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A System of p-Polynomials and its q-Analogue

The thesis entitled “A SYSTEM OF p-POLYNOMIALS AND ITS q-ANALOGUE”
carries out the generalization of well known polynomials and their q-versions along
with their inverse series relation in p-deformed sense.
In fact, the p-Gamma function and the Pochhammer p-symbol were introduced by
Diaz and Pariguan [7] as follows.
For z ∈ C, Re(z) > 0 and p > 0,

Γp(z) =
∫ ∞

0
tz−1e−

tp

p dt. (1)

For z ∈ C, p ∈ R and n ∈ N is given by

(z)n,p = z(z + p)(z + 2p) · · · (z + (n− 1)p). (2)

The following properties follow from (2).

Γp(z + p) = zΓp(z), (3)

Γp(p) = 1, (4)

(z)k,p = Γp(z + kp)
Γp(z) . (5)

Diaz at el. [7] also proposed the following generalization of the hypergeometric series
in the form of Pochhammer p-symbol (cf. [17] with p = 1), given by

rFs(a, k, b, l)(x) =
∞∑

n=0

(a1)n,k1(a2)n,k2 · · · (ar)n,kr
(b1)n,l1(b2)n,l2 · · · (bs)n,lsn!x

n, (6)

where a = (a1, a2, · · · , ar) ∈ Cr, k = (k1, k2, · · · , kr) ∈ (R+)r, b = (b1, b2, · · · , bs)
∈ Cs \ (kZ−)s and l = (l1, l2, · · · , ls) ∈ (R+)s. This series converges for all x if r ≤ s,
and diverges if r > s+1, x 6= 0. If r = s+1, then the series converges for |x| < l1l2···ls

k1k2···kr .
It also satisfies the differential equation [7]:

[D (l1D + b1 − l1) (l2D + b2 − l2) · · · (lsD + bs − ls)
− x (k1D + a1) (k2D + a2) · · · (krD + ar)]y = 0, (7)

where D = x
d

dx
. For p > 0, a ∈ C and |x| < 1

p
, Diaz at el. [7] showed that

∞∑

n=0

(a)n,p
n! xn = (1− px)−

a
p . (8)

This may be regarded as the p-deformed binomial series.
In addition to this, Rafael Díaz and Carolina Teruel [8] defined a q-analogues for
p > 0 in the form:

Γq,p(z) = (qp; q)∞,p(1− q)1−z/p

(qz; q)∞,p
, z > 0, (9)

(z; q)n,p = (1− qz)(1− qz+p)(1− qz+2p) · · · (1− qz+(n−1)p), z ∈ R, n ∈ Z+, (10)

where
(qα; q)∞,p =

∞∏

n=0
(1− qα+np), |q| < 1
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A System of p-Polynomials and its q-Analogue

and

(a; q)n,p =





1, if n = 0
(1− a)(1− aqp) · · · (1− aqp(n−1)), if n ∈ Z>0

[(1− aq−p)(1− aq−2p) · · · (1− aqnp)]−1
, if n ∈ Z<0

(a; q)∞,p/(aqnp; q)∞,p if n ∈ C.

.

From this, it follows that

Γq,p(p) = 1, (11)

(a; q)n,p = Γq,p(a+ np)
Γq,p(a) , n ∈ N, (12)

(a; q)n,p = (a; q)∞,p
(aqpn; q)∞,p

, n ∈ C. (13)

Having motivated by this introduction, certain polynomials systems are provided p-
deformation in this work, in particular, the p-deformed Gould’s generalized Humbert
polynomials class : {Pn(m,x, y, p, C);n = 0, 1, 2, . . .} [11, Eq.5.11, p.707] is defined
by

Pn,p(m,x, γ, s, c) =
bn/mc∑

k=0

γkcs−n+mk−k

(s+ p)−n+mk−k,p(n−mk)! k! (−mx)n−mk, (14)

in which the floor function brc = floor r, represents the greatest integer ≤ r and
γ, s, c ∈ C, m ∈ N, x ∈ R, n ∈ N ∪ {0} and p > 0.
The p-deformed Wilson polynomials [9] is defined as

Wn,p(x2; a, b, c, d) = (a+ b)n,p(a+ c)n,p(a+ d)n,p

×
n∑

k=0

(−n)k(a+ b+ c+ d+ np− p)k,p(a+ ix)k,p(a− ix)k,p
(a+ b)k,p(a+ c)k,p(a+ d)k,pk! (15)

and the p-Racah polynomials [9] in the form:

Rn,p (x(x+ c+ d+ p); a, b, c, d)

=
n∑

k=0

(−n)k(a+ b+ np+ p)k,p(x+ c+ d+ p)k,p(−x)k,p
(p+ a)k,p(b+ d+ p)k,p(c+ p)k,pk! . (16)

These polynomials contain as their special cases, a number of particular polynomi-
als; in fact, the polynomial (14) includes p-deformed Humbert polynomials (cf. [12]
with p = 1), the p-deformed Kinney polynomial, p-deformed Pincherle polynomial,
p-deformed Gegenbauer polynomial and the p-deformed Legendre polynomial (cf. [11]
with p = 1). On the other hand, (15) and (16) provide p-extension to the polynomi-
als of Hahn, continuous Hahn, Dual Hahn, continuous dual Hahn, Meixner-Pollaczek,
Krawtchouk, Jacobi etc.

The work incorporates the inverse series relation of these general classes of poly-
nomials and towards the application of the inverse series relation, the generating
function relations and the summation formulas are derived. Besides this, the differ-
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ential equation, companion matrix representations are also obtained.

Definition 1. If a polynomial f(x) ∈ C[X] and f(x) = δ0 + δ1x + δ2x
2 + · · · +

δ
k−1x

k−1 + xk then the k × k matrix, called the companion matrix of f(x) is denoted
and defined by [15, p. 39]

C(f(x)) =




0 1 0 . . . 0
0 0 1 . . . 0
... ... ... ...
0 0 0 . . . 1
−δ0 −δ1 −δ2 . . . −δ

k−1




.

Lemma 1. If f ∈ K[x] is non constant and A = C(f(x)) then f(A) = 0.

The thesis also deals with the q-analogues of the aforementioned polynomials and
their properties.
Chapter 1 introduces the subject matter and enlists certain definitions, notations, for-
mulae and results. The Riordan’s classification of inverse series relations [18, Chapter-
2] are tabulated including their basic analogues [3, 5].
A q-analogue of the function (6) is defined by taking k1 = k2 = . . . = kr = l1 = l2 =
. . . = ls = p ∈ R+, as follows:

Definition 2. If (a) stands for the array of r parameters a1, a2, · · · , ar ∈ Cr, (b)
stands for the array of s parameters b1, b2, · · · , bs ∈ Cs \ (Z−)s, p, α ∈ R+ and
|q| < 1 then

rφs((a); (b) ; qp)(x|q, qα)

=
∞∑

n=0

(a1; q)n,p(a2; q)n,p · · · (ar; q)n,p
(b1; q)n,p(b2; q)n,p · · · (bs; q)n,p(qα; qα)n

(
(−1)nqα(

n
2)
)1+s−r

xn. (17)

From d’ Alembert’s ratio test, it follows that the series converges for all x if r ≤ s,

and it diverges when r > s+ 1 and x 6= 0. If r = s+ 1, then it converges for |x| < 1.
In chapter 2, the general inversion theorems are proved. They are stated below.

