
Chapter 1

Introduction

1.1 Introduction

The �eld of Special Functions is enriched with hundreds of particular func-

tions of Mathematical Physics, Chemistry, Astronomy, Statistics, Dynamics, Fiber

optics, Systems and Control; including the classical orthogonal polynomials and

their various generalizations (see [1], [40], [46], [47], [49], [53], [54], [62], [63], [64]).

Besides this, Special functions also occur in certain Mathematics branches such as

Lie algebra, Number theory, Combinatorics, Approximation theory etc. The Gauss

function and its straight generalization which is well known as the generalized

hypergeometric function encompass a vast number of particular functions as well

as a number of polynomials that arise from a physical phenomenon or a natural

phenomenon. For example, the Bessel function arise from the vibrating string

or vibration of elastic rubber membrane. The Laguerre polynomials occur in

Hydrogen atom study, the Legendre polynomials are associated with the Gravita-

tional/electric potential theory. In geophysical and astrophysical applications, the

Legendre polynomial of odd degree (2k − 1) given by [39, Eq. (2.2), p. 2205]

P
2k−1

(cos θ) =
k∑

j=1

(−1)k−j[2(k + j)− 3]!!

2k−1(k − j)!(j − 1)!(2j − 1)!!
(cos θ)2j−1

is usually employed to represent an axisymmetric �ow on a spherical surface. This

polynomial plays vital role in the construction of the geostrophic polynomial (see

for more detail [39]) which helps in studying the �uid motion in the interiors

of rapidly rotating planets or stars. Amongst the eminent mathematicians who

contributed to a great extent in the development, the names of Carl F. Gauss,

Leonhard Euler, Weierstrass, E. E. Kummer, John Wallis, G. Szego, H. Bateman,

P. E. Bedient, L. Carlitz, R. P. Boas, W. N. Bailey, A. Erdelyi, E. D. Rainville, P.

Humbert, D. Dikinson, H. W. Gould, H. L. Krall, O. Frink, R. Askey, W. A. Al-

Salam, H. Exton, J. L. Burchnall, T. W. Chaundy, G. Gasper, H. M. Srivastava,

T. S. Chihara, M. Rahman, M. E. H. Ismail, Tom Koorwinder, A. Verma, R. P.

Agarwal are worth mentioning.
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1.2 De�nitions and Formulae

We shall use the following de�nitions and formulas in the work.

De�nition 1.2.1. The gamma function is de�ned as [53]:

Γ(z) =

∞∫

0

e−t tz−1 dt; <(z) > 0. (1.2.1)

De�nition 1.2.2. The Pochhammer symbol is de�ned as [53, 62]

(λ)n =





(λ)(λ+ 1)(λ+ 2) · · · (λ+ n− 1), if n ∈ N,
Γ(λ+ n)

Γ(λ)
, if n ∈ C.

(1.2.2)

Here, (λ)n is also called the factorial function.

If λ = 1 then it reduces to n! , that is (1)n = n!.

De�nition 1.2.3. The binomial coe�cient.

(
λ

n

)
=

(λ)(λ− 1)(λ− 2) · · · (λ− n+ 1)

n!
=

(−1)n (−λ)n
n!

,

or equivalently [53],

(
λ

n

)
=

Γ(λ+ 1)

Γ(λ− n+ 1) n!
.

Remark 1.2.1. For 0 ≤ k ≤ n,

(λ)n−k =
(−1)k (λ)n

(1− λ− n)k
.

For λ = 1, it gives

(−n)k =
(−1)k n!

(n− k)!
, 0 ≤ k ≤ n.

De�nition 1.2.4. The generalized hypergeometric function is denoted and de�ned

by [53]:

rFs

[
a1, a2, . . . , ar; z

b1, b2, . . . , bs;

]
=
∞∑

n=0

(a1)n(a2)n · · · (ar)n
(b1)n(b2)n · · · (bs)n

zn

n!
,

where b1, b2, . . . , bs are neither zero nor negative integers.
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The series converges absolutely for |z| < ∞ if r ≤ s and if r = s + 1, then

series converges absolutely for |z| < 1. On the boundary of the circle |z| = 1, the

series converges provided that the <(
∑
bj −

∑
ai) > 0.

