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2.1 Introduction

The aim of this chapter is to extend the general class {Pn(m,x, γ, s, c);n =

0, 1, 2, . . .} de�ned explicitly by

Pn(m,x, γ, s, c) =

bn/mc∑

k=0

(
s− n+mk

k

)(
s

n−mk

)
γkcs−n+mk−k(−mx)n−mk,

(2.1.1)

due to H. W. Gould[26, Eq.5.11, p.707] in p-deformed version and obtain its

properties such as the inverse series relation, di�erential equation, generating

function relations, di�erential recurrence relations and summation formulas. This

polynomials occur as the coe�cients of tn in a series expansion of (c−mxt+γtm)s

as follows

(c−mxt+ γtm)s =
∞∑

n=0

Pn(m,x, γ, s, c)tn. (2.1.2)

H. W. Gould obtained its inverse series relation given by [26, Eq.5.12, p.707]

(−m)n

(c)n−s

(
s

n

)
xn =

bn/mc∑

k=0

(
s− n+ k

k

)
(−γ)k(s− n+mk)

ck(s− n+ k)
Pn−mk(m,x, γ, s, c).

(2.1.3)

It appears from the history [51] that as long ago as in 1722, Liouville discussed a

paradox arising from the theories due to Galileo and Huygens related to isochronal

property of the cycloid curve. Liouville obtained the power series expansion of

(p2−2qx−x2)−1/2 in powers of x. Nielsen[51] showed that the coe�cients fn(p, q) of

this expansion are connected with the Legendre polynomial Pn(x) by the relation:

fn(p, q) = i−np−n−1Pn(iq/p), i2 = −1.

Here, taking p = 1, and replacing x by t, we get the expression (1− 2qt− t2)−1/2

which occurs in the potential theory corresponding to the Legendre polynomial.

In fact, in potential theory, a Newtonian potential function [33] may be written as

U =

∫ ∫

V

∫
λ

r
dV,
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where r = (1 − 2qt − t2)−1/2. It is noteworthy that the potential function U is

associated with Laplace's equation [66]:

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0.

The Humbert polynomials: Πν
n,m(x) occurred in his study(see [30�32]) of more

generalized potential problems associated with the extended Laplace equation [66]

∂3U

∂x3
+
∂3U

∂y3
+
∂3U

∂z3
− 3

∂3U

∂x∂y∂z
= 0.

This polynomial occurs as the coe�cient of the power series expansion of the

function (1−mxt+tm)−ν in powers of t (cf. Liouville's function (p2−2qx−x2)−1/2).

These coe�cients are explicitly represented[2, p.360] by

Πν
n,m(x) =

bn/mc∑

k=0

(mx)n−mk

Γ(1− ν − n+mk − k)(n−mk)!k!
(2.1.4)

which is known as the Humbert polynomial due to P. Humbert[30]. This poly-

nomial is seen to be included in the class {Pn(m,x, γ, s, c);n = 0, 1, 2, . . .} when
s = −ν and c = 1. Its inverse series is given by

(−mx)n

n!
=

bn/mc∑

k=0

(−1)k(−ν − n+mk)Γ(−ν − n+ k + 1)

(−ν − n+ k)k!
Πν
n−mk,m(x). (2.1.5)

The other special cases of the polynomials (2.1.1) are the Kinney polynomial, the

Pincherle polynomial, the Gegenbauer polynomial and the Legendre polynomial

(see [26]). Including the polynomial (2.1.4), we regard all these polynomials to

constitute a family of (2.1.1). They are listed below along with their inverse series

relations [9].

Pn(m,x) =

bn/mc∑

k=0

(mx)n−mk

Γ
(
1− 1

m
− n+mk − k

)
(n−mk)!k!

(2.1.6)

⇔
(−mx)n

n!
=

bn/mc∑

k=0

(−1)k
(
− 1
m
− n+mk

)
Γ
(
− 1
m
− n+ k + 1

)
(
− 1
m
− n+ kp

)
k!

Pn−mk(m,x),

(2.1.7)
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Pn(x) =

bn/3c∑

k=0

(3x)n−3k

Γ
(

1
2
− n+ 2k

)
(n− 3k)!k!

(2.1.8)

⇔
(−3x)n

n!
=

bn/3c∑

k=0

(−1)k
(
−1

2
− n+ 3k

)
Γ
(

1
2
− n+ k

)
(
−1

2
− n+ k

)
k!

Pn−3k(x), (2.1.9)

Cν
n(x) =

bn/2c∑

k=0

(−2x)n−2k

Γ(1− ν − n+ k)(n− 2k)!k!
(2.1.10)

⇔
(−2x)n

n!
=

bn/2c∑

k=0

(−1)k(−ν − n+ 2k)Γ(−ν − n+ k + 1)

(−ν − n+ k)k!
Cν
n−mk(x),

(2.1.11)

and

Pn(x) =

bn/2c∑

k=0

(−2x)n−2k

Γ
(

1
2
− n+ k

)
(n− 2k)!k!

(2.1.12)

⇔
(−2x)n

n!
=

bn/2c∑

k=0

(−1)k
(
−1

2
− n+ 2k

)
Γ
(

1
2
− n+ k

)
(
−1

2
− n+ k

)
k!

Pn−mk(x). (2.1.13)

We propose the extension of the polynomials Pn(m,x, γ, s, c) as

De�nition 2.1.1. For γ, s, c ∈ C, m ∈ N, x ∈ R, n ∈ N ∪ {0} and p > 0,

Pn,p(m,x, γ, s, c) =

bn/mc∑

k=0

Γp(s+ p)

Γp(s− np+mkp− kp+ p)(n−mk)! k!

×γkcs−n+mk−k(−mx)n−mk, (2.1.14)

in which the �oor function brc = floor r, represents the greatest integer ≤ r.

We call this polynomial as the p-deformed generalized Humbert polynomi-

als. When p = 1, this coincides with the polynomial (2.1.1). The particular

polynomials belonging to this general p-polynomial provide the extension to the

polynomials (2.1.4), (2.1.6), (2.1.8), (2.1.10) and (2.1.12).

Further, one of the inversion theorems also provides us deformed Bessel function

along with its inverse series in the form of deformed Neumann expansion [62]. This

will extend the inverse pair [53]:

Jn(x) =
∞∑

k=0

(−1)k

k!Γ(n+ 1 + k)

(x
2

)n+2k

(2.1.15)



Chapter 2 The p-deformed polynomials' system - I 20

⇔
(x

2

)n
=

∞∑

k=0

(n+ 2k)Γ(n+ k)

k!
Jn+2k(x), (2.1.16)

wherein the inverse series is actually the Neumann's expansion [53].

We derive the general inversion pairs in section - 2.2. On particularizing

the parameters involved suitably in the general inversion pair, we will deduce

inverse series relations of (2.1.14) and its family. Besides these, by means of

the alternative inverse pairs, we shall obtain the p-deformed Wilson polynomials

as well as the p-deformed Racah polynomials together with their inverse series

relations. Thereby, the particular polynomials namely, the polynomials of Hahn,

continuous Hahn, Dual Hahn, Meixner-Pollaczek, Krawtchouk, Jacobi and others

would also assume deformation along with their inverse series. Moreover, We

shall obtain the inversion pair which would provide the p-version of the Bessel

function (2.1.15) and its inverse series (2.1.16). This is done in section - 2.3. Next,

the di�erential equation of the p-deformed generalized Humbert polynomials and

its particular cases are derived in section - 2.4. The generating function relations,

recurrence relations and di�erential recurrence relations are derived in section - 2.5

and section - 2.6. As an application of the inverse series, the summation formulas

involving p-polynomials are derived in section - 2.7. The Companion matrix of

p-deformed monic polynomial obtained from the p-deformed generalized Humbert

polynomials(2.1.14) is derived in section - 2.8.

2.2 Inverse series relations

Let {f(n);n = 0, 1, 2, . . .} and {g(n);n = 0, 1, 2, . . .} be two sequences such

that

f(n) =
n∑

k=0

αn,k g(k); g(n) =
n∑

k=0

βn,k f(k). (2.2.1)

If αr,r and βr,r are non zero for all r = 0, 1, 2, . . . , n, then these two series are said

to form a pair of inverse series relations. In fact, the coe�cient αr,r and βr,r are

the diagonal elements of the matrices corresponding to these series; and if they are

all non zero then their inverses do exist (which are unique !); thus providing the

inverse series of those stated in (2.2.1). This eventually leads us to the identity:

n∑

k=j

αn,k βk,j = δnj
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involving the Kronecker δnj. A number of particular and general inverse series

pairs of this form occur in the literature [4, 37, 60, 65]. Now replace αn,k by

A(n, k;−b) and βn,k by B(n, k;−b) and consider the series

f(a) =
N∑

k=0

A(a, b; k) g(a+ bk); g(a) =
N∑

k=0

B(a, b; k) f(a+ bk).

Here, if a is a non negative integer n and b is a negative integer −m, then a+ bk =

n−mk. In order that n−mk ≥ 0, k will not exceed (the �oor function) bn/mc,
representing the greatest integer part of n/m. Hence N = bn/mc.
If a is a non negative integer n and b is a positive integer m, then a+bk = n+mk ≥
0 always and in this case, N =∞.

We prove here a general inversion pair (GIP) involving the p-generalized gamma

function: Γp(z) and the Pochhammer p-symbol (z)n,p due to Díaz at el. [17]. The

GIP will now onward be referred to as p-deformed GIP or simply GIP.

As main results, the p-deformed GIP:

u(a) =
N∑

k=0

γk

Γp(p+ α− ar − brk − kp)k!
v(a+ bk) (2.2.2)

⇔

v(a) =
N∑

k=0

(−γ)k(α− ar − brk)Γp(α− ar + kp)

k!
u(a+ bk), (2.2.3)

will be proved here by choosing a to be a non negative integer n, b to be (i) negative

integer −m in Theorem - 2.2.1 and (ii) positive integer in Theorem - 2.2.2. In case

(i), N = bn/mc whereas in (ii) N = ∞. These theorems will be proved with the

aid of series orthogonality relation of the form

s∑

r=0

(
s

r

)
ζ(r, s) =

(
0

s

)

for appropriate ζ(r, s). For that we need the following particular inverse pair which

we prove as

Lemma 2.2.1. For p > 0, and α, r arbitrary,

f(j) =

j∑

k=0

(−1)k
(
j

k

)
Γp(α− nr +mrk − kp+ jp) g(k) (2.2.4)

⇔

g(j) =

j∑

k=0

(−1)k
(
j

k

)
(α− nr +mrk)

Γp(p+ α− nr + j(mr − p) + kp)
f(k). (2.2.5)
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Proof. We observe that the diagonal elements of the coe�cient matrix of �rst series

are (−1)i Γp(α− nr +mri) and the diagonal elements of the coe�cient matrix of

second series are (−1)i/Γp(α − nr + mri) which are all non zero, implying that

these matrices have unique inverse. Hence, it su�ce to prove that one of these

series implies the other. We shall show that (2.2.5) implies (2.2.4).

