n 6= mr for r ∈ N, implies the series in (2.3).
This proves the converse part and hence the theorem. �

3. ALTERNATE FORMS

The general inverse series relation of Theorem 2.3 helps us to construct a general
class of p-polynomials together with their inverse series. Besides this, Theorem 2.3
also provides extension to certain inverse series relations belonging to the Riordan’s
classified inverse pairs appearing in Table 1 to Table 6 [9, Ch 2] in the sense of p-
deformation. These inverse pairs are deduced by means of the following alternative
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versions of the theorem. The first alternative form is deduced by taking α =−c, λ =

−(r−m)p/m and replacing G(n) by G(n)Γp(−c− rnp+ p) in Theorem 2.3 to get

F(n) =
bn/mc
∑
k=0

(−1)n−mk Γp(p− c− rkp)
Γp(p− c− rkp−np−mkp)(n−mk)!

G(k), (3.1)

G(n) =
mn

∑
k=0

(c+ rkp/m)Γp(p− c− (r−m)np− kp)
(c+(r−m)np+ kp)Γp(p− c− (r−m)np−mnp)(mn− k)!

F(k). (3.2)

On making property (1.2) with appropriate values of n,k and z in (3.2) leads us to

F(n) =
bn/mc
∑
k=0

(c+ rkp)n−mk,p

(n−mk)!
G(k), (3.3)

G(n) =
mn

∑
k=0

(−1)mn−k(c+ rkp/m)(c)rn,p

(c)(r−m)n+k+1,p(mn− k)!
F(k). (3.4)

Now, if we put r = l +m, replace G(n) by (−1)mn(c)ln+mn,pG(n) and F(n) by
F(n)(c)n,p/n! in (3.3), (3.4) respectively, then we get the general inversion pair :
Inverse pair 1.

F(n) =
bn/mc
∑
k=0

(−n)mk(c+np)lk,pG(k), (3.5)

G(n) =
mn

∑
k=0

(−mn)k(c+ kp+ lkp/m)

(c+ kp)ln+1,p(mn)!k!
F(k). (3.6)

This pair will be used to derive extended p-deformed polynomials and its inverse
series relation. Now taking α = a+ p and replacing F(n) by (−1)nF(n)/(a+ nλ −
np+ p), G(n) by Γp(a+mnλ−mnp+ p)G(n)/(a+mnλ−mnp) in Theorem 2.3, one
gets
inverse pair 2.

F(n) =
bn/mc
∑
k=0

(−1)n−mk (a+nλ −np+ p)Γp(a+mkλ −mkp+ p)
(a+mkλ −np+ p)Γp(a+mkλ −np+ p)(n−mk)!

G(k),

G(n) =
mn

∑
k=0

Γp(a+mnλ − kp+ p)
Γp(a+mnλ −mnp+ p)(mn− k)!

F(k).

Next, in Theorem 2.3, replacing α by −a− p, F(n) by (−1)nF(n) and G(n) by
G(n)/Γp(a−mnλ +mnp+ p), we get
inverse pair 3.

F(n) =
bn/mc
∑
k=0

Γp(a+np−mkλ + p)
Γp(a−mkλ +mkp+ p)(n−mk)!

G(k),

G(n) =
mn

∑
k=0

(−1)mn−k (a− kλ + kp+ p)Γp(a−mnλ +mnp+ p)
(a−mnλ + kp+ p)Γp(a−mnλ + kp+ p)(mn− k)!

F(k).
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Here, if we replace F(n) by F(n)/(a−nλ +np), G(n) by G(n)/(a−mnλ +mnp) and
a by a− p, then we obtain
inverse pair 4.

F(n) =
bn/mc
∑
k=0

(a−nλ +np)Γp(a+np−mkλ + p)
(a−mkλ +np)Γp(a−mkλ +mkp+ p)(n−mk)!

G(k),

G(n) =
mn

∑
k=0

(−1)mn−k Γp(a−mnλ +mnp+ p)
Γp(a−mnλ + kp+ p)(mn− k)!

F(k).

4. GENERAL CLASS OF P-POLYNOMIALS

We propose here a general class of polynomials which would yield as its particular
cases the p-deformation of the Racah polynomials and the Wilson polynomials along
with their inverse series relations. The proposed general class is defined as follows.