Theorem 2. If a = n ∈ N ∪ {0} and b = −m, m ∈ N, then n∗ = bn/mc, and there
hold the series relations

u(n) =
n∗∑

k=0

γk

Γp(p+ α− ar +mrk − kp)k! v(n−mk) (18)

⇔

v(n) =
n∗∑

k=0

(−γ)k(α− ar +mrk)Γp(α− ar + kp)
k! . u(n−mk) (19)

Theorem 3. If {u(∗)} and {v(∗)} are bounded sequences, a = n ∈ N ∪ {0} and
b ∈ N, then there hold the series relations

u(n) =
∞∑

k=0

γk

Γp(p+ α− ar − brk − kp)k! v(n+ bk) (20)
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⇔
v(n) =

∞∑

k=0

(−γ)k(α− ar − brk)Γp(α− ar + kp)
k! u(n+ bk). (21)

Theorem - 2 yields the following inverse of the p-polynomials (14), (15) and (16).

(−mx)n
n! xn =

bn/mc∑

k=0
(−γ)kcn−k−s (s− np+mkp)

(s− np+ kp)Γp(s+ p)k!
×Γp(s− np+ kp+ p)Pn−mk,p(m,x, γ, s, c),

(22)
(a+ ix)n,p(a− ix)n,p

(a+ b)n,p(a+ c)n,p(a+ d)n,p
=

n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p

× Wk,p(x2; a, b, c, d)
(a+ b)k,p(a+ c)k,p(a+ d)k,p k! , (23)

and
(x+ c+ d+ p)n,p(−x)n,p

(p+ a)n,p(b+ d+ p)n,p(c+ p)n,p
=

n∑

k=0

(−n)k (a+ b+ 2kp+ p)
(a+ b+ kp+ p)n+1,pk!

×Rk,p (x(x+ c+ d+ p); a, b, c, d) , (24)

respectively. Theorem - 3 yields the p-Bessel function [20, Eq. (3.1)]

Jn,p(x) =
∞∑

k=0

(−1)k
Γp(p+ np+ kp)k!

(
x

2

)n+2k
(25)

and its inverse series as the deformed Neumann’s expansion:
(
x

2

)n
=
∞∑

k=0

(np+ 2pk)Γp(np+ kp)
k! Jn+2k,p(x).

The usual Neumann’s expansion occurs if p = 1 [17, Ex.22, p. 122].
Theorem - 2 and Theorem - 3 on the other hand, provide p-deformation to Riordan’s
classes of inverse series relations.
Among the generating functions derived for these polynomials, the one is stated below.

∞∑

n=0
Pn,p(m,x, γ, s, c)tn = c(1−1/p)s (c+ γptm − pmxt)s/p . (26)

The summation formulas occurring from the inverse series are also derived. For
instance, taking x = 0 in Wilson polynomials, one finds the sum:

∞∑

n=0

(a+ c)n,p(a+ d)n,p
pn n!

n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p k!

×4F 3((−k, a+ b+ c+ d+ k − 1, a, a), p, (a+ b, a+ c, a+ d), p)(1)

= Γp(a+ b)Γp(b− a)
[Γp(b)]2

.

The following is the differential equation satisfied by polynomial y = Pn,p(m,x, γ, s, c).

Theorem 4. Let s ∈ C, p > 0 andm ∈ N. Then the polynomials y = Pn,p(m,x, γ, s, c)
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are a particular solution of the mth order differential equation in the form

γcm−1y(m) +
m∑

r=0
arx

ry(r) = 0, (27)

where ar = mm−1∆rf0

r! .

In chapter 3, the q-analogues of the aforementioned polynomials are defined. the
basic analogue of (14) as

Definition 3. For n ∈ N ∪ {0},m ∈ N, r, s, c ∈ C, p > 0,

Pn,p,r(m,x, γ, s, c|q) =
bn/mc∑

k=0
γk

(qs−nr+mrk−kp+p; q)∞,p(1− qc)s−n+mk−k

(qs−nr+mkr+p; q)∞,p(q; q)n−mk

× (1− q)k−s
(qmr−p; qmr−p)k

((qm − 1)x)n−mk . (28)

We shall call this polynomials as the p-deformed generalized q-Humbert polyno-
mials. It extends the p-version of the q-Humbert polynomials, the q-Kinney polyno-
mial, q-Pincherle polynomial, q-Gegenbauer polynomial and q-Legendre polynomial
together with their inverse series relation. The inverse series of these polynomials
(28) are then obtained from

Theorem 5. If p > 0, 0 < q < 1, α, r ∈ C and a ∈ N, then

F (a) =
N∑

k=0
γk

(qp+α−ar−brk−kp; q)∞,p
(q3; q3)k

G(a+ bk) (29)

⇔

G(a) =
N∑

k=0
(−γ)k qk(k−1)/2

3
(1− qα−ar−brk)

(qα−ar+kp; q)∞,p(q3; q3)k
F (a+ bk), (30)

where q3 = q−br−p, br 6= −p.

For br = −p, the following theorem holds.

Theorem 6. if p > 0, 0 < q < 1, α, r ∈ C, a ∈ N and then

F (a) =
N∑

k=0
γk

(qp+α−ar; q)∞,p
(q; q)k

G(a+ bk) (31)

⇔

G(a) =
N∑

k=0
(−γ)kqk(k−1)/2 F (a+ bk)

(qp+α−ar+kp; q)∞,p(q; q)k
, (32)

where N in both theorems, may be a positive integer or infinity; depending on
whether b is a negative integer or a positive integer. For the polynomials’ inverse
series, N must be a positive integer; for that b must be a negative integer and a a
non negative integer.
The inverse series of (28) occurs from this theorem in the form:

(qm − 1)n
(1− qc)n(q; q)n

xn =
bn/mc∑

k=0
(−γ)k

(
1− q
1− qc

)s+k
q(mr−p)k(k−1)/2

5



A System of p-Polynomials and its q-Analogue

×(1− qs−nr+mrk)
(qs−nr+kp; q)∞,p

(qs−nr+p; q)∞,p
(qmr−p; qmr−p)k

Pn−mk,p,r(m,x, γ, s, c|q). (33)

Besides this, the q-analogues of Wilson polynomials and Racah polynomials are also
obtained from this theorem, along with their inverse series relations as given below.

an pn,p,r(cosθ; a, b, c, d|q)
(ab; q)n,p(ac; q)n,p(ad; q)n,p

=
n∑

k=0
qkr−kp

(q−n(r−p); qr−p)k(abcdqnp−p; q) kr
p
−k,p(aeiθ; q)k,p(ae−iθ; q)k,p

(ab; q)k,p(ac; q)k,p(ad; q)k,p(qr−p; qr−p)k
(34)

⇔
(aeiθ; q)n,p(ae−iθ; q)n,p

(ab; q)n,p(ac; q)n,p(ad; q)n,p
=

n∑

k=0
qnkr−nkp

(1− abcdq−p+kr)
(abcdqkp−p; q)nr

p
−n+1,p

× (q−n(r−p); qr−p)k
(ab; q)k,p(ac; q)k,p(ad; q)k,p(qr−p; qr−p)k ak

pk,p,r(cosθ; a, b, c, d|q), (35)

and with q−x + cdqx+p = µ(x),

Rn,p,r(µ(x); a, b, c, N |q) =
n∑

k=0
qkr−kp

(q−n(r−p); qr−p)k(abqnp+p; q) kr
p
−k,p

(aqp; q)k,p(bdqp; q)k,p(cqp; q)k,p

×(q−x; q)k,p(cdqx+p; q)k,p
(qr−p; qr−p)k

(36)