We denote the right hand side of (2.2.4) by Φ(j) and then substitute for g(k) from

(2.2.5) to get

Φ(j) =

j∑

k=0

(−1)k
(
j

k

)
Γp(α− nr +mrk − kp+ jp)

×
k∑

i=0

(−1)i
(
k

i

)
(α− nr +mri)

Γp(p+ α− nr + k(mr − p) + ip)
f(i).

Here applying double series relation

m∑

k=0

m−k∑

j=0

A(k, j) =
m∑

j=0

j∑

k=0

A(k, j − k), (2.2.6)

we further have

Φ(j) =

j∑

i=0

j−i∑

k=0

(−1)k
(

j

k + i

) (
k + i

i

)

×(α− nr +mri) Γp(α− nr +mr(k + i)− (k + i)p+ jp)

Γp(p+ α− nr + (k + i)(mr − p) + ip)
f(i)

=

j∑

i=0

(
j

i

)
f(i)(α− nr +mri)

j−i∑

k=0

(−1)k
(
j − i
k

)

×Γp(α− nr +mr(k + i)− (k + i)p+ jp)

Γp(p+ α− nr + (k + i)(mr − p) + ip)

= f(j) +

j−1∑

i=0

(
j

i

)
f(i)(α− nr +mri)

j−i∑

k=0

(−1)k
(
j − i
k

)

×Γp(α− nr +mr(k + i)− (k + i)p+ jp)

Γp(p+ α− nr + (k + i)(mr − p) + ip)
. (2.2.7)

Here, the ratio of two p-gamma functions represents a polynomial of degree j−i−1

in k, that is

Γp(α− nr +mr(k + i)− (k + i)p+ jp)

Γp(p+ α− nr + (k + i)(mr − p) + ip)
=

j−i−1∑

l=0

Cl k
l,
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say, hence from (2.2.7), we have

Φ(j) = f(j) +

j−1∑

i=0

(
j

i

)
f(i)(α− nr +mri)

j−i∑

k=0

(−1)k
(
j − i
k

) j−i−1∑

l=0

Cl k
l.

Since the inner summations on the right hand side are nothing but the (j − i)th
di�erence of polynomial of degree j−i−1, it follows from (1.3.14) that Φ(j) = f(j).

This completes the proof of (2.2.4)⇔(2.2.5).

Next, we proceed to prove theorems as follow

Theorem 2.2.1. If a = n ∈ N∪{0} and b = −m, m ∈ N, then n∗ = bn/mc, and
there hold the series relations

u(n) =
n∗∑

k=0

γk

Γp(p+ α− nr +mrk − kp)k!
v(n−mk) (2.2.8)

⇔

v(n) =
n∗∑

k=0

(−γ)k(α− nr +mrk)Γp(α− nr + kp)

k!
u(n−mk). (2.2.9)

Proof. We �rst show that (2.2.8)⇒(2.2.9). For that we denote the right hand side

of (2.2.9) by Ψ(n), that is

Ψ(n) =
n∗∑

k=0

(−γ)k(α− nr +mrk)Γp(α− nr + kp)

k!
u(n−mk),

and then substitute for u(n−mk) from (2.2.8) and use the double series relation

(2.2.6) to get

Ψ(n) =
n∗∑

k=0

(−γ)k
(α− nr +mrk)Γp(α− nr + kp)

k!

×
n∗−k∑

j=0

γj v(n−mk +mj)

j! Γp(p+ α− nr +mrk +mrj − jp) .

=
n∗∑

j=0

γj

j!
v(n−mj)

j∑

k=0

(−1)k
(
j

k

)
(α− nr +mrk)Γp(α− nr + kp)

Γp(p+ α− nr +mrj − jp+ kp)
.

(2.2.10)

Now in Lemma - 2.2.1, put g(k) =
(

0
k

)
, then we �nd that f(j) = Γp(α− nr + jp)

from the �rst series (2.2.4); whereas the second series (2.2.5) yields the series
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orthogonality relation:

j∑

k=0

(−1)k
(
j

k

)
(α− nr +mrk)Γp(α− nr + kp)

Γp(p+ α− nr +mrj − jp+ kp)
=

(
0

j

)
.

Thus we obtain from (2.2.10)

Ψ(n) =
n∗∑

j=0

γj

j!
v(n−mj)

(
0

j

)
= v(n),

as desired.

Now for the converse part, denoting the right hand side of (2.2.8) by Ω(n) and

substituting the series for v(n−mk) from (2.2.9), we get

Ω(n) =
n∗∑

k=0

γk

Γp(p+ α− nr +mrk − kp) k!

n∗−k∑

j=0

(−γ)j(α− nr +mrk +mrj)

j!

×Γp(α− nr +mrk + jp) u(n−mk −mj).

Again using the double series relation (2.2.6), this gives

Ω(n) =
n∗∑

j=0

(−γ)j
(α− nr +mj)

j!
u(n−mj)

×
j∑

k=0

(−1)k
(
j

k

)
Γp(α− nr +mrk + jp− kp)
Γp(p+ α− nr +mrk − kp)

= u(n) +
n∗∑

j=1

(−γ)j(α− nr +mj)

j!
u(n−mj)

j∑

k=0

(−1)k
(
j

k

)

×Γp(α− nr +mrk + jp− kp)
Γp(p+ α− nr +mrk − kp) .

But

Γp(α− nr +mrk + jp− kp)
Γp(p+ α− nr +mrk − kp) =

j−1∑

i=0

Ai k
i,

for appropriate coe�cients Ai, hence

Ω(n) = u(n) +
n∗∑

j=1

(−γ)j(α− nr +mj)

j!
u(n−mj)

j∑

k=0

(−1)k
(
j

k

) j−1∑

i=0

Ai k
i.

Here the inner most two summations represent the jth di�erence of the polynomial
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of degree j − 1 which in view of (1.3.14), leads us to Ω(n) = u(n).

Thus, (2.2.8)⇔(2.2.9).

Theorem 2.2.2. If {u(∗)} and {v(∗)} are bounded sequences, a = n ∈ N ∪ {0}
and b ∈ N, then N =∞ and there hold the series relations

u(n) =
∞∑

k=0

γk

Γp(p+ α− nr − brk − kp)k!
v(n+ bk) (2.2.11)

⇔

v(n) =
∞∑

k=0

(−γ)k(α− nr − brk)Γp(α− nr + kp)

k!
u(n+ bk). (2.2.12)

Proof. We �rst show that (2.2.11)⇒(2.2.12). Following the method of proof of

Theorem - 2.2.1, we begin with

Ξ(a) =
∞∑

k=0

(−γ)k(α− nr − brk)Γp(α− nr + kp)

k!
u(n+ bk)

=
∞∑

k=0

(−γ)k(α− nr − brk)Γp(α− nr + kp)

k!

×
∞∑

j=0

γj v(n+ bk + bj)

j! Γp(p+ α− nr − brk − brj − jp) .

Here, applying the double series relation

∞∑

k=0

∞∑

j=0

A(k, j) =
∞∑

j=0

j∑

k=0

A(k, j − k),

this becomes

Ξ(n) =
∞∑

j=0

γjv(n+ bj)

j!

j∑

k=0

(−1)k
(
j

k

)
(α− nr − brk)Γp(α− nr + kp)

Γp(p+ α− nr − brj − jp+ kp)
.(2.2.13)

We now put g(k) =
(

0
k

)
in (2.2.4), to get f(j) = Γp(α − nr + jp) back and the

same substitutions in (2.2.5) yields

j∑

k=0

(−1)k
(
j

k

)
(α− nr − brk)Γp(α− nr + kp)

Γp(p+ α− nr − brj − jp+ kp)
=

(
0

j

)
. (2.2.14)

On applying (2.2.14) in (2.2.13), we �nd

Ξ(n) =
∞∑

j=0

γjv(n+ bj)

j!

(
0

j

)
= v(n).
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For the converse part, we begin with

Θ(n) =
∞∑

k=0

γk

Γp(p+ α− nr − brk − kp)k!
v(n+ bk)

=
∞∑

k=0

γk

Γp(p+ α− nr − brk − kp)k!

∞∑

j=0

(−γ)j(α− nr − brk − bjr)
j!

×Γp(α− nr − brk + jp) u(n+ bk + bj)

=
∞∑

j=0

(−1)jγj(α− nr − bjr)
j!

u(n+ bj)

×
j∑

k=0

(−1)k
(
j

k

)
Γp(α− nr − brk + jp− kp)
Γp(p+ α− nr − brk − kp)

= u(n) +
∞∑

j=1

(−1)jγj(α− nr − bjr)
j!

u(n+ bj)

×
j∑

k=0

(−1)k
(
j

k

)
Γp(α− nr − brk + jp− kp)
Γp(p+ α− nr − brk − kp) .

As in the earlier proof, here also the ratio of two p-gamma functions in the last

expression represents a polynomial of degree j − 1 in k, that is

Γp(α− nr − brk + jp− kp)
Γp(p+ α− nr − brk − kp) =

j−1∑

i=0

Bi k
i,

say, then

Θ(n) = u(n) +
∞∑

j=0

(−1)jγj(α− nr − bjr)
j!

u(n+ bj)

j∑

k=0

(−1)k
(
j

k

) j−1∑

i=0

Bi k
i

= u(n) + 0

= u(n)

in view of (1.3.14). Thus (2.2.11)⇔(2.2.12).

2.3 Particular cases

Here, we derived inverse series relation of a general class of polynomial

(2.1.14) with its particular cases, the p-deformed version of the Wilson polyno-

mials and the p-deformed version of the Racah polynomials along their inverse

series with the help of Theorem - 2.2.1 and the p-deformed version of the Bessel

function along with its inverse series with the help of Theorem - 2.2.2. Further,
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we obtained the p-deformed Continuous dual Hahn polynomial, the p-deformed

continuous Hahn polynomial, the p-deformed Jacobi polynomial, the p-deformed

Laguerre polynomial and the p-deformed Hahn polynomial as a particular cases

of the p-deformed Wilson polynomials and the p-deformed Racah polynomial with

their inverse series relation. Now, the replacement of v(n) by v(n)Γp(α− nr + p)

in Theorem - 2.2.1 produces the inverse pair

u(n) =

bn/mc∑

k=0

γk
Γp(α− nr +mrk + p)

Γp(p+ α− nr +mrk − kp)k!
v(n−mk)

⇔

Γp(α− nr + p)v(n) =

bn/mc∑

k=0

(−γ)k
(α− nr +mrk)Γp(α− nr + kp)

k!
u(n−mk).