Definition 4.1. For a, l ∈ C, m ∈ N, n ∈ {0}∪N, x ∈ R and p > 0,

Ba
n,m,p(x; l) =

bn/mc
∑
k=0

(−n)mk (a+np)lk,p γk xk, (4.1)

where the floor function buc= f loor u, represents the greatest integer ≤ u.

This polynomial contains the extended Jacobi polynomials [12], the Brafman poly-
nomials, the Konhauser polynomials and the Laguerre polynomials as the special
cases. In fact, it provides the extension to them in the sense of p-deformation which
are deduced below. The inverse series of this polynomial occurs from the Inverse pair
- 1. To see this, let us substitute c = a and G(n) = γn xn in the first series of inverse
pair - 1. Then with F(n) = Ba

n,m,p(x; l), it reduces to the polynomial (4.1). On the
other hand, the second series with these substitutions, yields the inverse series:

γn xn =
mn

∑
k=0

(−mn)k (a+ kp+ lkp/m)

(a+ kp)ln+1,p (mn)! k!
Ba

k,m,p(x; l). (4.2)

The p-deformation of the extended Jacobi polynomials along with the inverse series
relation can be obtained from (4.1) and (4.2) by taking γn =(α1)n,p · · ·(αc)n,p/((β1)n,p · · ·
(βd)n,pn!). The inverse pair thus formed, is given by

F
(a)
n,l,m,p[(α);(β ) : x] =

bn/mc
∑
k=0

(−n)mk(a+np)lk,p

(β1)k,p · · ·(βd)k,p k!
(α1)k,p · · ·(αc)k,p xk, (4.3)

(α1)n,p · · ·(αc)n,p(mn)!
(β1)n,p · · ·(βd)n,pn!

xn =
mn

∑
k=0

(−mn)k(a+ kp+ lkp/m)

(a+ kp)ln+1,pk!
F

(a)
k,l,m,p[(α);(β ) : x], (4.4)

where (α) stands for the array of the parameters α1, . . . ,αc and (β ) stands for the
array of the parameters β1, . . . ,βd . The polynomials F

(a)
n,l,m[(α);(β ) : x] [12, Eq.(3.16)]

occur when p = 1. Here we have abbreviated the notation F
(a)
n,l,m[(α);(β ) : x] for
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F
(a)
n,l,m[α1, . . . ,αc;β1, . . . ,βd : x]. In this pair, putting l = 0, we obtain the p-deformed

Brafman polynomials together with the inverse series as given below [10, Eq.(1.16),
p.228].

Bm
n,p[α1, . . . ,αc;β1, . . . ,βd : x] =

bn/mc
∑
k=0

(−n)mk(α1)k,p · · ·(αc)k,p

(β1)k,p · · ·(βd)k,p k!
xk,

(α1)n,p · · ·(αc)n,p(mn)!
(β1)n,p · · ·(βd)n,pn!

xn =
mn

∑
k=0

(−mn)k

k!
Bm

k,p[α1, . . . ,αc;β1, . . . ,βd : x].

The pair of inverse series relations of the extended p-deformed Konhauser polyno-
mials can be obtained from (4.1) and (4.2) by taking l = 0,γn = 1/((p+α)sn,p n!)
and replacing x by xs,s ∈ N. In this case, Ba

n,m,p(x;0) = n! Z(α)
n,m,p(x;s)/(p+α)sn,p

gives [10, Eq.(1.17), (2.8), p.229, 232]

Z(α)
n,m,p(x;s) =

(p+α)sn,p

n!

bn/mc
∑
k=0

(−n)mk

(p+α)sk,p k!
xsk, (4.5)

xsn =
mn

∑
k=0

(−1)k(p+α)sn,p n!
(p+α)sk,p (mn− k)!

Z(α)
k,m,p(x;s).

In this last inverse pair, taking l = 1, we readily get the inverse pair involving the
p-deformed extended Laguerre polynomials as given below.

L(α)
n,m,p(x) =

bn/mc
∑
k=0

(−n)mk(p+α)n,p

(p+α)k,p n! k!
xk, xn =

mn

∑
k=0

(−1)k(p+α)n,p n!
(p+α)k,p (mn− k)!