The operator di�erential equation satis�ed by w = rFs[z] is given by [53]

[
θ

s∏

j=1

(θ + bj − 1)− z
r∏

i=1

(θ + ai)

]
w = 0,

where θ = z
d

dz
and r ≤ s+ 1.

The following are the useful double series identities [62].

nm∑

k=0

bk/mc∑

j=0

A(k, j) =
n∑

j=0

mn−mj∑

k=0

A(k +mj, j)

∞∑

n=0

∞∑

k=0

A(k, n) =
∞∑

n=0

bn/mc∑

k=0

A(k, n−mk)

The binomial series is [53]

∞∑

n=0

(a)n
zn

n!
= (1− z)−a, |z| < 1. (1.2.3)

1.3 p-Gamma function

This function was introduced by Rafael Díaz and Eddy Pariguan [17]. In

fact, the occurrence of the product of the form x(x+p)(x+2p) · · · (x+(n−1)p) in

combinatorics of creation and annihilation operators [16, 18] and the perturbative

computation of Feynman integrals [15] led them to generalize the gamma function

in the form involving the above factors.

Diaz at el.[17] de�ned the Pochhammer p-symbol for z ∈ C, p ∈ R and n ∈ N,
which is given by

(z)n,p = z(z + p)(z + 2p) · · · (z + (n− 1)p). (1.3.1)

The following are varied representations of p-gamma function [17]. It is given in

Euler integral form as follows. For z ∈ C, <(z) > 0 and p > 0,

Γp(z) =

∫ ∞

0

tz−1e−
tp

p dt. (1.3.2)
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Note 1.3.1. For p = 2, the function

Γ2(x) =

∫ ∞

0

tx−1e−
t2

2 dt

is the Gaussian integral.

In Pochhammer p-symbol, it is given by

Γp(x) = lim
n→∞

n!pn(np)
x
p
−1

(x)n,p
, p > 0, x ∈ C\pZ−.

Just as for the gamma function, Γp also admits the in�nite product representation:

1

Γp(x)
= xp−

x
p e

x
p
γ
∞∏

n=1

[(
1 +

x

np

)
e
x
np

]
.

The Stirling's formula has p-generalization:

Γp(x+ 1) = (2π)
1
2 (px)−

1
2x

x+1
p e−

x
p +O

(
1

x

)
.

When p = 1, this reduces to Γ(z). The following properties follow from (1.3.1) and

(1.3.2).

Γp(z + p) = zΓp(z), (1.3.3)

Γp(p) = 1, (1.3.4)

(z)k,p =
Γp(z + kp)

Γp(z)
, (1.3.5)

(z)n−k,p =
(−1)k(z)n,p

(p− z − np)k,p
, (1.3.6)

(z)mn,p = mmn

m∏

j=1

(
z + jp− p

m

)

n,p

, (1.3.7)

(z)m+n,p = (z)m,p (z +mp)n,p. (1.3.8)

When p = 1, these identities get reduce to the corresponding properties of the

function Γ(z) and the Pochhammer symbol (z)n [53, 62]. We shall make use of

the notation

4p(m;n) =
m∏

j=1

(
n+ jp− p

m

)
. (1.3.9)
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For p = 1, this gives the usual notation (41(m;n) =)4(m;n) which indicates the

array of m parameters
n

m
,
n+ p

m
, . . . ,

n+mp− p
m

.

p-Version of the well known Bohr-Mollerup theorem is given by [17, Theorem 7]

Theorem 1.3.1. Let f(x) be a positive valued function de�ned on (0,∞). Assume

that f(p) = 1, f(x + p) = xf(x) and f is logarithmically convex, then f(x) =

Γp(x),∀x ∈ (0,∞).

Diaz at el.[17] also proposed the following generalization of the hypergeo-

metric series in the form of Pochhammer p-symbol (cf. [53] with p = 1), given

by

rFs(a, k, b, l)(x) =
∞∑

n=0

(a1)n,k1(a2)n,k2 · · · (ar)n,kr
(b1)n,l1(b2)n,l2 · · · (bs)n,lsn!

xn, (1.3.10)

where a = (a1, a2, · · · , ar) ∈ Cr, k = (k1, k2, · · · , kr) ∈ (R+)r, b = (b1, b2, · · · , bs)
∈ Cs \ (lZ−)s and l = (l1, l2, · · · , ls) ∈ (R+)s.