⇔
(q−x; q)n,p(cdqx+p; q)n,p

(aqp; q)n,p(bdqp; q)n,p(cqp; q)n,p
=

n∑

k=0

qnkr−nkp(1− abqp+kr)(q−n(r−p); qr−p)k
(abqkp+p; q)nr

p
−n+1,p(qr−p; qr−p)k

×Rk,p,r(µ(x); a, b, c, N |q). (37)

The particular polynomials belonging to the above polynomials are the p-deformed q-
Hahn polynomial, p-deformed little as well as big q-Jacobi polynomials, p-deformed q-
Gegenbauer polynomial, p-deformed q-Legendre polynomial, p-deformed q-Chebyshev
polynomial together their inverse series relation.
The above theorem also provides extension to the generalized Bessel function due to
Mansour Mahmoud [14] to p-deformed extended q-Bessel function together with its
q, p-Neumann’s expansion as its inverse, in the form:

Jn,p,r(x; a, q) = 1
(qp; q)n,p

∞∑

k=0

(−1)(a+1)kqak(n+k)/2

(qp−nr; q)− 2rk
p
−k,p(q−2r−p; q−2r−p)k

(
x

2

)n+2k

⇔(
x

2

)n
=

∞∑

k=0
(−1)akq(−2r−p)(k2)qak(n+k)/2 (1− q−nr−2rk)(qp; q)∞,p

(q−nr+kp; q)∞,p(q−2r−p; q−2r−p)k
×Jn+2k,p,r(x; a, q).

The inverse series may be used to derive certain summation formulas. For example,
there follows the sum:

∞∑

n=0

(1− qc)n
(qm − 1)n

bn/mc∑

k=0
(−γ)k

(
1− q
1− qc

)s+k
q(mr−p)k(k−1)/2

(qs−np+kp; q)∞,p

6
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×(1− qs−nr+mrk)(qs−nr+p; q)∞,p
(qmr−p; qmr−p)k

Pn−mk,p,r(m,x, γ, s, c|q) = eq(x),

and the sum:
j∑

n=0

(q−jp; q)n,p(bdqp; q)n,p(cqp; q)n,p
(cdqx+p; q)n,p(qp; q)n,p

(axqjp+p)n
n∑

k=0

qnk(r−p)(1− abqp+kr)
(abqkp+p; q)nr

p
−n+1,p

×(q−n(r−p); qr−p)k
(qr−p; qr−p)k

Rk,p,r(q−x + cdqx+p; a, b, c, N |q) =
(aqx+p; q)j,p
(aqp; q)j,p

.

Finally, the companion matrix of the generalized polynomial is obtained by taking
bn/mc = N in (28) and converting it to the monic form:

P̃n,p(m,x, γ, s, c|q) =
N∑

k=0
δk x

n−mk,

where

δk = γk
(qmr−p; qmr−p)n(qs−nr+mrk−kp+p; q)∞,p(1− qc)mk−k(1− q)k

(qs−nr+mrk+p; q)∞,p(qmr−p; qmr−p)n−mk(qmr−p; qmr−p)k
(qm − 1)−mk .

With this δk, C
(
P̃n,p(m,x, γ, s, c|q)

)
assumes the form as stated in definition of com-

panion matrix. The eigen values of this matrix will be the zeros of P̃n,p(m,x, γ, s, c|q),
(see [15, p. 39]).
The subject matter of Chapter 4 is to provide extension to the p-deformed Wilson
polynomials (15) and the p-deformed Racah polynomials (16) of chapter 2 by consid-
ering the degree bn/mc in stead of n. For that the following inversion theorem [21]
is proved.

Theorem 7. For λ ∈ C, α ∈ C, n ∈ N ∪ {0}, m ∈ N and p > 0,

F (n) =
bn/mc∑

k=0
(−1)mk 1

Γp(α +mkλ+ p− np)(n−mk)!G(k) (38)

⇒
G(n) =

mn∑

k=0
(−1)k (α + kλ− kp)Γp(α +mnλ− kp)

(mn− k)! F (k) (39)

and conversely, the series in (39) implies the series (38) if for n 6= mr, r ∈ N,
n∑

k=0
(−1)k (α + kλ− kp)Γp(α + nλ− kp)

(n− k)! F (k) = 0. (40)

Using this theorem, the Wilson polynomial and the Racah polynomial assume
extension in the form along with their inverse series relations, as given below.

Wn,l,m,p(x2; a, b, c, d)
(a+ b)n,p(a+ c)n,p(a+ d)n,p

=
bn/mc∑

k=0

(−n)mk(a+ b+ c+ d+ np− p)lk,p
(a+ b)k,p(a+ c)k,p

×(a+ ix)k,p(a− ix)k,p
(a+ d)k,pk! (41)

⇔
(a+ ix)n,p(a− ix)n,p(mn)!

(a+ b)n,p(a+ c)n,p(a+ d)n,pn! =
mn∑

k=0

(−mn)k(a+ b+ c+ d− p+ kp+ lkp/m)
(a+ b+ c+ d− p+ kp)ln+1,p

7
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× Wk,l,m,p(x2; a, b, c, d)
(a+ b)k,p(a+ c)k,p(a+ d)k,p k! . (42)

Rn,l,m,p(x(x+ c+ d+ p); a, b, c, d) =
bn/mc∑

k=0

(−n)mk (a+ b+ np+ p)lk,p (−x)k,p
(a+ p)k,p (b+ d+ p)k,p

,

×(x+ c+ d+ p)k,p
(c+ p)k,p k! (43)

⇔
(−x)n,p(x+ c+ d+ p)n,p(mn)!

(a+ p)n,p(b+ d+ p)n,p(c+ p)n,p n! =
mn∑

k=0

(−mn)k(a+ b+ p+ kp+ lkp/m)
(a+ b+ p+ kp)ln+1,pk!

×Rk,l,m,p(x(x+ c+ d+ p); a, b, c, d). (44)

In addition to this, the above theorem is used to define a general class of polynomials

Definition 4. For a, l ∈ C, m ∈ N, n ∈ N ∪ {0} and p > 0,

Ban,m,p(x; l) =
bn/mc∑

k=0
(−n)mk(a+ np)lk,pγkxk (45)

in which the floor function brc = floor r, represents the greatest integer ≤ r.

The theorem also yields its inverse series:

γnx
n =

mn∑

k=0

(−mn)k (a+ kp+ lkp/m)
(a+ kp)ln+1,p (mn)! k! Bak,m,p(x; l) (46)

along with its particular cases like the p-deformed extended Jacobi polynomial and
its inverse series as stated by

F (a)
n,l,m,p[(α); (β) : x] =

bn/mc∑

k=0

(−n)mk(a+ np)lk,p(α1)k,p · · · (αc)k,p
(β1)k,p · · · (βd)k,p k! xk (47)

⇔
(α1)n,p · · · (αc)n,p (mn)!