L(α)
k,m,p(x).(4.6)

The well known generalized orthogonal polynomials possessing the higher order hy-
pergeometric function form 4F3[∗] are the Wilson polynomials [7, 14, 15] and the
Racah polynomials (or Racah coefficient or 6-j symbols) [5, Eq.(7.2.16), p. 165]
(also [7, 14]). These polynomials encompass several particular polynomials such as
the polynomials of Jacobi, Hahn, continuous Hahn, continuous dual Hahn, Meixner,
Meixner-Pollaczek, Krawtchouk and Charlier (see [7, Askey-Scheme, p.23]). The in-
ter connections amongst these polynomials are shown at the end. It is interesting to
see that both these polynomials are contained in the Inverse pair - 1 together with their
inverse series.
The extended p-deformed Racah polynomials and the corresponding inverse series oc-
cur from the Inverse pair - 1 by replacing c by a+b+ p and making the substitution
G(n) = (−x)n,p(x+ c+ d + p)n,p/((a+ p)n,p(b+ d + p)n,p(c+ p)n,pn!). Then with
F(n) = Rn,l,m,p(x(x+ c+d + p);a,b,c,d), the Inverse pair - 1 yields the pair

Rn,l,m,p(x(x+ c+d + p);a,b,c,d) =
bn/mc
∑
k=0

(−n)mk (a+b+np+ p)lk,p (−x)k,p

(a+ p)k,p (b+d + p)k,p(c+ p)k,p k!

×(x+ c+d + p)k,p, (4.7)
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(−x)n,p(x+ c+d + p)n,p(mn)!
(a+ p)n,p(b+d + p)n,p(c+ p)n,p n!

=
mn

∑
k=0

(−mn)k(a+b+ p+ kp+ lkp/m)

(a+b+ p+ kp)ln+1,pk!

×Rk,l,m,p(x(x+ c+d + p);a,b,c,d). (4.8)

The extended p-deformed Wilson polynomials and the inverse series occur by choos-
ing G(n)= (a+ ix)n,p (a− ix)n,p/((a+b)n,p (a+c)n,p (a+d)n,pn!) and replacing c by
a+b+c+d− p suggest F(n) =Wn,l,m,p(x2;a,b,c,d)/((a+b)n,p(a+c)n,p(a+d)n,p)

in inverse pair - 1. We then find the inverse pair :

Wn,l,m,p(x2;a,b,c,d)
(a+b)n,p(a+ c)n,p(a+d)n,p

=
bn/mc
∑
k=0

(−n)mk(a+b+ c+d +np− p)lk,p

(a+b)k,p(a+ c)k,p

× (a+ ix)k,p(a− ix)k,p

(a+d)k,pk!
, (4.9)

(a+ ix)n,p(a− ix)n,p(mn)!
(a+b)n,p(a+ c)n,p(a+d)n,pn!

=
mn

∑
k=0

(−mn)k(a+b+ c+d− p+ kp+ lkp/m)

(a+b+ c+d− p+ kp)ln+1,p

× Wk,l,m,p(x2;a,b,c,d)
(a+b)k,p(a+ c)k,p(a+d)k,p k!

. (4.10)

Both, the p-Racah and the p-Wilson polynomials extend all the above mentioned par-
ticular polynomials in p-gamma function and p-Pochhammer symbol.
In the following sections, we exploit the series identities (3.5) and (3.6) in turn, to
derive certain generating function relations and summation formulas.

5. GENERATING FUNCTION RELATION

We recall the series identity (3.5) of inverse pair - 1 and derive the generating
function relations (or GFR) of the general class {Ba

n,m,p(x; l);n = 0,1,2, . . .} defined
by (4.1). We require the generalized p-Wright function due to K. Gehlot et al. [6]
which is defined by

qΨp
r

[
(ai,αi)1,q; z
(b j,β j)1,r;

]
=

∞

∑
k=0

q
∏
i=1

Γp(ai +αik)

r
∏
j=1

Γp(b j +β jk)k!
zk,

where z ∈ C, p > 0, αi, β j ∈ R\{0} and ai +αik, b j +β jk ∈ C\ pZ− for 1≤ i≤ q
and 1≤ j ≤ r. Following the notations