This series converges for all x if r ≤ s, and diverges if r > s+1, x 6= 0. If r = s+1,

then the series converges for |x| < l1l2···ls
k1k2···kr . It also satis�es the di�erential equation

[17]:

[
D

s∏

i=1

(liD + bi − li)− x
r∏

j=1

(kjD + aj)

]
y = 0, (1.3.11)

where D = x
d

dx
. For p > 0, a ∈ C and |x| < 1

p
, Diaz at el.[17] showed that

∞∑

n=0

(a)n,p
n!

xn = (1− px)−
a
p . (1.3.12)

This may be regarded as the p-deformed binomial series. It is interesting to note

that the radius of convergence of this series can be enlarged or diminished by

choosing p smaller or larger; unlike in the classical theory of radius of convergence

of the binomial series which is �xed and is unity. This attracted us to study p-

deformation of certain Special functions, in particular the polynomials' systems.

Diaz at el.[17] gave the p-Beta function

βp(a, b) =
1

p

∫ 1

0

t
a
p
−1(1− t) bp−1dt =

Γp(a)Γp(b)

Γp(a+ b)
, (1.3.13)
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where <(a, b) 6= 0,−p,−2p, · · · . Euler's re�ection formula

Γ(z)Γ(1− z) =
π

sinπz
,

where z is non integral, has p-deformed version

Γp(z)Γp(p− z) =
π

p sin πz
p

,

if z/p /∈ Z. If P (x) is a polynomial in x of degree less than n (n ≥ 1), then

n∑

k=0

(−1)k
(
n

k

)
P (a+ bk) = 0. (1.3.14)

The Companion matrix of the monic polynomial is de�ned as follows.

De�nition 1.3.1. If a monic polynomial f(x) ∈ C[X] and f(x) = δ0 + δ1x +

δ2x
2 + · · ·+ δ

k−1
xk−1 + xk, then the k× k matrix, called the Companion matrix of

f(x) is denoted and de�ned by [48, p. 39]

C(f(x)) =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1

−δ0 −δ1 −δ2 . . . −δ
k−1



.

Lemma 1.3.1. If f ∈ K[x] is non constant and A = C(f(x)) then f(A) = 0.

1.4 Inverse series relations

A series is said to be the inverse series of a given series if one of the series when

substituted into the other, simpli�es to the expression involving the Kronecker

delta :

δnk =

{
0, if k 6= n

1, if k = n
.

To illustrate this, consider the inverse pair

an =
n∑

k=0

(
n

k

)
bk, bn =

n∑

k=0

(−1)k+n

(
n

k

)
ak.
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Here, if second series is substituted into the �rst series then the inner sum simpli�es

to the form

n∑

k=j

(−1)k+j

(
n

k

) (
k

j

)
= δnj,

thus proving one side of inverse relation. The proof of the converse part is similar.

The prior works of Gould[21�24] on inverse series evoked an in�ux of intrigue that

was re�ected in works of Jhon Riordan [55, Chapter-2] who studied the inverse

series relations and classi�ed them into several classes namely the simplest inverse

pairs, the Gould classes, the simpler Chebyshev classes, the Chebyshev classes, the

simpler Legendre classes and the Legendre - Chebyshev classes of inverse series.

All these classes are recorded in the following tables.

Table 1.1: The Simplest inverse relations

(1) an =
n∑
k=0

(
n
k

)
bk bn =

n∑
k=0

(−1)k+n
(
n
k

)
ak

(2) an =
∑
k=n

(
k
n

)
bk bn =

∑
k=n

(−1)k+n
(
k
n

)
ak

(3) an =
∑
k=0

(
p−k
p−n

)
bk bn =

∑
k=0

(−1)k+n
(
p−k
p−n

)
ak

(4) an =
n∑
k=0

(
n+p
k+p

)
bk bn =

n∑
k=0

(−1)k+n
(
n+p
k+p

)
ak

(5) an =
n∑
k=0

(
k+p
n+p

)
bk bn =

∑
k=n

(−1)k+n
(
k+p
n+p

)
ak

(6) an =
∑
k=1

n!
k!