(β1)n,p · · · (βd)n,p n! xn =
mn∑

k=0

(−mn)k(a+ kp+ lkp/m)
(a+ kp)ln+1,pk! F (a)

k,l,m,p[(α); (β) : x], (48)

in which the substitution l = 0 yields the p-deformed Brafman polynomial and its
inverse series relation. Also, the generalized p-deformed extended Jacobi polynomial
and its inverse series may be deduced in the form:

P
(α,β)
n,l,m (x) = (1 + α)n

n!

bn/mc∑

k=0

(−n)mk(α + β + n+ 1)lk
(1 + α)k k!

(1− x
2

)k
(49)

⇔
(1− x)n

(1 + α)n2nn! =
mn∑

k=0

(−mn)k(α + β + kp+ lkp/m+ 1)
(α + β + kp+ 1)ln+1,p(mn)!k! P

(α,β)
k,l,m (x), (50)

the extended p-deformed Konhauser polynomial and its inverse series relation as
stated by

Z(α)
n,m,p(x; s) = (p+ α)sn,p

n!

bn/mc∑

k=0

(−n)mk
(p+ α)sk,p k! x

sk, (51)

⇔

8
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xsn =
mn∑

k=0

(−1)k(p+ α)sn,p n!
(p+ α)sk,p (mn− k)! Z

(α)
k,m,p(x; s). (52)

In this last inverse pair, taking l = 1, readily yields the extended p-deformed Laguerre
polynomial(cf. [17, p. 201, 207]) and its inverse series.

Next, we show that, for l ∈ N, p-polynomial (47) which satisfies differential equa-
tion

[
D

d∏

g=1
(pD + βg − p)− x

m∏

i=1

l∏

j=1

c∏

h=1

{
(mD − n+ i− 1) (lpD + e+ np+ jp− p)

×(pD + αh)
} ]

y = 0. (53)

In which l = 0 yields the differential equation having one solution as the p-deformed
Brafman polynomial. Additionally, the differential equation satisfied by (51) is de-
rived in the form of


D





l∏

j=1
(lpD + α + jp− lp)



− x

l
m∏

i=1
(mD − n+ i− 1)


 y = 0.

Taking l = 1, this reduces to the differential equation satisfied by the extended p-
deformed Laguerre polynomial.

Next, the generating function relation(GFR) of the extended p-deformed Wilson
polynomials occurs from (41) which is given by

∞∑

n=0

(a+ b+ c+ d− p)n,p
(a+ b)n,p(a+ c)n,p(a+ d)n,pn! Wn,l,m,p(x2; a, b, c, d) tn

= (1− tp)
−a−b−c−d+p

p
Γp(a+ b)Γp(a+ c)Γp(a+ d)

Γp(a+ b+ c+ d− p)Γp(a+ ix)Γp(a− ix)

×3Ψp
3




(a+ b+ c+ d− p,mp+ lp), (a+ ix, p), (a− ix, p); (−t)m
(1− tp)m+l

(a+ b, p), (a+ c, p), (a+ d, p);


 ,

in which we have used the generalized p-Write function due to K. Gehlot et al. [10].
If l ∈ N⋃{0}, then this reduces to

∞∑

n=0

(a+ b+ c+ d− p)n,p
(a+ b)n,p(a+ c)n,p(a+ d)n,pn! Wn,l,m,p(x2; a, b, c, d)tn

= (1− tp)
−a−b−c−d+p

p

×m+l+2F3 ((4p (m+ l, a+ b+ c+ d− p) , a+ ix, a− ix) , p,

(a+ b, a+ c, a+ d) , p)
(

(m+ l)m+l(−t)m
(1− tp)m+l

)
,

wherein m+ l = 1, 2 for convergence.
In a similar manner, the GFR of the extended p-deformed Racah polynomials may be
deduced. The following is the generating function relation of (45).

∞∑

n=0

(a)n,p
n! Ban,m,p(x; l) tn = (1− tp)−a

p

∞∑

k=0
(a)mk+lk,pγk

(
x(−t)m

(1− tp)m+l

)k
. (54)

9
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This gives the generating function relation of the p-deformed extended Jacobi poly-
nomial, p-deformed Brafman polynomial, extended Konhauser polynomial and that
of the Laguerre polynomial.
From the inverse series of the main theorem, certain summation formulas involving
the extended p-deformed Wilson polynomials, Racah polynomials etc. are derived.
One such sum is stated below. Taking x = 0 in the extended Racah polynomials, it
is found that Rk,p (0(c+ d+ p); a, b, c, d) = 1 hence, the summation formula occurs in
the form:

j∑

n=0

(−jp)n,p(b+ d+ p)n,p(c+ p)n,p
(x+ c+ d+ p)n,p pn (mn)!

mn∑

k=0

(−mn)k(a+ b+ p+ kp+ lkp/m)
(a+ b+ p+ kp)ln+1,p k! = 1.

also, the summation formulas involving (45) and its particular cases may be deduced
with the help of their inverse series relations. This is stated as

∞∑

n=0

1
n! γn

mn∑

k=0

(−mn)k(a+ kp+ lkp/m)
(a+ kp)ln+1,p(mn)! k! Bak,m,p(x; l) = ex. (55)

Further, assuming |x| < 1, it can be proved that
∞∑

n=0

1
γn

mn∑

k=0

(−mn)k(a+ kp+ lkp/m)
(a+ kp)ln+1,p(mn)! k! B

a
k,m,p(x; l) = 1

1− x.

By assigning different values to x from (−1, 1), a number of particular summation
formulas can be derived.
The objective of chapter 5 is to provide q-analogue to the general class of polynomial
(45) of Chapter 4 and its inverse series relation (46) by establishing a general q-
inversion pair. The q-analogue of (45) [19] is defined as follows.

Definition 5. For a ∈ C, m ∈ N, n ∈ N ∪ {0}, 0 < q < 1 and p > 0,

Ban,m,p(x|q; l) =
bn/mc∑

k=0
qkl(q−nl/m; ql/m)mk(qa+np; q) kl

p
,p γkx

k, (56)

in which l = r−m, r ∈ C \ {m}, and the floor function buc = floor u, represents the
greatest integer ≤ u.

This general class extends the q-extended Jacobi polynomials [4, Eq. (3.8)] and
hence the q-Brafman polynomials and the little q-Jacobi polynomials [13, Eq.(3.12.1,
p. 92)] (also [9, Ex. 1.32, p. 27]). As a limiting case, this general class also extends the
q-Konhauser polynomials [1, Eq. (3.1), p. 3] and thereby the q-Laguerre polynomials
[16].
The q-inversion theorem [19] is proved in the following form.

Theorem 8. 0 < q < 1, λ ∈ C \ {0}, α ∈ C, n ∈ N ∪ {0}, m ∈ N and p > 0,

F (n) =
bn/mc∑

k=0
(−1)mkqmkλ(mk−2n+1)/2 (qα+mkλ+p−np; q)∞,p

(qλ; qλ)n−mk
G(k) (57)

⇒

10
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G(n) =
mn∑

k=0
(−1)kqkλ(k−1)/2 (1− qα+kλ−kp)

(qλ; qλ)mn−k(qα+mnλ−kp; q)∞,p
F (k) (58)

and conversely, the series in (58) implies the series (57) if for n 6= mr, r ∈ N,
n∑

k=0
(−1)kqkλ(k−1)/2 (1− qα+kλ−kp)

(qλ; qλ)n−k(qα+nλ−kp; q)∞,p
F (k) = 0. (59)

This theorem besides the aforementioned polynomials, also invert the Askey-
Wilson polynomials [13, Eq.(3.1.1), p. 63] (also [9, Ex. 2.11, p.51]) and the q-Racah
polynomials [13, Eq.(3.2.1), p. 66] (also [9, Ex. 2.10, p. 51]).
The inverse series of these polynomials are deduced from this theorem which are
stated below, in the same order.