∆ =
r

∑
j=1

β j

p
−

q

∑
i=1

αi

p
; δ =

r

∏
j=1

∣∣∣∣
β j

p

∣∣∣∣

β j
p q

∏
i=1

∣∣∣∣
αi

p

∣∣∣∣
− αi

p

; µ =
r

∑
j=1

b j

p
−

q

∑
i=1

ai

p
+

q− r
2

,
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the series converges for all z ∈ C if ∆ >−1. If ∆ =−1 then the converges absolutely
for |z| < δ and if |z| = δ , then ℜ(µ) > 1/2. We shall also use the generalized p-
Mittag-Leffler function:

Eγ, τ
p, α, β (z) =

∞

∑
k=0

(γ)τk,p

Γp(αk+β )k!
zk, (5.1)

given by R. K. Saxena et al. [11], wherein p∈R+, α, β , γ ∈C; ℜ(α,β )> 0 and τ ∈
C. This will be needed while deriving the generating function relation of the extended
p-deformed Konhauser polynomials. Now, to begin with first GFR, we multiply (3.5)
by (a)n,p tn/n! where |t|< 1/p, and then take the summation n from 0 to ∞ to get

∞

∑
n=0

(a)n,p

n!
F(n) tn =

∞

∑
n=0

bn/mc
∑
k=0

(−1)mk n! (a)n+lk,p

(n−mk)! n!
G(k)tn

=
∞

∑
n=0

∞

∑
k=0

(−1)mk(a)n+mk+lk,p

n!
G(k)tn+mk

=
∞

∑
k=0

(
∞

∑
n=0

(a+mkp+ lkp)n,p

n!
tn

)
(a)mk+lk,pG(k)(−t)mk

= (1− t p)−
a
p

∞

∑
k=0

(a)mk+lk,pG(k)
(

(−t)m

(1− t p)m+l

)k

.

Here if G(n) = γnxn, then F(n) = Ba
n,m,p(x; l) leads us to the GFR of (4.1) with

l +m = r, in the form:
∞

∑
n=0

(a)n,p

n!
Ba

n,m,p(x; l) tn = (1− t p)
−a
p

∞

∑
k=0

(a)rk,pγk

(
x(−t)m

(1− t p)r

)k

. (5.2)

From this, the GFR of the p-deformed extended Jacobi polynomials can be obtained
by substituting γn = (α1)n,p · · ·(αc)n,p/((β1)n,p · · · (βd)n,p n!) and taking r = m+ l as
follows.

∞

∑
n=0

(a)n,p

n!
F

(a)
n,l,m[(α);(β ) : x] tn

= (1− t p)−
a
p

∞

∑
k=0

(a)rk,p(α1)k,p · · ·(αc)k,p

(β1)k,p · · ·(βd)k,pk!

(
x(−t)m

(1− t p)r

)k

=

(1− t p)−
a
p

d
∏
i=1

Γp(βi)

Γp(a)
c
∏
j=1

Γp(αc)
c+1Ψp

d


(a,rp) ,(α1, p) , · · · ,(αc, p) ;

x(−t)m

(1− t p)r

(β1, p) , · · · ,(βd , p) ;


 .

If l ∈ N
⋃{0}, then this further reduces to

∞

∑
n=0

(a)n,p

n!
F

(a)
n,l,m[(α);(β ) : x] tn
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= (1− t p)−
a
p r+cFd

(
(4p(r,a),(α), p,(β )), p)

(
xrr(−t)m

(1− t p)r

))
.

For l = 0, this yields the GFR of the p-deformed Brafman polynomials [10, Eq.(3.9),
p.234]. Next, the GFR of the extended p-deformed Konhauser polynomials can be
derived from (5.2) by taking l = 0,γn = 1/((p+α)nl,pn!) and replacing x by xs,s∈N.
It occurs in the form:

∞

∑
n=0

(a)n,p Z(α)
n,m,p(x;s)

(p+α)sn,p
tn = (1− t p)−

a
p

Γp(p+α)

Γp(a)
1Ψp

1


 (a,mp);

xs (−t)m

(1− t p)m

(p+α,sp);


 .

Alternatively, incorporating p-Mittag-Leffler function (5.1), this may be written as

∞

∑
n=0

(a)n,p

Γp(p+α + snp)
Z(α)

n,m,p(x;s) tn = (1− t p)−
a
p Ea,m

p, sp, α+p

(
xs(−t)m

(1− t p)m

)
.