(
n−1
k−1

)
bk bn =

∑
k=1

(−1)k+n n!
k!

(
n−1
k−1

)
ak

([55, Tabel 2.1, p.49])

Table 1.2: The Gould classes of inverse relations

an =
∑
An,kbk; bn =

∑
(−1)k+nBn,kak

Sr. No. An,k Bn,k

(1)
(
p+qk−k
n−k

)
p+qk−k
p+qn−k

(
p+qn−k
n−k

)

(2) p+qn−n+1
p+qk−n+1

(
p+qk−k
n−k

) (
p+qn−k
n−k

)

(3)
(
p+qn−n
k−n

)
p+qn−n
p+qk−n

(
p+qk−n
k−n

)

(4) p+qk−k+1
p+qn−k+1

(
p+qn−n
k−n

) (
p+qk−n
k−n

)

([55, Tabel 2.2, p.52])
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Table 1.3: The Simpler Chebyshev classes

(1) an =
∑(

n
k

)
bn−2k bn =

∑
(−1)k n

n−k

(
n−k
k

)
an−2k

(2) an =
∑

n−2k+1
n−k+1

(
n
k

)
bn−2k bn =

∑
(−1)k

(
n−k
k

)
an−2k

(3) an =
∑(

n+2k
k

)
bn+2k bn =

∑
(−1)k n+2k

n+k

(
n+k
k

)
an+2k

(4) an =
∑

n+1
n+k+1

(
n+2k
k

)
bn+2k bn =

∑
(−1)k

(
n+k
k

)
an+2k

(5) an =
∑(

n−k
k

)
bn−k bn =

∑
(−1)k n−k

n+k

(
n+k
k

)
an−k

(6) an =
∑

n+1
n−2k+1

(
n−k
k

)
bn−k bn =

∑
(−1)k

(
n+k
k

)
an−k

([55, Tabel 2.3, p.62])

Table 1.4: The Chebyshev classes of inverse series relations

an =
∑
An,kbn+ck; bn =

∑
Bn,kan+ck

Sr. No. An,k Bn,k

(1)
(
n
k

)
n

n+ck+k

(
n+ck+k

k

)

(2) n+ck+1
n−k+1

(
n
k

) (
n+ck+k

k

)

(3)
(
n+ck
k

)
n+ck
n+k

(
n+k
k

)

(4) n+1
n+ck−k+1

(
n+ck
k

) (
n+k
k

)

([55, Tabel 2.4, p.63])

Table 1.5: The Simpler Legendre inverse relations

(1) an =
∑(

p+n+k
n−k

)
bk bn =

∑
(−1)n+k p+2k+1

p+n+k+1

(
p+2n
n−k

)
ak

(2) an =
∑(

p+2n
n−k

)
bk bn =

∑
(−1)n+k p+2n

p+n+k

(
p+n+k
n−k

)
ak

(3) an =
∑(

p+n+k
k−n

)
bk bn =

∑
(−1)n+k p+2n+1

p+n+k+1

(
p+2k
k−n

)
ak

(4) an =
∑(

p+2k
k−n

)
bk bn =

∑
(−1)n+k p+2k

p+n+k

(
p+n+k
k−n

)
ak

(5) an =
∑(

p+2n
k

)
bn−2k bn =

∑
(−1)k p+2n

p+2n−3k

(
p+2n−3k

k

)
an−2k

(6) an =
∑ p+2n−4k+1

p+2n−k+1

(
p+2n
k

)
bn−2k bn =

∑
(−1)k

(
p+2n−3k

k

)
an−2k

([55, Tabel 2.5, p.68])
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Table 1.6: The Legendre - Chebyshev classes of inverse relations

an =
∑
An,k bk; bn =

∑
(−1)n+kBn,k ak

Sr. No. An,k Bn,k

(1)
(
p+cn
n−k

)
p+cn
p+ck

(
p+n+ck−k−1

n−k

)

(2)
(
p+cn
k−n

)
p+cn
p+ck

(
p+ck+k−n−1

k−n

)