γnx
n =

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)
(qa+kp; q) ln

p
+1,p(ql/m; ql/m)mn(ql/m; ql/m)k

Bak,m,p(x|q; l), (60)

pn,l,m,p(cosθ; a, b, c, d|q)an
(ab; q)n,p(ac; q)n,p(ad; q)n,p

=
bn/mc∑

k=0
qkl

(q−n(l/m); ql/m)mk
(ql/m; ql/m)k

×(abcdqnp−p; q)kl/p,p (aeiθ; q)k,p (ae−iθ; q)k,p
(ab; q)k,p(ac; q)k,p(ad; q)k,p

(61)

⇔
(aeiθ; q)n,p(ae−iθ; q)n,p

(ab; q)n,p(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n
=

mn∑

k=0
qnkl

(q−mn(l/m); ql/m)k
(ql/m; ql/m)k

× (1− abcdqkL+kp−p) ak p
k,l,m,p

(cosθ; a, b, c, d|q)
(abcdqkp−p; q) ln

p
+1,p(ab; q)k,p(ac; q)k,p(ad; q)k,p(ql/m; ql/m)mn

, (62)

Rn,m,p,l(q−x + cdqx+1; a, b, c, d|q) =
bn/mc∑

k=0
qkl

(q−n(l/m); ql/m)mk
(ql/m; ql/m)k

×
(abqnp+p; q) kl

p
,p(q−x; q)k,p(cdqx+p; q)k,p

(aqp; q)k,p(bdqp; q)k,p(cqp; q)k,p
(63)

⇔
(q−x; q)n,p(cdqx+p; q)n,p

(aqp; q)n,p(bdqp; q)n,p(cqp; q)n,p(ql/m; ql/m)n
=

mn∑

k=0
qnkl

(q−mn(l/m); ql/m)k
(ql/m; ql/m)k

× (1− abqkL+kp+p)
(abqkp+p; q)ln/p+1,p(ql/m; ql/m)mn

Rk,m,p,l(q−x + cdqx+1; a, b, c, d|q). (64)

These p-deformed q-polynomials provide p-extension to a number of particular q-
polynomials (see [13, p. 61, 62] for complete reducibility chart and [13, Ch. 3]).
They include among several polynomials the q-Hahn, dual q-Hahn, continuous q-
Hahn, continuous dual q-Hahn, q-Meixner-Pollaczek, q-Meixner, q-Krawtchouk and
q-Charlier polynomials together with their inverse series relations.
Now for p > 0, define the difference operator θq,pf(x) = f(x)− f(xqp), such that

θq,pf(x)
(1− q)x = Dq,pf(x), (|q| < 1) (65)

would give a p-deformed q-derivative of f(x) in which p = 1 yields the θ-form q-

11
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derivative of f(x)(cf. [9, Ex.1.12, p.22] with p = 1). In this notations, the q, p-
differential equation of the extended q, p-Jacobi polynomial is given by


(1− r)xDr

{
d∏

v=1
((1− q)xDq,p + qp−βv − 1)

}
− xqpl

m∏

i=1

m∏

j=1

l∏

s=1

l∏

t=1

c∏

u=1

d∏

v=1

{
r(i−1−n)/m

×qαu−βv+p+(e+p(n+s−1))/lwj−1νt−1((1− r)xDr + r−(i−1−n)/mw1−j − 1)

×(x(1− q)Dq,p + q−(e+p(n+s−1))/lν1−t − 1)((1− q)xDq,p + q−αu − 1)
}
y = 0, (66)

where qpl/m = r, w is mth root of unity and ν is lth root of unity. From this, the
differential equations for p-deformed q-Brafman polynomials, p-deformed q-Konhauser
polynomial and p-deformed q-Laguerre polynomial can be obtained.
Now, using the first series in general inversion theorem, GFR for the general class of
q-polynomials (56) is obtained in the form:

∞∑

n=0
qln(n−1)/2m(a; q)n,p

F (n)
(ql/m; ql/m)n

tn

=
∞∑

n=0

∞∑

k=0
(−1)mkqln(n−1)/2m

(a; q)n+mk+ kl
p
,p

(ql/m; ql/m)n
G(k) tn+mk. (67)

From this, the GFR of Ban,m,p(x|q; l) occurs as follows.
∞∑

n=0
qln(n−1)/2m (a; q)n,p

(ql/m; ql/m)n
Ban,m,p(x|q; l) tn

=
∞∑

k=0
(−1)mk(a; q)mk+ kl

p
,p 1φ1

(
aqmkp+kl; 0; p

)
(t
∣∣∣q, ql/m) γk ((−t)mx)k . (68)

This contains the GFR of F (e)
n,m,p,l[(α); (β) : x|q], pn,m,p,l(x; a, b; q), etc. The GFRs of

the polynomials (61) and (63) from the general GFR (67) are obtained as follows.
∞∑

n=0
qln(n−1)/2m(abcdq−p; q)n,p

pn,l,m,p(cosθ; a, b, c, d|q)an
(ab; q)n,p(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n

tn

=
∞∑

k=0

(abcdq−p; q)mk+ kl
p
,p(aeiθ; q)k,p(ae−iθ; q)k,p

(ab; q)k,p(ac; q)k,p(ad; q)k,p(ql/m; ql/m)k
× 1φ1

(
abcdqmkp+kl−p; 0; p

)
(t|q, ql/m)(−t)mk,

∞∑

n=0
qln(n−1)/2m (abqp; q)n,p

(ql/m; ql/m)n
Rn,m,p,l(q−x + cdqx+1; a, b, c, d|q) tn

=
∞∑

k=0

(q−x; q)k,p(cdqx+p; q)k,p(abqp; q)mk+ kl
p
,p

(aqp; q)k,p(bdqp; q)k,p(cqp; q)k,p(ql/m; ql/m)k
× 1φ1

(
abqp+mkp+kl; 0; p

)
(t|q, ql/m) (−t)mk.

Next, the use of the inverse series of the theorem and in particular, the inverse series
(60) of the general class (56), is used to deduce certain summation formulas with the

12
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assumption that γn 6= 0,∀n = 0, 1, 2, . . .. Thus, from
1
γn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)
(qa+kp; q) ln

p
+1,p(ql/m; ql/m)mn(ql/m; ql/m)k

Bak,m,p(x|q; l) = xn, (69)

on multiplying both sides by (a; q)n/(q; q)n and taking the summation from n = 0 to
∞ and then using the q-Binomial theorem [9] with |x| < 1, one finds the sum:
∞∑

n=0

(a; q)n
(q; q)nγn

mn∑

k=0

qnkl(q−mn(l/m); ql/m)k(1− qa+k(l/m)+kp)
(qa+kp; q) ln

p
+1,p(ql/m; ql/m)mn(ql/m; ql/m)k

Bak,m,p(x|q; l) = (ax; q)∞
(x; q)∞

.