The instance s = 1 in both these GFRs yield the GFR of the extended p-deformed
Laguerre polynomials.
Next, the GFR of the extended p-deformed Racah polynomials is obtained by taking
G(n) = (−x)n,p(x+c+d+ p)n,p/((a+ p)n,p(b+d+ p)n,p(c+ p)n,pn!), and replacing
a by a+b+ p in (3.5), then F(n) = Rn,l,m,p(x(x+ c+d + p) leads us to

∞

∑
n=0

(a+b+ p)n,p

n!
Rn,l,m,p(x(x+ c+d + p);a,b,c,d) tn

= (1− t p)
−a−b−p

p
∞

∑
k=0

(a+b+ p)mk+lk,p(−x)k,p(x+ c+d + p)k,p

(a+ p)k,p(b+d + p)k,p(c+ p)k,pk!

(
(−t)m

(1− t p)m+l

)k

= (1− t p)
−a−b−p

p
Γp(a+ p) Γp(b+d + p) Γp(c+ p)

Γp(a+b+ p) Γp(−x) Γp(x+ c+d + p)

×3Ψp
3


 (a+b+ p,mp+ l p),(−x, p),(x+ c+d + p, p);

(−t)m

(1− t p)m+l

(a+ p, p),(b+d + p, p),(c+ p, p);


 .

If l ∈ N
⋃{0}, then this further reduces to

∞

∑
n=0

(a+b+ p)n,p

n!
Rn,l,m,p(x(x+ c+d + p);a,b,c,d) tn

= (1− t p)
−a−b−p

p m+l+2F3 ((4p(m+ l,a+b+ p),−x,x+ c+d + p) , p,

(a+ p,b+d + p,c+ p) , p)
(
(m+ l)m+l(−t)m

(1− t p)m+l

)
,

in which m+ l = 1,2 for convergence. In a similar manner, the GFR of the extended
p-deformed Wilson polynomials occurs from (3.5) by replacing a by a+b+c+d− p
and choosing G(n) = (a+ ix)n,p(a− ix)n,p/((a+ b)n,p(a+ c)n,p(a+ d)n,pn!). Then
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F(n) = Wn,l,m,p(x2;a,b,c,d)/((a+ b)n,p(a+ c)n,p(a+ d)n,p) and with the notations
a+b+ c+d = h, l +m = r, gives

∞

∑
n=0

(h− p)n,p Wn,l,m,p(x2;a,b,c,d)
(a+b)n,p(a+ c)n,p(a+d)n,pn!

tn

= (1− t p)
−h+p

p
Γp(a+b)Γp(a+ c)Γp(a+d)

Γp(h− p)Γp(a+ ix)Γp(a− ix)

×3Ψp
3


 (h− p,mp+ l p),(a+ ix, p),(a− ix, p);

(−t)m

(1− t p)r

(a+b, p),(a+ c, p),(a+d, p);


 .

As in the case of the extended p-deformed Racah polynomials, here also, if l ∈N⋃{0},
then with a+b+ c+d = h and m+ l = r, this reduces to

∞

∑
n=0

(h− p)n,pWn,l,m,p(x2;a,b,c,d)
(a+b)n,p(a+ c)n,p(a+d)n,pn!

tn = (1− t p)
−h+p

p

×r+2F3 ((4p (r,h− p) ,a+ ix,a− ix) , p,(a+b,a+ c,a+d) , p)
(

rr(−t)m

(1− t p)r

)
,

wherein r = 1,2, for convergence.

6. SUMMATION FORMULAS

We use the series identity (3.6) in this section to derive certain summation formulas
involving the polynomials :Ba

n,m,p(x; l), the extended p-deformed Racah as well as the
extended p-deformed Wilson polynomials. For that we shall require the p-deformation
of the well known Gauss summation formula [8, Theorem 18, p.49]. We derive it by
first obtaining the p-deformed Euler’s integral formula in

Lemma 6.1. If p > 0, a, b, c ∈ C with both c, c−b 6= sp, s ∈ N, then

Γp(c)
pΓp(b)Γp(c−b)

∫ 1

0
t

b
p−1(1− t)

c−b
p −1(1− xt)−

a
p dx = 2F1((a,b), p,(c), p)(x/p).

Proof. The following p-Beta function is due to Rafael and Pariguan [3].