Simpli�ed form of it is given by,

u(n) =

bn/mc∑

k=0

γk
Γp(α− nr +mrk + p)

Γp(p+ α− nr +mrk − kp)k!
v(n−mk) (2.3.1)

⇔

v(n) =

bn/mc∑

k=0

(−γ)k
(α− nr +mrk)Γp(α− nr + kp+ p)

(α− nr + kp)Γp(α− nr + p)k!
u(n−mk).(2.3.2)

Next, the substitution v(n) = (−m)nΓp(s + p)/((c)n−sΓp(s − np + p)n!)xn, α =

s, r = p and replacing γ by γ/c in (2.3.1) and (2.3.2) provide us the p-deformed

generalized Humbert polynomials (2.1.14) and its inverse series:

(−mx)n

n!
xn =

bn/mc∑

k=0

(−γ)kcn−k−s
(s− np+mkp)Γp(s− np+ kp+ p)

(s− np+ kp)Γp(s+ p)k!

×Pn−mk,p(m,x, γ, s, c). (2.3.3)

The substitutions γ = 1, c = 1 and s = −ν in (2.1.14) and (2.3.3) yield the

inverse pair of the p-deformed Humbert polynomials:

Πν
n,m,p(x) =

bn/mc∑

k=0

(−mx)n−mk

Γp(p− ν − np+ (m− 1)kp)(n−mk)!k!
(2.3.4)

⇔
(−mx)n

n!
=

bn/mc∑

k=0

(−1)k
(−ν − np+mkp)

(−ν − np+ kp) k!
Γp(p− ν − np+ kp) Πν

n−mk,m,p(x).

(2.3.5)
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For p = 1, this coincides with (2.1.4) and its inverse series (2.1.5). In fact, this

polynomial constitutes the class {Πν
n,m,p(x);n = 0, 1, 2, . . .} of polynomials which

include several well known polynomials as well as not so well known polynomials.

Some worth mentioning particular polynomials are deduced below. If we substitute

ν = 1/m in (2.3.4) and (2.3.5), then we get the inverse pair of the p-deformed

Kinney polynomial as follows.

Pn,p(m,x) =

bn/mc∑

k=0

(−mx)n−mk

Γp(p− 1/m− np+mkp− kp)(n−mk)!k!

⇔
(−mx)n

n!
=

bn/mc∑

k=0

(−1)k
(−1/m− np+mkp)

(−1/m− np+ kp)k!
Γp(p− 1/m− np+ kp)

×Pn−mk,p(m,x).

For m = 3 and ν = 1/2, the series (2.3.4) and (2.3.5) would reduce to the p-

deformed Pincherle polynomial along with its inverse series relation in the form:

Pn,p(x) =

bn/3c∑

k=0

(−3x)n−3k

Γp(p− 1/2− np+ 2kp)(n− 3k)!k!
(2.3.6)

⇔
(−3x)n

n!
=

bn/3c∑

k=0

(−1)k
(−1/2− np+ 3kp)

(−1/2− np+ kp)k!
Γp(p− 1/2− np+ kp)Pn−3k,p(x).

(2.3.7)

The p-deformed Gegenbauer polynomial and its inverse are the special cases m = 2

of (2.3.4) and (2.3.5) which occur in the form:

Cν
n,p(x) =

bn/2c∑

k=0

(−2x)n−2k

Γp(p− ν − np+ kp)(n− 2k)!k!
(2.3.8)

⇔
(−2x)n

n!
=

bn/2c∑

k=0

(−1)k
(−ν − np+ 2kp)

(−ν − np+ kp)k!
Γp(p− ν − np+ kp)Cν

n−2k,p(x).

(2.3.9)

Further, if ν = 1/2 then (2.3.8) and (2.3.9) get reduced to the p-deformed Legendre

polynomial and its inverse series relation occur in the form:

Pn,p(x) =

bn/2c∑

k=0

(−2x)n−2k

Γp(p− 1/2− np+ kp)(n− 2k)!k!
(2.3.10)

⇔
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(−2x)n

n!
=

bn/2c∑

k=0

(−1)k
(−1/2− np+ 2kp)

(−1/2− np+ kp)k!
Γp(p− 1/2− np+ kp)Pn−2k,p(x).

(2.3.11)

All these polynomials reduce to their classical forms together with their inverse

series for p = 1 [26, p.697]. Recently, the p-Bessel function was introduced [57,

Eq. (3.1)]:

Jn,p(x) =
∞∑

k=0

(−1)k

Γp(p+ np+ kp)k!

(x
2

)n+2k

. (2.3.12)

It is interesting to note that the set of substitutions v(n) = (x/2)n, a = n, b =

2, γ = −1, r = −p and α = 0 in series (2.2.11) of Theorem - 2.2.2 leads us to the

deformed Bessel function (2.3.12) with u(n) = Jn,p(x). The series (2.2.12) then

yields the p-deformed Neumann's expansion:

(x
2

)n
=
∞∑

k=0

(np+ 2pk)Γp(np+ kp)

k!
Jn+2k,p(x) (2.3.13)

as its inverse series. The usual Neumann's expansion occurs if p = 1 [53, Ex.22,

p. 122].

The classical orthogonal polynomials such as the Laguerre polynomial, Her-

mite polynomial, Legendre polynomial, Jacobi polynomial etc. are possessing

the hypergeometric function forms pFq[∗] in which p = 1, 2 and q = 0, 1. The

Hahn polynomial possesses 3F2[1] form. We consider the 4F3[∗] function forms

polynomials; they are the Wilson polynomials [34, Eq.(1.1.1), p.23] (also [5], [69])

Wn(x2; a, b, c, d) = (a+ b)n(a+ c)n(a+ d)n

×
n∑

k=0

(−n)k(a+ b+ c+ d+ n− 1)k(a+ ix)k(a− ix)k
(a+ b)k(a+ c)k(a+ d)kk!

(2.3.14)

and the Racah polynomials (also referred to as Racah coe�cients or 6-j symbols)

[34, Eq.(1.2.1), p.25] (also [5], [19, Eq.(7.2.16), p.165])

Rn (x(x+ c+ d+ 1); a, b, c, d)

=
n∑

k=0

(−n)k(a+ b+ n+ 1)k(x+ c+ d+ 1)k(−x)k
(1 + a)k(b+ d+ 1)k(c+ 1)kk!

. (2.3.15)

These polynomials encompass besides the Hermite, Laguerre and Jacobi poly-

nomials, several other polynomials such as the polynomials of Hahn, dual Hahn,
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continuous Hahn, continuous dual Hahn, Meixner-Pollaczek, Meixner, Krawtchouk

and Charlier. The inverse series of these polynomials are given by [9]

(a+ ix)n(a− ix)n
(a+ b)n(a+ c)n(a+ d)n

=
n∑

k=0

(−n)k(a+ b+ c+ d+ 2k − 1)

(a+ b+ c+ d+ k − 1)n+1

× Wk(x
2; a, b, c, d)

(a+ b)k(a+ c)k(a+ d)k k!
(2.3.16)

and

(x+ c+ d+ 1)n(−x)n
(a+ 1)n(b+ d+ 1)n(c+ 1)n

=
n∑

k=0

(−n)k (a+ b+ 2k + 1)

(a+ b+ k + 1)n+1k!

×Rk (x(x+ c+ d+ 1); a, b, c, d) . (2.3.17)

Here, we extend (2.3.14) and (2.3.15) in the forms:

Wn,p(x
2; a, b, c, d) = (a+ b)n,p(a+ c)n,p(a+ d)n,p

×
n∑

k=0

(−n)k(a+ b+ c+ d+ np− p)k,p(a+ ix)k,p(a− ix)k,p
(a+ b)k,p(a+ c)k,p(a+ d)k,pk!

(2.3.18)

and

Rn,p (x(x+ c+ d+ p); a, b, c, d)

=
n∑

k=0

(−n)k(a+ b+ np+ p)k,p(x+ c+ d+ p)k,p(−x)k,p
(p+ a)k,p(b+ d+ p)k,p(c+ p)k,pk!

(2.3.19)

where p > 0, x ∈ R and a, b, c, d ∈ C in general. We call (2.3.18) as the

p-deformed Wilson polynomials and (2.3.19) as the p-deformed Racah polynomi-

als. It is readily seen that (2.3.18) and (2.3.19) reduce to (2.3.14) and (2.3.15)

respectively, if p = 1. For obtaining inverse series relation of these polynomials,

we proceed as follows. First replacing αtaking r = 2p, γ = 1, a = n ∈ N and

b = −1, then N = n in Theorem - 2.2.1 and then reversing the series, we �nd the

pair:

u(n) =
n∑

k=0

1

Γp(p+ α− np− kp)(n− k)!
v(k)

⇔

v(n) =
n∑

k=0

(−1)n−k(α− 2kp)Γp(p+ α− np− kp)
(α− np− kp)(n− k)!

u(k).
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Replacing u(n) by u(n)/Γp(p+α) and v(n) by (−1)nv(n) and using Pochhammer

p-symbol, we �nd

u(n) =
n∑

k=0

(−1)k

(p+ α)−(n+k),p(n− k)!
v(k)

⇔

(−1)nv(n) =
n∑

k=0

(−1)n−k(α− 2kp)(p+ α)−(n+k),p

(α− np− kp)(n− k)!
u(k).

Here we employ the formula (1.3.6) with z = p+ α, n = 0 and replace k by n+ k

to get

u(n) =
n∑

k=0

(−1)n(−α)n+k,p

(n− k)!
v(k)

⇔

v(n) =
n∑

k=0

(−1)n(α− 2kp)

(α− np− kp)(−α)n+k,p(n− k)!
u(k).

Now, replacing u(n) by (−1)nu(n) and rewriting the second series in slightly

di�erent form, it becomes

u(n) =
n∑

k=0

(−α)n+k,p

(n− k)!
v(k)

⇔

v(n) =
n∑

k=0

(−1)n+k(2kp− α)

(−α)n+k+1,p(n− k)!
u(k).