(3)
(
p+ck
n−k

)
p+ck
p+cn

(
p+cn+n−k−1

n−k

)

(4)
(
p+ck
k−n

)
p+ck
p+cn

(
p+cn−n+k−1

k−n

)

(5) p+ck+1
p+cn−n+k+1

(
p+cn
n−k

) (
p+n+ck−k

n−k

)

(6) p+ck+1
p+cn+n−k+1

(
p+cn
k−n

) (
p+ck+k−n

k−n

)

(7) p+cn+1
p+ck−n+k+1

(
p+ck
n−k

) (
p+cn+n−k

n−k

)

(8) p+cn+1
p+ck−n+k+1

(
p+ck
n−k

) (
p+cn+n−k

n−k

)

([55, Tabel 2.6, p.69])

1.5 q-Analogue

Recently, Rafael Díaz and Carolina Teruel [18] introduced two parameter

deformation of the classical gamma function by means of the q, k-Pochhammer

symbol[18, Def. 4, p.121] which is denoted and de�ned by

[t]n,k =
n−1∏

j=0

[t+ jk]q, t > 0, k > 0, (1.5.1)

where [a]q = 1 − qa. Using this, the q, k-generalized gamma function[18, Def. 6,

p.122] was de�ned in the form:

Γq,k(t) =

(
1− qk

) t
k
−1

q,k

(1− q) tk−1
, t > 0, k > 0,

where (1 + x)tq,k =
(1 + x)∞q,k

(1 + xqkt)∞q,k
and (x+ y)nq,k =

n−1∏
j=0

(x+ yqjk).

Alternatively [18, Lem-2, p.122],

Γq,k(t) =

(
1− qk

)∞
q,k

(1− qt)∞q,k (1− q) tk−1
, t > 0, k > 0. (1.5.2)
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As q → 1− from within the interval (0, 1), the de�ning expressions in (1.5.1)

and (1.5.2) yield the k-generalized Pochhammer symbol (t)n,k and the k-deformed

classical gamma function Γk(t)([18, p.119] and [17]). We replace in the present

work, k by p, and write (qt; q)n,p in stead of [t]n,k, where t ∈ C. In the notations

of (1.5.1) and (1.5.2), we have

(z; q)n,p = (1− qz)(1− qz+p)(1− qz+2p) · · · (1− qz+(n−1)p), z ∈ R, n ∈ Z+,

(1.5.3)

Γq,p(z) =
(qp; q)∞,p(1− q)1−z/p

(qz; q)∞,p
, |z| > 0, (1.5.4)

where

(a; q)n,p =





1, if n = 0,

(1− a)(1− aqp) · · · (1− aqp(n−1)), if n ∈ Z>0,

[(1− aq−p)(1− aq−2p) · · · (1− aqnp)]−1
, if n ∈ Z<0,

(a; q)∞,p/(aq
np; q)∞,p, if n ∈ C,

and

(qα; q)∞,p =
∞∏

n=0

(1− qα+np), |q| < 1.

It may be mentioned here that for a parameter α ∈ C, qα ≡ α.

In what follows, the following formulas will be used in the work for 0 < q < 1

Γq,p(p) = 1, (1.5.5)

(a; q)n,p =
Γq,p(a+ np)

Γq,p(a)
, n ∈ N, (1.5.6)

(a; q)n,p =
(a; q)∞,p

(aqpn; q)∞,p
, n ∈ C, (1.5.7)

(a; q)m+n,p = (a; q)m,p(aq
mp; q)n,p,m, n ∈ N, (1.5.8)

(aq−np; q)n,p = (−1)nanq−pn(n+1)/2

(
qp

a
; q

)

n,p

, (1.5.9)

(a; q)n−k,p =

(
−1

a

)k
qpk(k+1)/2−nkp (a; q)n,p

(qp−np/a; q)k,p
, (1.5.10)

(a; q)−k,p =

(
−1

a

)k
qpk(k+1)/2 1

(qp/a; q)k,p
, (1.5.11)

(a; q)km,p = (a, aqp, aq2p, · · · , aqp(m−1); qm)k,p, (1.5.12)

(am; qm)k,p = (a, aω, aω2, · · · , aωm−1; q)k,p, where ω = e2πi/m. (1.5.13)
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When p = 1, these formulas get reduced to those listed in [19, Appendix I, p.233-

234]. q−Binomial coe�cient is de�ned as

[
n

k

]

q

=
(q; q)n

(q; q)n−k(q; q)k
.