Bp(a,b) =
1
p

∫ 1

0
t

a
p−1(1− t)

b
p−1dt =

Γp(a)Γp(b)
Γp(a+b)

,

where p > 0, a, b ∈ C, ℜ(a,b) 6= 0,−p,−2p, · · · .
Now, if we replace x by xt/p in (1.4) then with |x t|< p, it becomes

(1− xt)−
a
p =

∞

∑
n=0

(a)n,p

n! pn (xt)n.
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On multiplying both sides by t
b
p−1(1−t)

c−b
p −1 and then integrating from t = 0 to t = 1,

we get
∫ 1

0
t

b
p−1(1− t)

c−b
p −1(1− xt)−

a
p dx =

∞

∑
n=0

(a)n,p

n! pn xn
∫ 1

0
t

b
p+n−1(1− t)

c−b
p −1dt

= p
∞

∑
n=0

(a)n,p

n! pn xn Bp(b+np,c−b)

= p
∞

∑
n=0

(a)n,p

n! pn xn Γp(b+np)Γp(c−b)
Γp(c+np)

.

Since the series on the right hand side is p-deformed series (1.3), we are led to the
integral representation of the deformed hypergeometric function 2F1[∗] in the form:

Γp(c)
pΓp(b)Γp(c−b)

∫ 1

0
t

b
p−1(1− t)

c−b
p −1(1− xt)−

a
p dx

=
∞

∑
n=0

(a)n,p(b)n,p

(c)n,pn!pn xn = 2F1((a,b), p,(c), p)(x/p). (6.1)

�

When p = 1, this reduces to the well known Euler integral representation of 2F1[∗].

Corollary 6.2. If p > 0, c 6=−p,−2p, . . . and ℜ(c−a−b)> 0, then

2F1((a,b), p,(c), p)(1/p) =
Γp(c)Γp(c−b−a)
Γp(c−a)Γp(c−b)

. (6.2)

Proof. Let x→ 1− in (6.1), then

2F1((a,b), p,(c), p)(1/p) =
Γp(c)

pΓp(b)Γp(c−b)

∫ 1

0
t

b
p−1(1− t)

c−b−a
p −1dx

=
Γp(c)Γp(c−b−a)
Γp(c−a)Γp(c−b)

.

�

Corollary 6.3. In the above notations,

2F1((−np,b), p,(c), p)(1/p) =
(c−b)n,p

(c)n,p
. (6.3)

Proof. By putting a =−np in (6.2), we get the terminating series

2F1((−np,b), p,(c), p)(1/p) =
Γp(c)Γp(c−b+np)
Γp(c+np)Γp(c−b)

=
(c−b)n,p

(c)n,p
.

�
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This coincides with the Chu-Vandermonde identity [8, Ex. 4, p.69] when p = 1.
We now obtain the summation formulas involving the above considered polynomials.
We begin with the inverse series (4.2) with the assumption that γn 6= 0 ∀n, in the form:

1
γn

mn

∑
k=0

(−mn)k(a+ kp+ lkp/m)

(a+ kp)ln+1,p(mn)! k!
Ba

k,m,p(x; l) = xn (6.4)

and multiply the both sides by 1/n! and take the summation n from 0 to ∞, then we
find

∞

∑
n=0

1
n! γn

mn

∑
k=0

(−mn)k(a+ kp+ lkp/m)

(a+ kp)ln+1,p(mn)! k!
Ba

k,m,p(x; l) = ex. (6.5)

Here x may be assigned particular values to get a number of particular sums. Next,
by taking γn = (α1)n,p · · ·(αc)n,p/((β1)n,p · · · (βd)n,p n!) in (6.5), we get a summation
formula involving the p-deformed extended Jacobi polynomials (4.3):

∞

∑
n=0

(β1)n,p · · ·(βd)n,p

(α1)n,p · · ·(αc)n,p

mn

∑
k=0

(−mn)k(a+ kp+ lkp/m)

(a+ kp)ln+1,p(mn)!k!
F

(a)
n,l,m[(α);(β ) : x] = ex.