Next, in the inverse series (62), using the q-sum

2φ1

(
a, b; c; qp, c

ab

)
=

(c/a; q)∞,p (c/b; q)∞,p
(c; q)∞,p (c/ab; q)∞,p

, (70)

one arrives at the summation formula:
∞∑

n=0

(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n
(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abcdqkL+kp−p)
(abcdqkp−p; q) ln

p
+1,p(ab; q)k,p(ac; q)k,p

× akpk,l,m,p(cosθ; a, b, c, d|q)
(ad; q)k,p(ql/m; ql/m)mn(ql/m; ql/m)k

qn(b−a−2cosθ) =

(
be−iθ; q

)
∞,p

(
beiθ; q

)
∞,p

(ab; q)∞,p (qb−a−2cosθ; q)∞,p
.

In a similar manner, the summation formula from the inverse series inverse series (64)
can be obtained. We multiply both sides of (62) by

(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n
(ae−iθ; q)n,p(qp; q)n,p

,

taking the sum from n = 0 to j and then using the sum:

2φ1

(
q−np, b; c; qp, cq

np

b

)
=

(c/b; q)n,p
(c; q)n,p

. (71)

on the right hand side, we obtain
j∑

n=0

(ac; q)n,p(ad; q)n,p(ql/m; ql/m)n
(ae−iθ; q)n,p(qp; q)n,p

mn∑

k=0

qnkl(q−ln; ql/m)k(1− abcdqkL+kp−p)
(abcdqkp−p; q) ln

p
+1,p(ab; q)k,p(ac; q)k,p

× akpk,l,m,p(cosθ; a, b, c, d|q)
(ad; q)k,p(ql/m; ql/m)mn(ql/m; ql/m)k

(q−jp; q)n,p(qjpbe−iθ)n =

(
be−iθ; q

)
j,p

(ab; q)j,p
.

In chapter 6, general class of polynomials

Sn(l,m, α, β : x) =
bn/mc∑

k=0

(−1)mk λk
Γ(1 + β − nα + lk)(n−mk)! x

k, (72)

due Dalbhide and Dave [2], is extended in the light of p-Gamma function and p-
Pochhammer symbol and derive its inverse series relation along with particular cases
with the help of general inversion pair. The p-deformation of polynomial (72) [20] is
define as follows
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Definition 6. For 0 ≤ α ≤ 1, β ∈ C, m ∈ N, n, l = mα ∈ {0} ∪ N and p > 0,

Sn,p(l,m, α, β : x) =
bn/mc∑

k=0

(−1)mk λk xk
Γp(p+ β − pnα + plk)(n−mk)! , (73)

in which the floor function brc = floor r, represents the greatest integer ≤ r.

This polynomial contains the p-deformed extended Jacobi polynomial:

H(α,β)
n,l,m,p[(α); (β) : x] =

bn/mc∑

k=0

(−n)mk(α1)k,p · · · (αc)k,p
(β + p− pnα)lk,p(β1)k,p · · · (βd)k,p k! x

k. (74)

When l = 0, then it reduces to the p-deformed Brafman polynomial. Also, the
extended p-deformed Konhauser polynomial: Z(α)

n (x; l) and its evident case l = 1
yields the extended p-deformed Laguerre polynomial.
A general inversion pair is proved as

Theorem 9. Let 0 ≤ α ≤ 1, n ∈ N ∪ {0}, m ∈ N such that αm is a non negative
integer and β ∈ C \ {0}, then

G(n) =
bn/mc∑

k=0

1
Γp(β + pmkα− pnα + p)(n−mk)! F (k) (75)

⇒
F (n) =

nm∑

k=0

(−1)mn−k β Γp(β + pmnα− pkα)
(mn− k)! G(k), (76)

and conversely, the series in (76) implies the series (75) if for n 6= mr, r ∈ N,
n∑

k=0

(−1)n−k β Γp(β + pnα− pkα)
(n− k)! G(k) = 0. (77)

From this, the inverse series of (73) is obtained in the form:

λnx
n =

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)
(mn− k)! Sk,p(l,m, α, β : x). (78)

From this, the inverse series of the extended Jacobi polynomial (74), and hence that of
the p-deformed Brafman polynomial, and also, the inverse of the extended p-deformed
Konhauser polynomials (51) and the extended deformed Laguerre polynomial can be
deduced.
The differential equation of (74) is derived as follows.


θ





l∏

j=1

d∏

s=1
(lpθ + β − pnα + jp− lp) (pθ + βs − p)





−x
m∏

i=1

c∏

r=1

{
(mθ − n+ i− 1) (pθ + αr)

}
H(α,β)

n,l,m,p[(α); (β) : x] = 0, (79)

where θ = x
d

dx
.

The generating function relation for the polynomial (74) is derived from the first
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series of the theorem. It is given as
∞∑

n=0

(−1)nα(−β)nα,p
n! H(α,β)

n,mα,m,p[(α); (β) : x] tn

=
∞∑

n=0

(−1)nα(−β)nα,p
n! tn cFd ((α), p, (β), p) (x(−t)m) . (80)

By defining the p-deformed generalized Bessel function as

Jµν,p(x) =
∞∑

k=0

1
Γp(p+ νp+ kpµ)k! (−x)k,

one more GFR is derived for the p-deformed generalized Konhauser polynomial in
the form:

∞∑

n=0

Zα
n,m,p(x; l)

(p+ α)nl,p
tn = etΓp(p+ α)

Γp(1 + p) J lα
p
,p

(
(−1)m+1xltm

)
. (81)

The particular cases p = 1, m = 1 provides the generating function relation obtained
in [22, Ex. 65, p. 198].
The summation formulas implied by the inverse series are next considered here. The
first sum is corresponding to the inverse series relation of (78):

1
λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)
(mn− k)! Sk,p(l,m, α, β : x) = xn, (82)

assuming λn 6= 0, ∀n ∈ N. Now multiplying both sides by 1/n! and taking summation
from n = 0 to ∞, this gives for all x,

∞∑

n=0

1
n!λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)
(mn− k)! Sk,p(l,m, α, β : x) = ex, (83)

and with |x| < 1, λn 6= 0∀n, the following sum is obtained.
∞∑

n=0

1
λn

nm∑

k=0

(−1)k β Γp(β + pnl − pkα)
(mn− k)! Sk,p(l,m, α, β : x) = 1

1− x. (84)

From this the summation formulas involving the particular polynomials can be de-
duced.
Taking bn/mc = N in (73) and converting it to the monic form S̃n,p(l,m, α, β : x),
we get

S̃n,p(l,m, α, β : x) =
N∑

k=0
δk x

k,

where

δk = (−1)(k−N)m Γp(p+ β − pnα + plN)λk (n−mN)! xk
Γp(p+ β − pnα + plk)λN(n−mk)! .

With this δk, C
(
S̃n,p(l,m, α, β : x)

)
assumes the form as stated in definition of com-

panion matrix. The eigen values of this matrix will be then precisely the zeros of
S̃n,p(l,m, α, β : x) (see [15, p. 39]).
Chapter-7 incorporates the q-extension to the polynomial (73) and derive analogous
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properties. A p-deformed q-extension of the general class of p-polynomial (73) is
defined as follows.