Next, We de�ne q-analogue of (1.3.10) in the form of bibasic series with k1 = k2 =

. . . = kr = l1 = l2 = . . . = ls = p ∈ R+ as follows:

De�nition 1.5.1. If (a) stands for the array of r parameters a1, a2, · · · , ar ∈ Cr,

(b) stands for the array of s parameters b1, b2, · · · , bs ∈ Cs \ (Z−)s, p, α ∈ R+

and |q| < 1 then

rφs((a); (b) ; qp)(x|q, qα)

=
∞∑

n=0

(a1; q)n,p(a2; q)n,p · · · (ar; q)n,p
(b1; q)n,p(b2; q)n,p · · · (bs; q)n,p(qα; qα)n

(
(−1)nqα(

n
2)
)1+s−r

xn.

(1.5.14)

Note 1.5.1. The limiting case:

lim
q→1−

rφs((a); (b) ; qp)
(

(1− q)1+s−rx
∣∣ q, qα

)
= rFs((a), p, (b), p)(x).

The series behaves similarly as the series (1.3.10). In fact, if

rφs((a); (b) ; p)(x|q, qα) =
∞∑

n=0

Anx
n,

then by d' Alembert's ratio test,

lim
n→∞

∣∣∣∣
An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣
(1− a1q

np)(1− a2q
np) · · · (1− arqnp)qαn(s+1−r)

(1− b1qnp)(1− b2qnp) · · · (1− bsqnp)(1− qα(n+1))
x

∣∣∣∣.

From this, it follows that the series converges for all x if r ≤ s, and it diverges

when r > s+ 1 and x 6= 0. If r = s+ 1, then it converges for |x| < 1.

1.6 Basic inverse series relations

In order to illustrate a q-analogue of inverse pair, consider the series

an =
n∑

k=0

[
n

k

]

q

bk.
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Then its inverse series is given by

bn =
n∑

k=0

(−1)n+k qk(k−2n+1)/2

[
n

k

]

q

ak

and vise versa. B. I. Dave[9, 11] derived basic analogues of Riordan's classes of

inverse series relation and they are listed below

Table 1.7: Basic analogues of the simplest inverse pair

F (n) =
∑
qk(k−1)/2An,kG(k); G(n) =

∑
(−1)k+nqk(k−2n+1)/2Bn,kF (k)

Sr. No. An,k Bn,k

(1)
[
n
k

]
q

[
n
k

]
q

(2) qk
[
k
n

]
q

qk
[
k
n

]
q

(3)
[
α−k
α−n

]
q

[
α−k
α−n

]
q

(4)
[
α+n
α+k

]
q

[
α+n
α+k

]
q

(5) qk
[
α+k
α+n

]
q

qk
[
α+k
α+n

]
q

(6) (q;q)n,p
(q;q)k,p

[
n−1
k−1

]
q

(q;q)n,p
(q;q)k,p

[
n−1
k−1

]
q

([11, Table 1, p.17])

Table 1.8: Basic analogues of the Gould Classes

f(n) =
n∑
k=0

qβk(k−1)/2An,kg(k); g(n) =
n∑
k=0

(−1)k+nqβk(k−2n−1)/2Bn,kf(k)

Sr. No. β An,k Bn,k

(1) −m (q;q)α+mk−k
(q;q)α+mk−n(qβ ;qβ)n−k

q−mk(1−qα+mk−k)(q;q)α+nm−k−1

(q;q)α+nm−n(qβ ;qβ)n−k

(2) −m (1−qα+1+mn−n)(q;q)α+mk−k
(q;q)α+mk−n+1(qβ ;qβ)n−k

q−mk(q;q)α+mn−k
(q;q)α+nm−n(qβ ;qβ)n−k

(3) m qmk(1−qα+mn−n)(q;q)α+mk−n−1

(q;q)α+mk−k(qβ ;qβ)k−n
(q;q)α+mn−n

(q;q)α+mn−k(qβ ;qβ)k−n

(4) m qmk(q;q)α+mk−n
(q;q)α+mk−k(qβ ;qβ)k−n

(1−qα+1+mk−k)(q;q)α+mn−n
(q;q)α+mn−k+1(qβ ;qβ)k−n

([11, Table 2, p.18])
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Table 1.9: Basic analogues of the simpler Chebyshev Classes