Finally, using the formula (1.3.8) with z = −α, m = n and then replacing n by

k, this pair get transformed to the form:

u(n) =
(−α)n,p
n!

n∑

k=0

(−n)k(−α + np)k,p v(k) (2.3.20)

⇔

v(n) =
1

(−α)n,pn!

n∑

k=0

(−n)k(2kp− α)

(−α + np)k+1,p

u(k). (2.3.21)

The inverse series of (2.3.18) and (2.3.19) are now obtainable by comparing them

with the series (2.3.20). In fact, the substitutions α = −a− b− c− d+ p and

v(n) = (−1)n(a+ ix)n,p(a− ix)n,p/((a+ b)n,p(a+ c)n,p(a+ d)n,p n!),

implies

u(n) = Wn,p(x
2; a, b, c, d)(a+ b+ c+ d− p)n,p/((a+ b)n,p(a+ c)n,p(a+ d)n,p n!),
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consequently, from the inverse series (2.3.21), we �nd

(a+ ix)n,p(a− ix)n,p
(a+ b)n,p(a+ c)n,p(a+ d)n,p

=
n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p

× Wk,p(x
2; a, b, c, d)

(a+ b)k,p(a+ c)k,p(a+ d)k,p k!
. (2.3.22)

Likewise, the inverse series of (2.3.19) occurs by putting α = −a− b− p,
v(n) = (−1)n(x+ c+ d+ p)n,p(−x)n,p/((p+ a)n,p(b+ d+ p)n,p(c+ p)n,p n!),

and
u(n) = Rn,p (x(x+ c+ d+ p); a, b, c, d) (a+ b+ p)n,p/ n!

in (2.3.21). It is given by

(x+ c+ d+ p)n,p(−x)n,p
(a+ p)n,p(b+ d+ p)n,p(c+ p)n,p

=
n∑

k=0

(−n)k (a+ b+ 2kp+ p)

(a+ b+ kp+ p)n+1,pk!

×Rk,p (x(x+ c+ d+ p); a, b, c, d) .

(2.3.23)

Next, p-Deformed Continuous dual Hahn polynomial de�ned by Sn,p(x
2; a, b, c) is

obtained from (2.3.18) by dividing by (a+ d)n,p and then taking d→∞. That is,

Sn,p(x
2; a, b, c) = lim

d→∞

Wn,p(x
2; a, b, c, d)

(a+ d)n,p

= (a+ b)n,p(a+ c)n,p

n∑

k=0

(−n)k(a+ ix)k,p(a− ix)k,p
(a+ b)k,p(a+ c)k,pk!

× lim
d→∞

{
(a+ b+ c+ d+ np− p)k,p

(a+ d)k,p

}

= (a+ b)n,p(a+ c)n,p

n∑

k=0

(−n)k(a+ ix)k,p(a− ix)k,p
(a+ b)k,p(a+ c)k,pk!

.

(2.3.24)

Now, returning to the pair (2.2.2) and (2.2.3) and substituting br = −p and a = n,

then we get

u(n) =
N∑

k=0

γk

k! Γp(α + p)
v(n+ bk)

⇔

v(n) =
N∑

k=0

(−γ)k(α + kp)Γp(α + kp)

k!
u(n+ bk).
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Here replacing u(n) by u(n)/Γp(α+p) and putting γ = 1, b = −1 then it becomes

u(n) =
n∑

k=0

1

k!
v(n− k)⇔ v(n) =

n∑

k=0

(−1)k

k!
u(n− k).

If we reverse these series, then we get

u(n) =
n∑

k=0

1

(n− k)!
v(k)⇔ v(n) =

n∑

k=0

(−1)k+n

(n− k)!
u(k). (2.3.25)

From this inverse pair we get the inverse series of the polynomial (2.3.24) by

choosing

v(n) = (−1)n(a+ ix)n,p(a− ix)n,p/((a+ b)n,p(a+ c)n,pn!)

then

u(n) = Sn,p(x
2; a, b, c)/((a+ b)n,p(a+ c)n,pn!),

and consequently, we �nd the inverse series:

(a+ ix)n,p(a− ix)n,p
(a+ b)n,p(a+ c)n,p

=
n∑

k=0

(−n)k
(a+ b)k,p(a+ c)k,pk!

Sk,p(x
2; a, b, c) u(k).

The p-deformed continuous Hahn polynomials is obtained from (2.3.18) by dividing

(−2t)nn! and replacing a by a− it, b by b− it, c by c+ it, d by d+ it, x by x+ t

and then taking the limit t→∞, we have

pn,p(x; a, b, c, d)

= lim
t→∞

Wn,p((x+ t)2; a− it, b− it, c+ it, d+ it)

(−2t)nn!

= lim
t→∞

{
(a+ b− 2it)n,p(a+ c)n,p(a+ d)n,p

(−2t)nn!

×
n∑

k=0

(−n)k(a+ b+ c+ d+ np− p)k,p(a+ ix)k,p(a− ix− 2it)k,p
(a+ b− 2it)k,p(a+ c)k,p(a+ d)k,pk!

}

= (a+ c)n,p(a+ d)n,p

×
n∑

k=0

(−1)k(a+ b+ c+ d+ np− p)k,p(a+ ix)k,p
(a+ c)k,p(a+ d)k,p(n− k)!k!

. (2.3.26)

Next, the choice u(n) = pn,p(x; a, b, c, d)(a+ b+ c+ d− p)n,p/((a+ c)n,p(a+ d)n,p),

corresponding to the substitutions v(n) = (a + ix)n,p/((a + c)n,p(a + d)n,pn!) and

−α = a + b + c + d − p in (2.3.20) and (2.3.21) respectively, leads us to the
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polynomial (2.3.26) and its inverse series:

(a+ ix)n,p
(a+ c)n,p(a+ d)n,p n!

=

×
n∑

k=0

(−1)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)k+1,p(a+ c)k,p(a+ d)k,p(n− k)!

pk,p(x; a, b, c, d).

The p-deformed Jacobi polynomials can be found from (2.3.18) by multiplying

1/t2nn!, the substituting a = b = 1
2
(α+1), c = 1

2
(β+1)+it, d = 1

2
(β+1)−it, x→

t
√

1
2
(1− x) and taking t→∞. That is,

Pα,β
n,p (x) = lim

t→∞

Wn,p(
1
2
(1− x)t2; 1

2
(α + 1), 1

2
(α + 1), 1

2
(β + 1) + it, 1

2
(β + 1)− it)

(t)2nn!

= lim
t→∞

{
(α + 1)n,p

(
1
2
(α + β + 2) + it

)
n,p

(
1
2
(α + β + 2)− it

)
n,p

t2nn!

×
n∑

k=0

(−n)k

(
1
2
(α + 1) + it

√
1
2
(1− x)

)
k,p

(
1
2
(α + 1)− it

√
1
2
(1− x)

)
k,p

(α + 1)k,p
(

1
2
(α + β + 2) + it

)
k,p

(
1
2
(α + β + 2)− it

)
k,p
k!

×(α + β + 2 + np− p)k,p
}

=
(α + 1)n,p

n!

n∑

k=0

(−n)k(α + β + 2 + np− p)k,p
(α + 1)k,pk!

(
1− x

2

)k
. (2.3.27)

This reduces to the classical Jacobi polynomial [53, eq(1), page 254], when p = 1.

The inverse series is subject to the choice v(n) = (1− x)n/(2n(1 + α)n,pn!) and α

is replaced by −α − β − 2 + p in (2.3.20) and (2.3.21). With these changes, we

�nd the polynomial (2.3.27) and its inverse series

(
1− x

2

)n
= (1 + α)n,p

n∑

k=0

(−n)k(α + β + 2 + 2kp− p)
(α + β + 2 + kp− p)n+1,p(α + 1)k,p

Pα,β
k,p (x).

The p-deformed Laguerre polynomial, de�ned in [57] can be obtained from the

p-deformed Jacobi polynomial (2.3.27) by letting x→ 1− 2x/β and then making

β →∞. That is,

L(α)
n,p(x) = lim

β→∞
Pα,β
n,p

(
1− 2x

β

)

= lim
β→∞

(α + 1)n,p
n!

n∑

k=0

(−n)k(α + β + 2 + np− p)k,p
(α + 1)k,pk!

(
x

β

)k
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= (α + 1)n,p

n∑

k=0

(−1)k

(α + 1)k,p(n− k)!k!
xk.

Its inverse series

xn

(α + 1)n,p
=

n∑

0

(−n)k
(α + 1)k,p

L
(α)
k,p(x)

follows from the second series in (2.3.25) with v(n) = (−1)nxn/((α + 1)n,pn!).

The p-deformed Hahn polynomial is obtained from the p-deformed Racah

polynomials (2.3.19) by substituting c+ p = −N and taking d→∞. Thus,

Qn,p(x; a, b,N) = lim
d→∞

Rn,p (x(x+ d−N); a, b,−N − p, d)

= lim
d→∞

n∑

k=0

(−n)k(a+ b+ np+ p)k,p(x+ d−N)k,p(−x)k,p
(p+ a)k,p(b+ d+ p)k,p(−N)k,pk!

=
n∑

k=0

(−n)k(a+ b+ np+ p)k,p(−x)k,p
(p+ a)k,p(−N)k,pk!

,

where n = 0, 1, 2, . . . , N . When −α = a + b + p, v(n) = (−x)k,p/((p +

a)k,p(−N)k,pk!) then u(n) = Qn,p(x; a, b,N)(a+ b+ p)n,p/n! in (2.3.20) and hence

from (2.3.21), we obtain

(−x)n,p
(p+ a)n,p(−N)n,p

=
n∑

k=0

(−n)k(a+ b+ 2kp+ p)

(a+ b+ kp+ p)n+1,pk!
Qk,p(x; a, b,N).

Similarly one can obtained p-deformed Hermite polynomial, p-deformed Meixner

- Pollaczek polynomial, p-deformed Meixner polynomial, p-deformed Krawtchouk

polynomial and p-deformed Charlier polynomial with their inverse series relation

from (2.3.14) and (2.3.18) by assigning suitable value of parameters.

2.4 Di�erential equation of certain p-polynomials
In this section, we derive the di�erential equation of the p-deformed gen-

eralized Humbert polynomial. It was shown by Costa and Levine [7] that the

homogeneous di�erential equation:

(1− xN)y(N) + AN−1x
N−1y(N−1) + AN−2x

N−2y(N−2) + · · ·+ A1xy
′ + A0y = 0,

(2.4.1)

has a �nite polynomial solutions if and only if 0 ≤ r < N, ∀r, and ∃ n ≥ 0 such

that n mod N = r, where n is a root of the recurrence relation and y(j) is a jth

derivative of y with respect to x for 1 ≤ j ≤ N .
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Let the sequence (fr)
n
r=0 be given by fr = f(r), where

f(r) = (n− r)
(
−s+ rp+

(
n− r
m

)
p

)

m−1,p

.

We shall use the forward di�erence operator: ∆ and the shift operator: E which

are de�ned by

∆ft = ft+1 − ft, Ekft = ft+k.

The relation between ∆ and E is given by ∆ = E − 1, where 1 is the identity

operator de�ned by 1f = f. Now, the explicit representation of (2.1.14) is given

by

Pn,p(m,x, γ, s, c) =

bn/mc∑

k=0

γkcs−n+mk−k(−mx)n−mk

(p+ s)−n+mk−k,p(n−mk)! k!
. (2.4.2)

In view of the formula:

(p+ s)−n+mk−k,p = (p+ s)−(n−mk+k),p =
(−1)n−mk+k

(p− p− s)n−mk+k,p

,

the polynomial (2.4.2) changes to

Pn,p(m,x, γ, s, c) =

bn/mc∑

k=0

(−1)kγkcs−n+mk−k (−s)n−mk+k,p

(n−mk)! k!
(mx)n−mk. (2.4.3)

We obtain the di�erential equation for this polynomial in

Theorem 2.4.1. Let s ∈ C, p > 0 and m ∈ N. Then the polynomials y =

Pn,p(m,x, γ, s, c) are a particular solution of the mth order di�erential equation in

the form

γcm−1y(m) +
m∑

r=0

arx
ry(r) = 0, (2.4.4)

where ar =
mm−1∆rf0

r!
.