Definition 7. For β ∈ C, r, α ∈ C/{0}, m ∈ N, n ∈ N ∪ {0}, |q| < 1 and p > 0,

Sn,p,r(l,m, α, β : x|qα) =
bn/mc∑

k=0
(−1)mkqmkrα(mk−2n+1)/2 (βqrlk+p−nαp; qα)∞,p

(qrα; qrα)n−mk
λkx

k, (85)

where bn/mc = floor n/m, represents the greatest integer ≤ n/m.

When q → 1 and r = p, this coincides with (73). Moreover, this general class of
q, p-polynomials ((85) above) extends the general class of p-deformed q-polynomials
(56) of chapter 5 by taking α = 1 and r = λ.
The special case λn = (α1; q)n,p(α2; q)n,p · · · (αc; q)n,p/((β1; q)n,p(β2; q)n,p · · · (βd; q)n,p
(qrα2 ; qrα2)n) with r is replaced by rα, yields the tribasic p-deformed extended q-Jacobi
polynomial (cf. [6, Eq.(1.2), p. 77] with p = 1):

H(α,β)
n,m,l,p,r[(α); (β) : xqrαl|qα]

=
bn/mc∑

k=0

(q−nrα2 ; qrα2)mk(α1; q)k,p(α2; q)k,p · · · (αc; q)k,p
(βqp−pnα; qα) rlk

p
,p(β1; q)k,p(β2; q)k,p · · · (βd; q)k,p(qrα2 ; qrα2)k

(xqrαl)k. (86)

When β → ∞ in qβ, this polynomial reduces to the p-deformed q-Brafman poly-
nomial. Further, replacing x by xlqnl, letting qβ → 0, taking rα = l ∈ N and
λn = qln(α+1)−lmn+ln(ln−1)/2/((pα; q)nl,p(ql; ql)mn) in (85), we obtain the extended p-
deformed q-Konhauser polynomial (cf. [1] with p = 1 and m = 1). The obvious
specialization l = 1 is the extended p-deformed q-Laguerre polynomial. Here, a gen-
eral inversion pair [20] is proved as

Theorem 10. If r, α ∈ C \ {0}, β ∈ C, n ∈ N ∪ {0}, m ∈ N, p > 0 and 0 < q < 1,
then

F (n) =
bn/mc∑

k=0
(−1)mkqmkrα(mk−2n+1)/2 (qmkrα+β+p−nαp; qα)∞,p

(qrα; qrα)n−mk
G(k) (87)

⇒
G(n) =

mn∑

k=0
(−1)kqkrα(k−1)/2 (1− qkrα+β+p−(k+1)αp)

(qmnrα+β+p−(k+1)αp; qα)∞,p(qrα; qrα)mn−k
F (k),

(88)

and conversely, the series in (88) implies the series (87) if for n 6= mv, v ∈ N,
n∑

k=0
(−1)kqkrα(k−1)/2 (1− qkrα+β+p−(k+1)αp)

(qnrα+β+p−(k+1)αp; qα)∞,p(qrα; qrα)n−k
F (k) = 0. (89)

The inverse series relation of (85) is obtained in the form:

λn x
n =

mn∑

k=0
(−1)kqkrα(k−1)/2 (1− qkrα+β+p−(k+1)αp) Sk,p,r(l,m, α, β : x|qα)

(qmnrα+β+p−(k+1)αp; qα)∞,p(qrα; qrα)mn−k(qrα; qrα)k
. (90)

From this the inverse series of H(α,β)
k,m,l,p,r[(α); (β) : xqrαl|qα], Z(α)

k,m,p(x; l|q) can be de-
duced.
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The p-deformed q-differential equations for the particular cases of the polynomial
(85), are derived with the aid of the q-difference operator θq,pf(x) = f(x)−f(xqp) for
p > 0, and the p-deformed q-derivative (Eq.(65)) of f(x) (cf. [9, Ex.1.12, p.22] with
p = 1). The p-deformed tribasic q-differential equation of (86), with rl/p = h ∈ N, w
is mth root of unity and ν is hth root of unity, is derived as follows.

Corollary 11. The polynomial y = H(α,β)
n,m,l,p,r[(α); (β) : xqrαl|qα] satisfies the equation:

[
(1− qrα2)xDqrα2

{
h∏

s=1

h∏

t=1

d∏

v=1
((1− qα)xDqα,p + qpα−(β+p−pnα+pα(s−1))/hν1−t − 1)

×((1− q)xDq,p + qp−βv − 1)
}
− xqrαl

m∏

i=1

m∏

j=1

h∏

s=1

h∏

t=1

c∏

u=1

d∏

v=1

{
qpα−(β+p−pnα+pα(s−1))/h

× qp+((i−1)rα2−nrα2)/m−βv+αuwj−1ν1−t((1− q)xDq,p + q−αu − 1)((1− qrα2)xDqrα2

+q−((i−1)rα2−nrα2)/mw1−j − 1)
}
y = 0. (91)

From this, the p-deformed q-differential equations of the p-deformed q-Brafman
polynomial, p-deformed q-Konhauser polynomial and the extended p-deformed q-
Laguerre polynomial can be deduced.
The generating function relation for the polynomial (85) is derived in the form:

∞∑

n=0
qrαn(n−1)/2 Sn,p,r(l,m, α, β : x|qα)

(βqp−pnα)∞,p
tn

=
∞∑

n=0

∞∑

k=0

(−1)mkqrαn(n−1)/2

(βqp−(n+mk)αp; qα) rlk
pα
,p(qrα; qrα)n

λk x
ktn+mk. (92)

From this, the generating function relation of (74) and other polynomials can be
obtained.
Next, writing the inverse series (90) for all λn 6= 0, in the form

1
λn

mn∑

k=0

(−1)kqkrα(k−1)/2(1− qkrα+β+p−(k+1)αp)
(qmnrα+β+p−(k+1)αp; qα)∞,p(qrα; qrα)mn−k(qrα; qrα)k

Sk,p,r(l,m, α, β : x|qα)

= xn (93)

and multiplying both sides by 1/(qrα; qrα)n, and taking summation from n = 0 to∞,
one obtains

∞∑

n=0

1
λn (qrα; qrα)n

mn∑

k=0

(−1)kqkrα(k−1)/2(1− qkrα+β+p−(k+1)αp)
(qmnrα+β+p−(k+1)αp; qα)∞,p(qrα; qrα)mn−k(qrα; qrα)k

×Sk,p,r(l,m, α, β : x|qα) = eqrα(x), (94)

where |x| < 1. Next, using the summation formula of 1φ1 given by [9, Eq.(II.5),
p.236], one finds the summation formula:

∞∑

n=0

q(
n
2)(a; q)n

λn(c; q)n(q; q)n

(
− c
a

)n mn∑

k=0

(−1)kqkrα(k−1)/2(1− qkrα+β+p−(k+1)αp)
(qmnrα+β+p−(k+1)αp; qα)∞,p(qrα; qrα)mn−k

17
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× 1
(qrα; qrα)k

Sk,p,r

(
l,m, α, β : c

a

∣∣∣∣∣q
α

)
= (c/a; q)∞

(c; q)∞
. (95)

The reducibility of summation formulas (94) and (95) corresponding to the particular
cases may be obtained by the suitable substitutions of the parameters involved and
the sequence {λn} as stated above sections.