F (n) =
∑
γkAn,kG(n+ bk); G(n) =

∑
(−γ)kqβk(k−1)/2Bn,kF (n+ bk)

Sr. No. b β γ An,k Bn,k

(1) -2 -1 -1 (1−qn)(q;q)n−k−1

(q;q)n−2k(qβ ;qβ)k

(q;q)n
(q;q)n−k(qβ ;qβ)k

(2) -2 -1 -1 (q;q)n−k
(q;q)n−2k(qβ ;qβ)k

(1−q1+n−2k)(q;q)n
(q;q)n−k+1(qβ ;qβ)k

(3) 2 1 1 (q;q)n+2k

(q;q)n+k(qβ ;qβ)k

(1−qn+2k)(q;q)n+k
(1−qn+k)(q;q)n(qβ ;qβ)k

(4) 2 1 1 (q;q)n+k
(q;q)n(qβ ;qβ)k

(1−qn−1)(q;q)n+2k

(1−qn+k+1)(q;q)n+k(qβ ;qβ)k

(5) -1 -2 1 (q;q)n−k
(q;q)n−2k(qβ ;qβ)k

(1−qn−k)(q;q)n+k−1

(q;q)n(qβ ;qβ)k

(6) -1 -2 1 (1−qn−1)(q;q)n−k
(q;q)n−2k+1(qβ ;qβ)k

(q;q)n+k
(q;q)n(qβ ;qβ)k

([11, Table 3, p.17])

Table 1.10: Basic analogues of the Chebyshev Classes

F (n) =
∑
Cn,k,p

(q; q)k
(qβ; qβ)k

G(n+ bk);

G(n) =
∑

(−1)kqβk(k−1)/2Bn,k
(q; q)k

(qβ; qβ)k
F (n+ bk)

Sr. No. β An,k Bn,k

(1) c+ 1 (1−qn)(q;q)n+ck+k
(1−qn+ck+k)(q;q)n+ck(qβ ;qβ)k

(q;q)n
(q;q)n−k(qβ ;qβ)k

(2) c+ 1 (q;q)n+ck+k
(q;q)n+ck(qβ ;qβ)k

(1−qn+1+ck)(q;q)n
(1−qn+1−k)(q;q)n−k(qβ ;qβ)k

(3) c− 1 (q;q)n+ck
(q;q)n+ck−k(qβ ;qβ)k

(1−qn+ck)(q;q)n+k
(1−qn+k)(q;q)n(qβ ;qβ)k

(4) c− 1 (1−qn+1)(q;q)n+ck
(1−qn+1+ck−k)(q;q)n+ck−k(qβ ;qβ)k

(q;q)n+k
(q;q)n(qβ ;qβ)k

([11, Table 4, p.19])
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Table 1.11: Basic analogues of the simpler Legendre classes I

F (n) =
∑
q(βk2+k)/2An,kG(k);

G(n) =
∑

(−1)k+nqβk(k−2n+1)/2Bn,kF (k)

Sr. No. β An,k Bn,k

(1) -1 (q;q)α+k+n
(q;q)α+2k(qβ ;qβ)n−k

(1−qα+2k+1)(q;q)α+2k+1

(q;q)α+n+k+1(qβ ;qβ)n−k

(2) -1 (1−qα+2n)(q;q)α+k+n−1

(q;q)α+2k(qβ ;qβ)n−k
(q;q)α+2n

(q;q)α+n+k(qβ ;qβ)n−k

(3) 1 (1−qα+2n+1)(q;q)α+2k

(1−qα+1+k+n)(q;q)α+k+n(qβ ;qβ)k−n
(q;q)α+n+k

(q;q)α+2n(qβ ;qβ)k−n

(4) 1 (q;q)α+2k

(q;q)α+k+n(qβ ;qβ)k−n
(1−qα+2k)(q;q)α+n+k

(1−qα+n+k)(q;q)α+2n(qβ ;qβ)k−n

([11, Table 5, p.19])