The p-Brafman polynomials case follows immediately when l = 0.
Now, the summation formula involving the p-deformed extended Konhauser polyno-
mials (4.5) can be obtained from (6.4) by taking l = 0,γn = 1/((p+α)sn,pn!) and
replacing x by xs,s ∈ N. With this, Ba

n,m,p(x;0) = Z(α)
n,m,p(x;s)/(p+α)sn,p yields the

sum:
∞

∑
n=0

(p+α)sn,p

mn

∑
k=0

(−mn)k

(p+α)sk,p(mn)!
Z(α)

k,m,p(x;s) = exs
.

When s = 1, this readily yields the summation formula involving the extended p-
deformed Laguerre polynomials (4.6).
Next assuming |x|< 1, and taking summation n from 0 to ∞ in (6.4), we find

∞

∑
n=0

1
γn

mn

∑
k=0

(−mn)k(a+ kp+ lkp/m)

(a+ kp)ln+1,p(mn)! k!
Ba

k,m,p(x; l) =
1

1− x
.

By assigning different values of x from (−1,1), a number of particular summation for-
mulas can be derived. The summation formulas corresponding to those of p-deformed
extended Jacobi polynomial and the extended p-deformed Konhauser polynomial fol-
low by specializing the parameters suitably. We now derive certain summation for-
mulas involving the extended p-deformed Racah polynomials and the extended p-
deformed Wilson polynomials. From the inverse series (4.8), we obtain the following
formula by multiplying both sides of by p−n, take the summation from n = 0 to ∞,
then in view of the p-Gauss sum (6.2), we get

∞

∑
n=0

(b+d + p)n,p(c+ p)n,p

pn (mn)!

mn

∑
k=0

(−mn)k(a+b+ p+ kp+ lkp/m)

(a+b+ p+ kp)ln+1,p k!
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×Rk,l,m,p(x(x+ c+d + p);a,b,c,d) =
Γp(p+a)Γp(a− c−d)

Γp(a− x− c−d)Γp(p+a+ x)
,

If we multiply both side of (4.8) by (− jp)n,p p−n and then take the summation from
n = 0 to j, then we get

j

∑
n=0

(− jp)n,p(b+d + p)n,p(c+ p)n,p

(x+ c+d + p)n,p pn (mn)!

mn

∑
k=0

(−mn)k(a+b+ p+ kp+ lkp/m)

(a+b+ p+ kp)ln+1,p k!

×Rk,l,m,p(x(x+ c+d + p);a,b,c,d) =
(x+a+ p) j,p

(a+ p) j,p
,

using the p-Chu-Vandermonde identity (6.4). A worth mentioning sum occurs when
x = 0. In this case, Rk,p (0;a,b,c,d) is unity; hence, this summation formula reduces
to

j

∑
n=0

(− jp)n,p(b+d + p)n,p(c+ p)n,p

(x+ c+d + p)n,p pn (mn)!

mn

∑
k=0

(−mn)k(a+b+ p+ kp+ lkp/m)

(a+b+ p+ kp)ln+1,p k!
= 1.

In a similar manner, we may find the summation formulas involving the extended p-
deformed Wilson polynomials. For that we first multiply both sides of (4.10) by p−n,

put a+b+c+d = h, take the summation from n = 0 to ∞ then using the p-Gauss sum
(6.2), we get

∞

∑
n=0

(a+ c)n,p(a+d)n,p

pn (mn)!

mn

∑
k=0

(−mn)k (h− p+ kp+ lkp/m)

(h+ kp− p)ln+1,p

× Wk,l,m,p(x2;a,b,c,d)
(a+b)k,p(a+ c)k,p(a+d)k,p k!

=
Γp(a+b)Γp(b−a)
Γp(b− ix)Γp(b+ ix)

.

Here the substitution x = 0 leads us to

Wk,l,m,p(0;a,b,c,d) = (a+b)k,p(a+ c)k,p(a+d)k,p

×r+2F3((∆p(m;−k),∆p(l;h+ kp− p+ lkp/m),a,a), p,(a+b,a+ c,a+d), p)(mmll),

where r = m+ l and h = a+b+ c+d. Hence, the above sum particularizes to

Γp(a+b)Γp(b−a)
[Γp(b)]2

=
∞

∑
n=0

(a+ c)n,p(a+d)n,p

pn (mn)!

mn

∑
k=0

(−mn)k (h− p+ kp+ lkp/m)

(h+ kp− p)ln+1,p k!