Taking bn/mc = N in (85) and converting it to the monic form as denoted by
S̃n,p,r(l,m, α, β : x|qα), we get

S̃n,p,r(l,m, α, β : x|qα) =
N∑

j=0
δj x

j,

where

δj = (−1)σm qrαm
2σ(j+N)/2+mσ/2−mnσ (βqlj−pnα+p; qrα)∞,p (qrα; qrα)n−mNλj

(βqlN−pnα+p; qrα)∞,p (qrα; qrα)n−mjλN
,

and σ = j −N. With this δj, C
(
S̃n,p,r(l,m, α, β : x|qα)

)
assumes the form as stated

in Definition of Companion matrix. The eigen values of this matrix will be then
precisely the zeros of S̃n,p,r(l,m, α, β : x|qα) (see [15, p. 39]).
Chapters 8 and 9 incorporate the p-deformation of Riordan’s classified inverse pairs
and their q-analogues. For that the inversion theorems of the preceding chapters
are used. In chapter 8, using the inversion theorems of chapters 2 and 4 and their
alternative forms, the p-deformed extended pairs of Riordan’s six classes are deduced.
In chapter 9, their basic analogues are obtained with the help of the theorems of
chapters 3, 5 and 7. In the following, certain p-deformed extended Gould’s classes,
Simpler Legendre classes and the Legendre-Chebyshev classes are tabulated in Table
1; whereas their basic analogues are tabulated in Table 2.

Table 1 : The p-deformed extension of Riordan’s inverse series

F (n) =
bn/mc∑
k=0

An,k,p
(n−mk)! G(k) ; G(n) =

mn∑
k=0

(−1)mn−k Bn,k,p
(mn−k)! F (k)

An,k Bn,k Riordan’s classes

Γp(a+lmk−mkp+p)
Γp(a+lmk−np+p)

(a+lk−kp)
(a+lmn−kp) Gould Class

× Γp(a+lmn−kp+p)
Γp(a+lmn−mnp+p)

(a+ln−np+p)
(a+lmk−np+p)

Γp(a+lmn−kp+p)
Γp(a+lmn−mnp+p) Gould class

×Γp(a+lmk−mkp+p)
Γp(a+lmk−np+p)

Γp(a+np+2mk−mkp+p)
Γp(a+2mk+p)

(a+2k+p)
(a+2mn−mnp+kp+p) Simpler Legendre

× Γp(a+2mn+p)
Γp(a+2mn−mnp+kp+p)

(a+2n)
(a+2mk+np−mkp)

Γp(a+2mn+p)
Γp(a+2mn−mnp+kp+p) Simpler Legendre

×Γp(a+2mk+np−mkp+p)
Γp(a+2mk+p)
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Table 1 : Continue

An,k Bn,k Riordan’s classes

(a+cn)
(a+cmk+np−mkp)

Γp(a+cmn+p)
Γp(a+cmn−mnp+kp+p) Legendre-Chebyshev

×Γp(a+cmk+np−mkp+p)
Γp(a+cmk+p)

Γp(a+cmk+p)
Γp(a+cmk−np+mkp+p)

(a+ck)
(a+cmn+mnp−kp) Legendre-Chebyshev

×Γp(a+cmn+mnp−kp+p)
Γp(a+cmn+p)

Γp(a+cmk+np−mkp+p)
Γp(a+cmk+p)

(a+ck+p)
(a+cmn−mnp+kp+p) Legendre-Chebyshev

× Γp(a+cmn+p)
Γp(a+cmn−mnp+kp+p)

(a+cn+p)
(a+cmk+mkp−np+p)

Γp(a+cmn+mnp−kp+p)
Γp(a+cmn+p) Legendre-Chebyshev

× Γp(a+cmk+p)
Γp(a+cmk−np+mkp+p)

Table 2 : p-Deformed extension of certain q-Riordan inverse’s pairs

F (n) =
bn/mc∑
k=0

qβmk(mk−1)/2 An,k G(k); G(n) =
mn∑
k=0

(−1)mn+kqβk(k−2mn+1)/2 Bn,k F (k)

β An,k Bn,k q-Riordan Classes

−l
(qp; q)α+lmk−mkp

p
,p

(qp; q)α+lmk−np
p

,p

(1− qα+lk−kp)
(qp; q)α+lmn−mnp

p
,p

q-Gold class

× 1
(q−l; q−l)n−mk

×
(qp; q)α+lmn−kp−p

p
,p

(q−l; q−l)mn−k

−l (1− qα+ln−np+p)
(qp; q)α+lmk−np+p

p
,p

(qp; q)α+lmn−kp
p

,p

(qp; q)α+lmn−mnp
p

,p

q-Gold class

×
(qp; q)α+lmk−mkp

p
,p

(q−l; q−l)n−mk
× 1

(q−l; q−l)mn−k

p− 2
(qp; q)α+np+2mk−mkp

p
,p

(qp; q)α+2mk
p

,p

(1− qα+2k+p)
(qp; q)α+2mn−mnp+kp+p

p
,p

q-Simpler Legendre

× 1
(q(p−2); q(p−2))n−mk

×
(qp; q)α+2mn

p
,p

(q(p−2); q(p−2))mn−k
Class

p− 2 (1− qα+2n)
(qp; q)α+2mk

p
,p

(qp; q)α+2mn
p

,p

(qp; q)α+2mn−mnp+kp
p

,p

q-Simpler Legendre

×
(qp; q)α+np−mkp+2mk−p

p
,p

(q(p−2); q(p−2))n−mk
× 1

(q(p−2); q(p−2))mn−k
Class

p− c (1− qα+cn)
(qp; q)α+cmk

p
,p

(qp; q)α+cmn
p

,p

(qp; q)α+cmn−mnp+kp
p

,p

q-Legendre-Chebyshev
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Table 2 : Continue

β An,k Bn,k q-Riordan Classes

×
(qp; q)α+np+cmk−mkp−p

p
,p

(q(p−c); q(p−c))n−mk
× 1

(q(p−c); q(p−c))mn−k
Class

−p− c
(qp; q)α+cmk

p
,p

(qp; q)α+cmk+mkp−np
p

,p

(1− qα+ck)
(qp; q)α+cmn

p
,p

q-Legendre -Chebyshev

× 1
(q−(c+p); q−(c+p))n−mk

×
(qp; q)α+cmn+mnp−kp−p

p
,p

(q−(c+p); q−(c+p))mn−k
Class

p− c
(qp; q)α+np+cmk−mkp

p
,p

(qp; q)α+cmk
p

,p

(1− qα+ck+p)
(qp; q)α+cmn−mnp+kp+p

p
,p

q-Legendre-Chebyshev

× 1
(q(p−c); q(p−c))n−mk

×
(qp; q)α+cmn

p
,p

(q(p−c); q(p−c))mn−k
Class

−p− c (1− qα+cn+p)
(qp; q)α+cmk+mkp−np+p

p
,p

(qp; q)α+cmn+mnp−kp
p

,p

(qp; q)α+cmn
p

,p

q-Legendre-Chebyshev

×
(qp; q)α+cmk

p
,p

(q(c+p); q(c+p))n−mk
× 1

(q(c+p); q(c+p))mn−k
Class
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