Proof. Let n = ml + q, where bn/mc = l and 0 ≤ q ≤ m− 1. Now, rth derivative

of (2.4.3) is given by

DrPn,p(m,x, γ, s, c) =

b(n−r)/mc∑

k=0

(−1)kγkcs−n+mk−k(−s)n−mk+k,pm
n−mkxn−mk−r

(n−mk − r)! k!
.
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Hence,

xrDrPn,p(m,x, γ, s, c) =

b(n−r)/mc∑

k=0

(−1)kγkcs−n+mk−k(−s)n−mk+k,p(mx)n−mk

(n−mk − r)! k!
.

(2.4.5)

If r is replaced by m then the from the �rst expression of rth derivative, we

immediately get

DmPn,p(m,x, γ, s, c) =

b(n−m)/mc∑

k=0

(−1)kγkcs−n+mk−k(−s)n−mk+k,pm
n−mkxn−mk−m

(n−mk −m)! k!

=
l−1∑

k=0

(−1)kγkcs−n+mk−k(−s)n−mk+k,pm
m(mx)n−mk−m

(n−mk −m)! k!
,

(2.4.6)

where
⌊n− r

m

⌋
=




l, if r ≤ q

l − 1, if r > q
.

Now substituting the expression (2.4.5) and (2.4.6) on the left hand side of the

di�erential equation (2.4.4) and comparing the corresponding coe�cients, we �nd

that

m∑

r=0

(
n−mk

r

)
r!ar =

mmk(−s)n−mk+k+m−1,p

(−s)n−mk+k,p

= mmk(−s+ np−mkp+ kp)m−1,p, (2.4.7)

where k = 0, 1, 2, . . . , l − 1, and

q∑

r=0

(
n−ml
r

)
r!ar = mml(−s+ np−mlp+ lp)m−1,p.

Since n = ml + q ⇒ n−ml = q, we have

q∑

r=0

(
q

r

)
r!ar = mm−1(n− q)

(
−s+ qp+

(
n− q
m

)
p

)

m−1,p

. (2.4.8)

Now substituting ar =
mm−1∆rf0

r!
in (2.4.8), we get

q∑

r=0

(
q

r

)
∆rf0 = (n− q)

(
−s+ qp+

(
n− q
m

)
p

)

m−1,p

,
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that is,

(1 + ∆)qf0 = (n− q)
(
−s+ qp+

(
n− q
m

)
p

)

m−1,p

. (2.4.9)

But 1 + ∆ = E, the shift operator, hence (2.4.9) becomes

Eqf0 = f(q) = (n− q)
(
−s+ qp+

(
n− q
m

)
p

)

m−1,p

.

For k = 0, 1, 2, . . . , l − 1, (2.4.7) can be written in the form

m∑

r=0

(
n−mk

r

)
∆rf0 = fn−mk = mk(−s+ np−mkp+ kp)m−1,p. (2.4.10)

Since t 7→ f(t) is a polynomial of degree m, the equality (2.4.10) is a forward

di�erence formula for f at the point t = n−mk. Thus, the proof is completed for

the choice

ar =
mm−1∆rf0

r!
=
mm−1

r!
∆r

(
n

(
np−ms

m

)

m−1,p

)
.

We now illustrate the special instances of the di�erential equation (2.4.4).

In particular, the equation of the Pincherle polynomial, Gegenbauer polynomial

and thereby the Legendre polynomial. We choose r = 0, 1, 2 and 3, to get

a0 = mm−1∆0f0 = mm−1n

(
np−ms

m

)

m−1,p

, (2.4.11)

a1 = mm−1∆f0 = mm−1(E − 1)f(0) = mm−1(f(1)− f(0))

= mm−1

[
(n− 1)

(
(n− 1)p+m(−s+ p)

m

)

m−1,p

−n
(
np−ms

m

)

m−1,p

]
(2.4.12)

a2 =
mm−1∆2f0

2!
=
mm−1

2!
(E − 1)2f0 =

mm−1

2!
(E2 − 2E + 1)f(0)

=
mm−1

2!
(f(2)− 2f(1) + f(0))

=
mm−1

2!

[
(n− 2)

(
(n− 2)p+m(−s+ 2p)

m

)

m−1,p
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−2(n− 1)

(
(n− 1)p+m(−s+ p)

m

)

m−1,p

+ n

(
np−ms

m

)

m−1,p

]
,

(2.4.13)

and

a3 =
mm−1∆3f0

3!
=
mm−1

3!
[f(3)− 3(f(2) + 3f(1)− f(0)]

=
mm−1

3!

[
(n− 3)

(
(n− 3)p+m(−s+ 3p)

m

)

m−1,p

−3(n− 2)

(
(n− 2)p+m(−s+ 2p)

m

)

m−1,p

+ 3(n− 1)

×
(

(n− 1)p+m(−s+ p)

m

)

m−1,p

− n
(
np−ms

m

)

m−1,p

]
. (2.4.14)

Now choosing m = 3 in (2.4.11), (2.4.12), (2.4.13) and (2.4.14), we obtain

a0 = 32n

(
np− 3s

3

)

2,p

= n(np− 3s)(np− 3(s− p)), (2.4.15)

a1 = 32

[
(n− 1)

(
(n− 1)p+ 3(−s+ p)

3

)

2,p

− (n)

(
np− 3s

3

)

2,p

]

= 3np(np− 2s+ p)− (3s− 2p)(3s− 5p), (2.4.16)

a2 = 12ps− 18p2, (2.4.17)

a3 = −4p2. (2.4.18)

Further putting m = 3, γ = 1, c = 1 and s = −λ in the di�erential equation

(2.4.4), then from the particular values (2.4.15), (2.4.16), (2.4.17) and (2.4.18),

we arrive at the di�erential equation of p-deformed Pincherle polynomial. In fact,

from the general form:

y(3) +
3∑

r=0

arx
ry(r) = 0,

that is,

(1 + a3x
3)y(3) + a0y + a1xy

(1) + a2x
2y(2) = 0,

we obtain the equation:

(
1− 4p2x3

)
y(3) − 6

(
2pλ+ 3p2

)
x2y(2) + [3np(np+ 2λ+ p)− (3λ+ 2p)(3λ+ 5p)]xy(1)

+ [n(np+ 3λ)(np+ 3(λ+ p))] y = 0.

Here the choice p = 1 yields the di�erential equation of the Pincherle polynomial

due to Pierre Humbert [30, p.23].
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Next, for obtaining the equation for the p-deformed Gegenbauer polynomial, we

put m = 2, γ = 1, c = 1 and s = −ν in (2.4.4) to get

y(2) +
2∑

r=0

arx
ry(r) = 0,

or equivalently,

(1 + a2x
2)y′′ + a1xy

′ + a0y = 0.

Now from (2.4.11), (2.4.12) and (2.4.13), we have

a0 = n (np− 2s) ,

a1 = 2

[
(n− 1)

(
(n− 1)p+ 2(−s+ p)

2

)

1,p

− (n)

(
np− 2s

2

)

1,p

]

= 2

[
(n− 1)

(
(n− 1)p+ 2(−s+ p)

2

)
− (n)

(
np− 2s

2

)]
= 2s− p,

a2 = −p.

With these a0, a1 and a2, the above equation takes the precise form given by

(1− px2)y′′ + n(np+ 2ν)y − (2ν + p)xy′ = 0,

where y = Cν
n,p(x) given by (2.3.8). When p = 1, this reduces to the di�erential

equation of the Gegenbauer polynomial [53, Eq.(1.4), p.279]. The well known

special case ν = 1/2 of this equation corresponds to the di�erential equation:

(1− px2)P ′′n,p(x)− (1 + p)xP ′n,p(x) + n(np+ 1)Pn,p(x) = 0

of p-deformed Legendre polynomial (2.3.10). Here also, for p = 1, this reduces to

the di�erential equation of Legendre polynomial Pn(x) (cf. [53, Eq.(5), p.161]).

2.5 Generating function relations

Objective of this section is to derive generating function relation or GFRs

of the p-deformed generalized Humbert polynomials(2.1.14). This will be accom-

plished with the help of the p-deformed version of the identity:

(1 + z)a+1

1− zb =
∞∑

n=0

(
a+ bn+ n

n

)
wn,

where a, b ∈ C and w = z(1 + z)−b−1 due to G. Pólya at el [52, Ex. 212 and Ex.

216, p. 146],
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Theorem 2.5.1. For p > 0, a, b ∈ C and w =
z

(1 + z)b+1
.

(1 + z)a/p+1

1− zb =
∞∑

n=0

Γp(a+ bnp+ np+ p)

Γp(a+ bnp+ p)n!
p−nwn. (2.5.1)

Proof. Here we use a technique of Lagrange's series[62, Eq.(3), p.354] due to

Lagrange.

f(z)

1− wg′(z)
=

∞∑

n=0

wn

n!
Dn
z [f(z)(g(z))n]z=z0 , D =

d

dz
,

where w =
z − z0

g(z)
.

In order to derive (2.5.1), take z0 = 0, f(z) = (1 + z)a/p and g(z) = (1 + z)b+1 ⇒
w =

z

(1 + z)b+1

f(z)

1− wg′(z)
=

(1 + z)a/p

1− w(b+ 1)(1 + z)b

=
(1 + z)a/p

1− z

(1 + z)b+1
(b+ 1)(1 + z)b

=
(1 + z)a/p

1− z

(1 + z)
(b+ 1)

=
(1 + z)a/p+1

1− zb
∞∑

n=0

wn

n!
Dn
z [f(z)(g(z))n]z=z0 =

∞∑

n=0

wn

n!
Dn
z

[
(1 + z)

a
p

+bn+n
]
z=0

=
∞∑

n=0

wn

n!

(
a

p
+ bn+ n

)(
a

p
+ bn+ n− 1

)

× · · ·
(
a

p
+ bn+ n− n+ 1

)

=
∞∑

n=0

wn

pn n!
(a+ bnp+ np) (a+ bnp+ np− p)

× · · · (a+ bnp+ np− np+ p)

=
∞∑

n=0

wn(−1)n

pn n!
(−a− bnp− np)n,p

=
∞∑

n=0

wn(−1)n

pn n!
(p− a− bnp− p− np)n,p
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=
∞∑

n=0

wn

pn n!
(a+ bnp+ p)n,p

=
∞∑

n=0

Γp(a+ bnp+ np+ p)

Γp(a+ bnp+ p)n!
p−nwn

This completes the proof. (2.5.1) provides p-version of a result given by G. Pólya

at el [52, p. 146, Ex. 216 and Ex. 212](cf. with p = 1).