×r+2F3

(
(∆p(m;−k),∆p(l;h+ kp− p+ lkp/m),a,a), p,(a+b,a+ c,a+d), p

)
(mmll)

Now, if both sides of (4.10) are multiplied by by (− jp)n,p p−n, take the summation
from n = 0 to j and use the terminating p-Gauss sum (6.4) to derive

j

∑
n=0

(− jp)n,p(a+ c)n,p(a+d)n,p

(a− ix)n,p pn(mn)!

mn

∑
k=0

(−mn)k (h− p+ kp+ lkp/m)

(h+ kp− p)ln+1,p

× Wk,l,m,p(x2;a,b,c,d)
(a+b)k,p(a+ c)k,p(a+d)k,p k!

=
(b− ix) j,p

(a+b) j,p
.
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7. EXTENSION OF CERTAIN RIORDAN’S INVERSE PAIRS

In this section, we illustrate the reducibility of the inverse pairs obtained in section
3 to some of the Riordan’s inverse pairs [9, Ch. 2] in p-extended form. They are
tabulated below.

Table 1 p-Deformed extension of Riordan’s inverse series

F(n) =
bn/mc

∑
k=0

An,k,p
(n−mk)! G(k) ; G(n) =

mn
∑

k=0
(−1)mn−k Bn,k,p

(mn−k)! F(k)

Inverse λ An,k,p Bn,k,p p-extension of

pair - the class No., Table

No. in [9, Ch.2]

Th 1 l Γp(a+lmk−mkp+p)
Γp(a+lmk−np+p)

a+lkp−kp
a+lmn−kp Gould class 1,

× Γp(a+lmn−kp+p)
Γp(a+lmn−mnp+p) Table 2.2

2 l a+ln−np+p
a+lmk−np+p

Γp(a+lmn−kp+p)
Γp(a+lmn−mnp+p) Gould class 2,

×Γp(a+lmk−mkp+p)
Γp(a+lmk−np+p) Table 2.2

3 p−2 Γp(a+np+2mk−mkp+p)
Γp(a+2mk+p)

a+2k+p
a+2mn−mnp+kp+p Simpler Legendre,

× Γp(a+2mn+p)
Γp(a+2mn−mnp+kp+p) class 1, Table 2.5

4 p−2 a+2n
a+2mk+np−mkp

Γp(a+2mn+p)
Γp(a+2mn−mnp+kp+p) Simpler Legendre,

×Γp(a+2mk+np−mkp+p)
Γp(a+2mk+p) class 2, Table 2.5

4 p− c a+cn
a+cmk+np−mkp

Γp(a+cmn+p)
Γp(a+cmn−mnp+kp+p) Legendre-Chebyshev,

×Γp(a+cmk+np−mkp+p)
Γp(a+cmk+p) class 1, Table 2.6

Th 1 p+ c Γp(a+cmk+p)
Γp(a+cmk−np+mkp+p)

a+ck
a+cmn+mnp−kp Legendre-Chebyshev,

×Γp(a+cmn+mnp−kp+p)
Γp(a+cmn+p) class 3, Table 2.6

3 p− c Γp(a+cmk+np−mkp+p)
Γp(a+cmk+p)

a+ck+p
a+cmn−mnp+kp+p Legendre-Chebyshev,

× Γp(a+cmn+p)
Γp(a+cmn−mnp+kp+p) class 5, Table 2.6

2 p+ c a+cn+p
a+cmk+mkp−np+p

Γp(a+cmn+mnp−kp+p)
Γp(a+cmn+p) Legendre-Chebyshev,

× Γp(a+cmk+p)
Γp(a+cmk−np+mkp+p) class 7, Table 2.6
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Polynomials’ reducibility chart

The extended p-deformed
Wilson polynomials

The extended p-deformed
Racah polynomials

The extended
p-deformed

Continuous Dual
Hahn Polynomial

The extended
p-deformed

Continuous Hahn
Polynomial

The extended
p-deformed

Hahn Polynomial

The extended
p-deformed Dual
Hahn Polynomial

The extended
p-deformed
Meixner-
Pollaczek

polynomial

The extended p-
deformed Jacobi

polynomial

The extended
p-deformed

Meixner
polynomial

The extended
p-deformed
Krawtchouk
polynomial

The extended
p-deformed
Laguerre

polynomial

The extended
p-deformed

Hermite
polynomial

The extended
p-deformed

Charlier
polynomial
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