Table 1.12: Basic analogues of the simpler Legendre classes II

F (n) =
bn/2c∑
k=0

(−1)k (q; q)kAn,k
(q−3; q−3)k

G(n− 2k);

G(n) =
bn/2c∑
k=0

q−3k(k−1)/2 (q; q)kBn,k
(q−3; q−3)k

F (n− 2k)

Sr. No. β Cn,k,p Dn,k,p

(1) −3 (1−qα+2n)(q;q)α+2n−3k

(1−qα+2n−3k)(q;q)α+2n−4k(qβ ;qβ)k

(q;q)α+2n

(q;q)α+2n−k(qβ ;qβ)k

(2) −3 (q;q)α+2n−3k

(q;q)α+2n−4k(qβ ;qβ)k

(1−qα+2n−4k+1)(q;q)α+2n

(1−qα+2n−k+1)(q;q)α+2n−k(qβ ;qβ)k

([11, Table 6, p.19])

Table 1.13: Basic analogues of the Legendre-Chebyshev classes

F (n) =
∑
γn+kq(αk+β)/2An,kG(k); G(n) =

∑
(−γ)n+kqk(αk−2αn−β)/2Bn,kF (k)

Sr. No. b α β γ An,k Bn,k

(1) −1 1− c c− 1 −1 (1−qα+cn)(q;q)α+ck+n−k−1

(q;q)α+ck(qβ ;qβ)n−k
(q;q)α+cn

(q;q)α+cn−n+k(qβ ;qβ)n−k

(2) 1 c+ 1 c+ 1 −1 (1−qα+cn)(q;q)α+ck+k−n−1

(q;q)α+ck(qβ ;qβ)k−n
(q;q)α+cn

(q;q)α+cn−k+n(qβ ;qβ)k−n

(3) −1 −c− 1 c+ 1 1 (q;q)α+ck
(q;q)α+ck−n+k(qβ ;qβ)n−k

(1−qα+ck)(q;q)α+cn+n−k−1

(q;q)α+cn(qβ ;qβ)n−k
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Table 1.13: � Continue

Sr. No. b α β γ An,k Bn,k

(4) 1 c− 1 c− 1 1 (q;q)α+ck
(q;q)α+ck−k+n(qβ ;qβ)k−n

(1−qα+ck)(q;q)α+cn+k−n−1

(q;q)α+cn(qβ ;qβ)k−n

(5) −1 1− c c− 1 −1 (q;q)α+ck+n−k
(q;q)α+kc(qβ ;qβ)n−k

(1−qα+ck+1)(q;q)α+cn
(q;q)α+cn−n+k+1(qβ ;qβ)n−k

(6) 1 c+ 1 c+ 1 −1 (q;q)α+ck+k−n
(q;q)α+ck(qβ ;qβ)k−n

(1−qα+ck+1)(q;q)α+cn
(q;q)α+cn+n−k+1(qβ ;qβ)k−n

(7) −1 −c− 1 c+ 1 1 (1−qα+cn+1)(q;q)α+ck
(q;q)α+ck−n+k+1(qβ ;qβ)n−k

(q;q)α+cn+n−k
(q;q)α+cn(qβ ;qβ)n−k

(8) 1 c− 1 c− 1 −1 (1−qα+cn+1)(q;q)α+ck
(q;q)α+ck+n−k+1(qβ ;qβ)k−n

(q;q)α+cn+k−n
(q;q)α+cn(qβ ;qβ)k−n

([11, Table 7, p.20])

Having motivated by the works of R. Diaz and C. Teruel[18], and R. Diaz

and E. Pariguan [17], we provide here the extension to certain classical polynomials

along with their q-versions in the sense of p-deformation and derive their inverse

series relations. Further, we obtain di�erential equation and the generating func-

tion relations of these polynomials; and using the inverse series, we deduce certain

summation formulas involving the corresponding polynomials.
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