We de�ne a function

R(An, α, γ, r,m, p) =

bn/mc∑

k=0

Γp(−α +mrk + p)

Γp(−α +mrk − kp+ p)k!
γkp−kAn−mk (2.5.2)

which will be required to derive the following GFR.

Theorem 2.5.2. For m ∈ N, G(z) =
∞∑
n=0

Anz
n, A0 6= 0, p > 0, w = t(1 +

γwm)−β/p,

∞∑

n=0

R(An, α + βn, γ, r,m, p)tn =
(1 + γwm)(p−α)/p

1 +
(
βm
p

+ 1
)
γwm

G

[
w

(1 + γwm)r/p

]
,(2.5.3)

where {An} is an arbitrary sequence such that
∞∑
i=0

|Ai| <∞ and other parameters

unrestricted in general.

Proof. In (2.5.2) replacing α by α+βn and then making both sides as coe�cients

of in�nite series in tn, we get

∞∑

n=0

R(An, α + βn, γ, r,m, p)tn

=
∞∑

n=0

bn/mc∑

k=0

Γp(p− α− βn− nr +mrk)

Γp(p− α− βn− nr +mrk − kp)k!
γkp−kAn−mkt

n

=
∞∑

n=0

∞∑

k=0

Γp(p− α− βn− βmk − nr)
Γp(p− α− βn− βmk − nr − kp)k!

γkp−kAnt
n+mk

=
∞∑

n=0

Ant
n

∞∑

k=0

Γp(p− α− βn− βmk − nr)
Γp(p− α− βn− βmk − nr − kp)k!

γkp−ktmk.

The inner series on the right hand side here, in view of the p-deformed Polya's

sum (2.5.1) yields

∞∑

n=0

R(An, α + βn, γ, r,m, p)tn
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=
∞∑

n=0

Ant
n

∞∑

k=0

Γp(p− α− βn− βmk − nr)
Γp(p− α− βn− βmk − nr − kp)k!

γkp−ktmk

=
∞∑

n=0

Ant
n (1 + v)(−α−βn−nr)/p+1

1 +
(
βm
p

+ 1
)
v

=
(1 + v)(p−α)/p

1 +
(
βm
p

+ 1
)
v

∞∑

n=0

An

(
t(1 + v)−β/p

)n

(1 + v)nr/p
,

wherein v = γtm(1 + v)−βm/p. If we replace v by γwm then w = t(1 + γwm)−β/p

and we have

∞∑

n=0

R(An, α + βn, γ, r,m, p)tn =
(1 + γwm)(p−α)/p

1 +
(
βm
p

+ 1
)
γwm

∞∑

n=0

An

(
t(1 + γwm)−β/p

)n

(1 + γwm)nr/p

=
(1 + γwm)(p−α)/p

1 +
(
βm
p

+ 1
)
γwm

∞∑

n=0

An

[
w

(1 + γwm)r/p

]n
.

This completes the proof of GFR (2.5.3).

The substitutions α = −s, r = p, An = (−m)n(c)s−n Γp(p+s)

Γp(p+s−np)n!
xn and

replacement of γ by γp/c in (2.5.3) yields the GFR of the p-deformed generalized

Humbert polynomials (or brie�y pGHP) as

∞∑

n=0

Pn,p(m,x, γ, s+ βn, c)tn =
(1 + γpwm/c)(p+s)/p

1 +
(
βm
p

+ 1
)
γpwm

c

G

[
w(

1 + γpwm

c

)
]
, (2.5.4)

where G(u) =
∞∑
n=0

(−m)n(c)s−n Γp(p+s)

Γp(p+s−np)n!
xnun and w = t

(
1 + γpwm

c

)−β/p
. We

note that β = 0⇔ w = t and hence the p-binomial series (1.3.12) yields

∞∑

n=0

Pn,p(m,x, γ, s, c)t
n

= (1 + γptm/c)s/pG

[
t(

1 + γptm

c

)
]

= c(1−1/p)s(c+ γptm)s/p
∞∑

n=0

(−m)nΓp(p+ s)

Γp(p+ s− np)n!

(
xt

c+ γptm

)n

= c(1−1/p)s(c+ γptm)s/p
∞∑

n=0

(−m)n

(p+ s)−n,pn!

(
xt

c+ γptm

)n

= c(1−1/p)s(c+ γptm)s/p
∞∑

n=0

(−m)n(−1)n(−s)n,p
n!

(
xt

c+ γptm

)n
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= c(1−1/p)s(c+ γptm)s/p
∞∑

n=0

(m)n(−s)n,p
n!

(
xt

c+ γptm

)n

= c(1−1/p)s(c+ γptm)s/p
∞∑

n=0

(−s)n,p
n!

(
mxt

c+ γptm

)n

= c(1−1/p)s(c+ γptm)s/p
(

1− pmxt

c+ γptm

)s/p

= c(1−1/p)s (c+ γptm − pmxt)s/p . (2.5.5)

This generalizes the generating function relation (2.1.2).

We now give a computation formula of Fibonacci-type polynomials of order n in

the following statement with the help of (2.5.5) as follows.

Theorem 2.5.3. For the pGHP Pn,p(m,x, γ, s, c) de�ned by (2.1.14),

Pn,p(m,x, γ, s1 + s2, c) =
n∑

k=0

Pn−k,p(m,x, γ, s1, c) Pk,p(m,x, γ, s2, c). (2.5.6)

Proof. With s is replaced by s1 + s2 in the generating function relation (2.5.5)

gives

∞∑

n=0

Pn,p(m,x, γ, s1 + s2, c)t
n

= (c)(1−1/p)(s1+s2) (c+ γptm − pmxt)s1+s2/p

= (c)(1−1/p)s1 (c+ γptm − pmxt)s1/p (c)(1−1/p)s2 (c+ γptm − pmxt)s2/p

=
∞∑

n=0

Pn,p(m,x, γ, s1, c)t
n

∞∑

k=0

Pk,p(m,x, γ, s2, c)t
k

=
∞∑

n=0

∞∑

k=0

Pn,p(m,x, γ, s1, c)Pk,p(m,x, γ, s2, c)t
n+k

=
∞∑

n=0

n∑

k=0

Pn−k,p(m,x, γ, s1, c)Pk,p(m,x, γ, s2, c)t
n.

On comparing coe�cient of tn, this yields (2.5.6).

The GFR of p-deformed Humbert polynomial occurs as a special case of

(2.5.4) with the substitutions γ = 1, c = 1, s = −µ which is given by

∞∑

n=0

Πµ+βn
n,m,p(x)tn =

(1 + pwm)(p−µ)/p

1 + (βm+ p)wm
G

[
w

(1 + pwm)

]
, (2.5.7)
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where G(z) =
∞∑
n=0

(−m)n Γp(p−µ)

Γp(p−µ−np)n!
xnzn and w = t (1 + pwm)−β/p.

The case β = 0 and p-binomial series (1.3.12) yields the GFR

∞∑

n=0

Πµ
n,m,p(x)tn = (1 + ptm − pmxt)−µ/p . (2.5.8)

This extends the generating function relation given by Humbert [30, p.24]. The

GFR (2.5.8) readily leads us to the computation formula of Fibonacci-type poly-

nomials of order n stated as

Theorem 2.5.4. In the usual notations and meaning,

Πµ1+µ2
n,m,p (x) =

n∑

k=0

Πµ1
n−k,m,p(x)Πµ2

k,m,p(x).

Now, the GFR of the p-deformed Kinney polynomial is the special case

γ = 1, c = 1, s = −1/m of (2.5.4) which is given by

∞∑

n=0

Pn,p(m,βn, x)tn =
(1 + pwm)(p−1/m)/p

1 + (βm+ p)wm
G

[
w

(1 + pwm)

]
,

where G(z) =
∞∑
n=0

(−m)n
Γp(p− 1

m
)

Γp(p− 1
m
−np)n!

xnzn and w = t (1 + pwm)−β/p.

The GFR of the p-deformed Pincherle polynomial is obtained by taking m =

3, γ = 1, c = 1, and s = −λ in (2.5.4) and it is given by

∞∑

n=0

Pλ+βn
n,p (x)tn =

(1 + pw3)(p−λ)/p

1 +
(
β3
p

+ 1
)
pw3

G

[
w

(1 + pw3)

]
,

where G(z) =
∞∑
n=0

(−3)n Γp(p−λ)

Γp(p−λ−np)n!
xnzn and w = t (1 + pw3)

−β/p
.

Similarly,

∞∑

n=0

Cν+βn
n,p (x)tn =

(1 + pw2)(p−ν)/p

1 +
(
β2
p

+ 1
)
pw2

G

[
w

(1 + pw2)

]
, (2.5.9)

where G(z) =
∞∑
n=0

(−2)n Γp(p−ν)

Γp(p−ν−np)n!
xnzn and w = t (1 + pw2)

−β/p
is the GFR of the

p-deformed Gegenbauer polynomial obtained from (2.5.4) by putting m = 2, γ =

1, c = 1 and s = −ν. Further taking ν = 1/2 in (2.5.9), we get the GFR of the
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p-deformed Legendre polynomial or brie�y pLP given by

∞∑

n=0

Pn,p(x)tn =
(1 + pw2)(2p−1)/2p

1 +
(
β2
p

+ 1
)
pw2

G

[
w

(1 + pw2)

]
,

where G(z) =
∞∑
n=0

(−2)n
Γp(p− 1

2
)

Γp(p− 1
2
−np)n!

xnzn and w = t (1 + pw2)
−β/p

.

2.6 Recurrence relations and Di�erential recur-

rence relations
In this section the di�erential recurrence relations and the mixed recurrence

relations of the p-deformed generalized Humbert polynomials are derived.

First we denote (c+ γptm − pmxt)s/p by A(t;m,x, γ, s, c, p) and rewrite (2.5.5) in

the form:

A(t;m,x, γ, s, c, p) = c(1/p−1)s

∞∑

n=0

Pn,p(m,x, γ, s, c)t
n, (2.6.1)

then with Dx = d/dx, we have

Dx(A(t;m,x, γ, s, c, p)) = Dx

(
(c+ γptm − pmxt)s/p

)

= −mts (c+ γptm − pmxt)s/p−1 .

Taking sq = −p, q ∈ N, this gives

Dx (A(t;m,x, γ,−p/q, c, p)) =
mtp

q
(c+ γptm − pmxt)s/p+sq/p

=
mtp

q
A(t;m,x, γ,−p/q, c, p)1+q.

The successive di�erentiation yields

D2
x(A(t;m,x, γ,−p/q, c, p)) = Dx

(
mtp

q
A(t;m,x, γ,−p/q, c, p)1+q

)

=
mtp

q
Dx

(
(A(t;m,x, γ,−p/q, c, p))1+q)

=
mtp

q
(1 + q) (A(t;m,x, γ,−p/q, c, p))q

×Dx (A(t;m,x, γ,−p/q, c, p))

=

(
mtp

q

)2

(1 + q) (A(t;m,x, γ,−p/q, c, p))1+2q ,

D3
x(A(t;m,x, γ,−p/q, c, p)) =

(
mtp

q

)3

(1 + q)(1 + 2q)
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× (A(t;m,x, γ,−p/q, c, p))1+3q ,

and in general,

Dj
x(A(t;m,x, γ,−p/q, c, p)) =

(
mtp

q

)j { j−1∏

i=0

(1 + iq)

}

× (A(t;m,x, γ,−p/q, c, p))1+jq . (2.6.2)

Next taking jth derivative with respect to x in (2.6.1) yields

Dj
xA(t;m,x, γ, s, c, p)

= c(1/p−1)s

∞∑

n=0

tnDj
xPn,p(m,x, γ, s, c)

= c(1/p−1)s

∞∑

n=0

tn
bn/mc∑

k=0

(−1)kγkcs−n+mk−k (−s)n−mk+k,p

k!(n−mk)!
mn−mkDj

x(x)n−mk

= c(1/p−1)s

∞∑

n=j

tn
bn−j
m
c∑

k=0

(−1)kγkcs−n+mk−k (−s)n−mk+k,p

k!(n−mk − j)!m
n−mkxn−mk−j

= c(1/p−1)s

∞∑

n=0

tn+j

bn/mc∑

k=0

(−1)kγkcs−n−j+mk−k
(−s)n+j−mk+k,p

k!(n−mk)!
mj(mx)n−mk.

(2.6.3)

But since,

Dj
xPn+j,p(m,x, γ, s, c)

=

bn+j
m
c∑

k=0

(−1)kγkcs−n−j+mk−k
(−s)n+j−mk+k,p

k!(n+ j −mk)!
mn+j−mkDj

x(x)n+j−mk

=

bn/mc∑

k=0

(−1)kγkcs−n−j+mk−k
(−s)n+j−mk+k,p

k!(n−mk)!
mn+j−mkxn−mk, (2.6.4)

we have from (2.6.3),

Dj
xA(t;m,x, γ, s, c, p) = c(1/p−1)s

∞∑

n=0

tn+jDj
xPn+j,p(m,x, γ, s, c) (2.6.5)

Taking s = −p/q in (2.6.5) and using (2.6.2), we get

(c)(1/p−1)s

∞∑

n=0

tnDj
xPn+j,p(m,x, γ,−p/q, c)
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=

(
mp

q

)j { j−1∏

i=0

(1 + iq)

}
(A(t;m,x, γ,−p/q, c, p))1+jq .

Now replacing A(t;m,x, γ,−p/q, c, p) by its series expansion from (2.6.1), this

becomes

c(1/p−1)s

∞∑

n=0

tnDj
xPn+j,p(m,x, γ,−p/q, c)

=

(
mp

q

)j { j−1∏

i=0

(1 + iq)

}(
c(1/p−1)s

∞∑

n=0

Pn,p(m,x, γ,−p/q, c)tn
)1+jq

,

that is,

∞∑

n=0

tnDj
xPn+j,p(m,x, γ,−p/q, c)

=

(
mp

q

)j
c(1/p−1)sjq

{
j−1∏

i=0

(1 + iq)

}(
∞∑

n=0

Pn,p(m,x, γ,−p/q, c)tn
)1+jq

=

(
mp

q

)j
c(1/p−1)sjq

{
j−1∏

i=0

(1 + iq)

}
∞∑

n=0

∑

i1+i2+···+i1+jq=n

Pi1,pPi2,p · · ·Pi1+jq ,ptn,

where q ∈ N. On comparing coe�cients of tn yields

Dj
xPn+j,p(m,x, γ,−p/q, c)

=

(
mp

q

)j
(c)(1/p−1)sjq

{
j−1∏

i=0

(1 + iq)

} ∑

i1+i2+···+i1+jq=n

Pi1,pPi2,p · · ·Pijq+1,p.

This provides p-deformed version of the result due to Gould[26, Eq.(3.4), p.702](cf.

with p = 1). Further, multiplying (2.6.4) by tn and taking sum from n = 0 to ∞,

produces

∞∑

n=0

Dj
xPn+j,p(m,x, γ, s, c)t

n

=
∞∑

n=0

bn/mc∑

k=0

(−1)kcs−n−j+mk−kγk
(−s)n+j−mk+k,p

k!(n−mk)!
mn+j−mkxn−mktn

=
∞∑

n=0

cjp−j(−s)j,pmj

bn/mc∑

k=0

(−1)kγkcs−jp−n+mk−k (−s+ jp)n−mk+k,p

k!(n−mk)!
(mx)n−mktn

=
∞∑

n=0

c(p−1)j(−s)j,p mjPn,p(m,x, γ, s− jp, c) tn
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=
∞∑

n=0

c(p−1)j(−s)j,p mjPn,p(m,x, γ, s− jp, c) tn.

On comparing the coe�cient of tn, gives

Dj
xPn+j,p(m,x, γ, s, c) = c(p−1)j(−s)j,p mjPn,p(m,x, γ, s− jp, c). (2.6.6)

This generalizes the formula given by Gould[26, Eq.(3.5), p.702](cf. with p = 1).

Also, taking j = 1,m = 2, γ = 1, c = 1, s = −ν and replacing n by n− 1 in (2.6.6)

yields

DxC
ν
n,p(x) = 2νCν

n−1,p(x).

This generalizes the familiar formula by E. T. Whittaker and G. N. Watson[66,

(III), p.330](cf. with p = 1) involving the p-Gegenbauer polynomial which for

ν = 1/2 reduces to

DxPn,p(x) = Pn−1,p(x)

involving the p-Legendre polynomial. Next,

(c+ γptm − pmxt) tDtA(t;m,x, γ, s, c, p)

= (c+ γptm − pmxt) tDt (c+ γptm − pmxt)s/p

= (c+ γptm − pmxt) ts
p

(c+ γptm − pmxt)s/p−1 (γpmtm−1 − pmx)

= (−ms)(xt− γtm)A(t;m,x, γ, s, c, p).

Here substituting for A(t;m,x, γ, s, c, p) from (2.6.1), we get

(c+ γptm − pmxt) t Dt

(
c(1/p−1)s

∞∑

n=0

Pn,p(m,x, γ, s, c)t
n

)

= (−ms)(xt− γtm) c(1/p−1)s

∞∑

n=0

Pn,p(m,x, γ, s, c)t
n.

Simplifying this and abbreviating Pn,p(m,x, γ, s, c) by Pn,p(x), we have

(c+ γptm − pmxt)
∞∑

n=0

Pn,p(x)ntn = −ms(xt− γtm)
∞∑

n=0

Pn,p(x)tn

⇒
∞∑

n=0

cnPn,p(x)tn + γptm
∞∑

n=0

Pn,p(x)ntn − pmxt
∞∑

n=0

Pn,p(x)ntn
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= −msxt
∞∑

n=0

Pn,p(x)tn +msγtm
∞∑

n=0

Pn,p(x)tn

⇒
∞∑

n=0

cnPn,p(x)tn + γp
∞∑

n=0

Pn,p(x)ntn+m − pmx
∞∑

n=0

Pn,p(x)ntn+1

= −msx
∞∑

n=0

Pn,p(x)tn+1 +msγ
∞∑

n=0

Pn,p(x)tn+m

⇒
∞∑

n=0

cnPn,p(x)tn + γp

∞∑

n=m

Pn−m,p(x)(n−m)tn

−pmx
∞∑

n=1

Pn−1,p(m,x, γ, s, c)(n− 1)tn

= −msx
∞∑

n=0

Pn−1,p(x)tn +msγ
∞∑

n=0

Pn−m,p(x)tn

⇒
∞∑

n=m

(cnPn,p(x) +mx(s− np+ p)Pn−1,p(x) + γ(np−mp−ms)Pn−m,p(x)) tn = 0.

This yields for n ≥ m ≥ 1, the recurrence relation:

cnPn,p(x) +mx(s− np+ p)Pn−1,p(x) + γ(np−mp−ms)Pn−m,p(x) = 0. (2.6.7)

This identity provides p-deformed version of a recurrence relation derived by

Gould[26, Eq.(2.3), p.700](cf. with p = 1). On di�erentiating (2.5.5) with respect

to x, we get

∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n = −smt(c)(1−1/p)s (c+ γptm − pmxt)s/p−1 , (2.6.8)

whereas di�erentiating (2.5.5) with respect to t and making use of (2.6.8), we �nd

∞∑

n=0

Pn,p(m,x, γ, s, c)nt
n−1

=
s

p
c(1−1/p)s(γpmtm−1 − pmx) (c+ γptm − pmxt)s/p−1

= −s c(1−1/p)s (γmtm−1 −mx)

smt(c)(1−1/p)s

∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n

=
(x− γtm−1)

t

∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n
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Thus, we have

∞∑

n=0

nPn,p(m,x, γ, s, c)t
n

= x
∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n − γtm−1

∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n

= x
∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n − γ

∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n+m−1

= x
∞∑

n=0

DxPn,p(m,x, γ, s, c)t
n − γ

∞∑

n=m−1

DxPn−m+1,p(m,x, γ, s, c)t
n.

Equating the coe�cients of tn in this identity, we obtain for n ≥ m− 1,

nPn,p(m,x, γ, s, c) = xDxPn,p(m,x, γ, s, c)− γDxPn−m+1,p(m,x, γ, s, c).

This provides a p-deformed version of the recurrence relation due to Gould[26,

Eq.(2.5), p.700]. Similarly, one can obtain other recurrence relations of the p-

deformed generalized Humbert polynomial.

2.7 Summation formulas

In this section, we use the inverse series (2.3.3), (2.3.22), (2.3.23) in obtaining

certain summation formulas. While deducing the summation formulas involving

the p-Wilson polynomials and the p-Racah polynomials, we shall need the p-

deformation of Gauss's summation formula which we state and prove here as

Lemma 2.7.1. If p > 0, c 6= −p,−2p, . . . and <(c− a− b) > 0 then

2F1((a, b), p, (c), p)(1/p) =
Γp(c)Γp(c− b− a)

Γp(c− a)Γp(c− b)
. (2.7.1)

Proof. The p-Beta function (1.3.13)[17] is given by

Bp(a, b) =
1

p

∫ 1

0

t
a
p
−1(1− t) bp−1dt =

Γp(a)Γp(b)

Γp(a+ b)
,

where p > 0, a, b ∈ C, <(a, b) 6= 0,−p,−2p, . . ..

Also for |x| < 1

p
, they showed that [17]

(1− px)−
a
p =

∞∑

n=0

(a)n,p
n!

xn.
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If we replace x by xt/p then it becomes

(1− xt)−ap =
∞∑

n=0

(a)n,p
n!pn

(xt)n. (2.7.2)

Now, multiplying both sides of (2.7.2) by t
b
p
−1(1 − t)

c−b−p
p and then integrating

from t = 0 to t = 1, we get

∫ 1

0

t
b
p
−1(1− t)

c−b−p
p (1− xt)−apdx =

∞∑

n=0

(a)n,p
n!pn

xn
∫ 1

0

t
b
p

+n−1(1− t)
c−b−p
p dt

= p

∞∑

n=0

(a)n,p
n!pn

xnBp(b+ np, c− b)

= p
∞∑

n=0

(a)n,p
n!pn

xn
Γp(b+ np)Γp(c− b)

Γp(c+ np)
.

Thus we obtain the integral representation for deformed hypergeometric function

2F1[∗] as follows.

Γp(c)

pΓp(b)Γp(c− b)

∫ 1

0

t
b
p
−1(1− t)

c−b−p
p (1− xt)−apdx

=
∞∑

n=0

(a)n,p(b)n,p
(c)n,pn!pn

xn = 2F1((a, b), p, (c), p)(x/p). (2.7.3)

This may be regarded as p-deformed Euler integral formula.

When p = 1, this reduces to the Euler integral representation of 2F1[∗] [53].
In order to obtain the deformation of Gauss summation formula [53, Theorem 18,

p. 49], we allow x→ 1 in (2.7.3), to get

2F1((a, b), p, (c), p)(1/p) =
Γp(c)

pΓp(b)Γp(c− b)

∫ 1

0

t
b
p
−1(1− t)

c−b−p
p (1− t)−apdx

=
Γp(c)

pΓp(b)Γp(c− b)

∫ 1

0

t
b
p
−1(1− t)

c−b−a−p
p dx

=
Γp(c)

Γp(b)Γp(c− b)
Bp(b, c− b− a)

=
Γp(c)

Γp(b)Γp(c− b)
Γp(b)Γp(c− b− a)

Γp(c− a)
.

thus the lemma.
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The substitution p = 1 yields the classical Gauss sum.

An immediate consequence of this lemma is the p-Chu-Vandermonde identity

2F1((−np, b), p, (c), p)(1/p) =
Γp(c)Γp(c− b+ np)

Γp(c+ np)Γp(c− b)
=

(c− b)n,p
(c)n,p

(2.7.4)

which occurs for a = −np in (2.7.1) (cf. [53, Ex. 4, p.69] for p = 1). We now

obtain certain summation formulas. For that we multiply the inverse series (2.3.3)

by (a)n,l and transform the factor (−m)n to the left hand side and then take the

summation from n = 0 to ∞ both sides, then for l > 0, |x| < 1/l and p 6= ν, we

have

∞∑

n=0

(a)n,l
(−m)n

bn/mc∑

k=0

(−γ)kcn−k−s
(s− np+mkp)Γp(s− np+ kp+ p)

(s− np+ kp)Γp(s+ p)k!

×Pn−mk,p(m,x, γ, s, c) = (1− lx)−a/l.

The substitutions γ = 1, c = 1 and s = −ν in this summation formula yields

∞∑

n=0

(a)n,l
(−m)n

n∑

mk=0

(−1)k
Γp(p− ν − np+ kp)(−ν − np+mkp)

(−ν − np+ kp)k!

×Πν
n−mk,m,p(x) = (1− lx)−a/l.

Again in (2.3.3), taking the summation from n = 0 to ∞ we get

∞∑

n=0

(−m)−n
bn/mc∑

k=0

(−γ)kcn−k−s
(s− np+mkp)Γp(s− np+ kp+ p)

(s− np+ kp)Γp(s+ p)k!

×Pn−mk,p(m,x, γ, s, c) = ex.

The substitutions γ = 1, c = 1 and s = −ν in this summation formula yields

∞∑

n=0

(−m)−n
bn/mc∑

k=0

(−1)k
Γp(p− ν − np+ kp)(−ν − np+mkp)

(−ν − np+ kp) k!

×Πν
n−mk,m,p(x) = ex.

We now derive certain summation formulas involving the p-deformed Wilson poly-

nomials and the p-deformed Racah polynomials. We �rst multiply both sides of

(2.3.22) by p−n/n! and then take the summation from n = 0 to ∞, to get

∞∑

n=0

(a+ c)n,p(a+ d)n,p
pn n!

n∑

k=0

(−n)k (a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p (a+ b)k,p
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× Wk,p(x
2; a, b, c, d)

(a+ c)k,p(a+ d)k,p k!
=
∞∑

n=0

(a+ ix)n,p(a− ix)n,p
(a+ b)n,p pn n!

.

This with the aid of p-Gauss sum (2.7.1), gets simpli�ed to the sum:

∞∑

n=0

(a+ c)n,p(a+ d)n,p
pn n!

n∑

k=0

(−n)k (a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p (a+ b)k,p

× Wk,p(x
2; a, b, c, d)

(a+ c)k,p(a+ d)k,p k!
=

Γp(a+ b)Γp(b− a)

Γp(b− ix)Γp(b+ ix)
.

Here, the case x = 0 is worth mentioning; since

W
k,p

(0; a, b, c, d)

(a+ b)k,p(a+ c)k,p(a+ d)k,p
= 4F 3((−k, a+ b+ c+ d+ k − 1, a, a), p, (a+ b, a+ c, a+ d), p)(1),

we �nd the summation formula:

∞∑

n=0

(a+ c)n,p(a+ d)n,p
pn n!

n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p k!

×4F 3((−k, a+ b+ c+ d+ k − 1, a, a), p, (a+ b, a+ c, a+ d), p)(1)

=
Γp(a+ b)Γp(b− a)

[Γp(b)]2
.

Now, if both sides of (2.3.22) are multiplied by (−jp)n,p p−n/n! and then the

summation from n = 0 to j is taken, then we �nd

j∑

n=0

(−jp)n,p(a+ c)n,p(a+ d)n,p
(a− ix)n,ppnn!

n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,pk!

× Wk,p(x
2; a, b, c, d)

(a+ b)k,p(a+ c)k,p(a+ d)k,p
=

j∑

n=0

(−jp)n,p(a+ ix)n,p
(a+ b)n,ppnn!

.

Here the left hand series when summed up by using p-Chu-Vandermonde's sum

(2.7.4), we obtain

j∑

n=0

(−jp)n,p(a+ c)n,p(a+ d)n,p
(a− ix)n,ppnn!

n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,pk!

× Wk,p(x
2; a, b, c, d)

(a+ b)k,p(a+ c)k,p(a+ d)k,p
=

(b− ix)j,p
(a+ b)j,p

.
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Once again the choice x = 0 gives rise to the sum

j∑

n=0

(−jp)n,p(a+ c)n,p(a+ d)n,p
(a− ix)n,ppnn!

n∑

k=0

(−n)k(a+ b+ c+ d+ 2kp− p)
(a+ b+ c+ d+ kp− p)n+1,p k!

×4F 3((−k, a+ b+ c+ d+ k − 1, a, a), p, (a+ b, a+ c, a+ d), p)(1) =
(b)j,p

(a+ b)j,p
.

Similarly, From the inverse series (2.3.23) of the p-deformed Racah polynomials,

we obtain the following formula when its both sides are multiplied by p−n/n! and

then the summation from n = 0 to ∞ is taken.

∞∑

n=0

(b+ d+ p)n,p(c+ p)n,p
pnn!

n∑

k=0

(−n)k(a+ b+ 2kp+ p)

(a+ b+ kp+ p)n+1,p k!

×Rk,p (x(x+ c+ d+ p); a, b, c, d) =
∞∑

n=0

(x+ c+ d+ p)n,p(−x)n,p
(p+ a)n,p pn n!

.

This in view of p-Gauss sum (2.7.1), simpli�es to

∞∑

n=0

(b+ d+ p)n,p(c+ p)n,p
pnn!

n∑

k=0

(−n)k(a+ b+ 2kp+ p)

(a+ b+ kp+ p)n+1,p k!

×Rk,p (x(x+ c+ d+ p); a, b, c, d) =
Γp(p+ a)Γp(a− c− d)

Γp(a− x− c− d)Γp(p+ a+ x)
.

If we multiply both sides of (2.3.23) by (−jp)n,p p−n/n! and then take the sum-

mation from n = 0 to j, then we have

j∑

n=0

(−jp)n,p(b+ d+ p)n,p(c+ p)n,p
(x+ c+ d+ p)n,p pn n!

n∑

k=0

(−n)k(a+ b+ 2kp+ p)

(a+ b+ kp+ p)n+1,pk!

×Rk,p (x(x+ c+ d+ p); a, b, c, d) =

j∑

n=0

(−jp)n,p(−x)n,p
(p+ a)n,ppnn!

.

Applying p-Chu-Vandermonde's sum (2.7.4) on the right hand side, gives

j∑

n=0

(−jp)n,p(b+ d+ p)n,p(c+ p)n,p
(x+ c+ d+ p)n,p pn n!

n∑

k=0

(−n)k(a+ b+ 2kp+ p)

(a+ b+ kp+ p)n+1,pk!

×Rk,p (x(x+ c+ d+ p); a, b, c, d) =
(x+ a+ p)j,p

(a+ p)j,p
.
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2.8 Companion matrix

We �rst make the leading coe�cient of the polynomial (2.4.3); unity thereby

obtain the monic form P̃n,p(m,x, γ, s, c) to get

P̃n,p(m,x, γ, s, c) =
N∑

k=0

δk x
n−mk,

where

δk =
(−1)k+mk(−n)mkγ

kcmk−k(−s+ np)−mk+k,p

mmkk!
.

With this δk,p, C
(
P̃n,p(m,x, γ, s, c)

)
assumes the form as stated in De�nition

1.3.1. The eigen values of this matrix will be then precisely the zeros of

P̃n,p(m,x, γ, s, c) (see [48, p. 39]).

We shall revisit some alternative forms of the general inversion pair of GIP for

the purpose of deducing the p-versions of Riordan's inverse pairs belonging to the

table 1.1 to table 1.6 (which are listed in chapter 1) in chapter 8.

POLYNOMIALS' REDUCIBILITY

The p-deformed generalized
Humbert polynomials

The p-deformed
Humbert polynomials

The p-deformed
Kenny

polynomial

The p-deformed
Gegenbauer
polynomial

The p-deformed
Pincherle
polynomial

The p-deformed
Legendre polynomial
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