
CHAPTER III

ABSOLUTE CONVERGENCE WHEN THE 

SATISFIES SOME HYPOTHESIS ON A 

POSITIVE MEASURE

FUNCTION 

SUBSET OF

fa.- Concerning the study of the properties of lacunary
Fourier series (L), when the underlying function satisfies

some hypothesis on a subset 1 of t>?r , tt} of positive measure,

Noble has mentioned in his paper £233 that the subinterval in

some of his results could be replaced by a subset E provided

his methods are modified. As we have noted in Chapter I,

Kennedy C193 investigates this possibility and proves that

Noble’s Theorem 1(a) holds when the hypothesis is satisfied in

a certain subset E provided a little more stringent gap

condition is considered. We continue the study in this direction

and propose to prove Theorem 16 to 22 in this chapter. The

hypothesis on the function in these theorems is again in terms

of either the quadratic modulus of continuity or the quadratic
2modulus of smoothness or the L - trigonometric best approxim­

ation., to f - but now they are considered only on an arbitrary 

subset E of positive measure, not necessarily a subinterval. 

Consequently, for securing the absolute convergence of its 

Fourier series (L), we assume that the sequence in (L)

satisfies the condition Bq - a gap condition stronger than



(1.1) but still weaker than the Hadamard gap condition (1.2)
\

(In fact, it is known t2 ; £.2343 that any sequence satisfying 

the Hadamard gap condition (1.2) satisfies the condition B2 

but the converse is not true). It can also be noted that, 

in view of the corollary to the Zygmunds theorem [2 ; P.2413:

!'If the Fourier series of a function f is lacunary with 
■fnk} satisfying the condition B2 then "> "’.^(a^, + b^.) < oo,

2that is, f G L C**ir , it 3 »1 , it is not necessary to assume 

2f 6 L (E) in the hypotheses of these theorems.

We remark that for proving these theorems, we establish

a Bessel type inequality (3.2) together with some more

inequalities (refer : Lemmas 2 and 3) involving either the

quadratic modulus of continuity or quadratic modulus of 
2

smoothness or L - trigonometric best approximation, over E 

- all of which have intrinsic interest in their own right.

We need the following lemmas. Lemma 1 is proved by 

Zygmund, though not explieitely stated, assuming that the 

sequence of natural numbers satisfies the Hadamard gap

condition (1.2) ; but it is easy to see from the proof there 

that we can as well take {nk^ satisfying the condition B2 *

LEMMA 1. 139 ; P.1213. Let Idt-v , tJ be a set of

positive measure, ^nk^ satisfy the condition B2 and nQ = 0 ,

n, = - n , (k < 0). Then there exists V S N with the 
k -k



property t if {Ck|(k 6 Z) is any sequence of complex 

numbers, then for T > V we have

(3.1)

where

in which the summation is over values of p and q such 

that

V < Ip I 5 kl < T and p # q.

LEMMA 2. Let 1 , | nkj and y be as in Lemma 1 and |l| 

denote the Lebesgue measure of the set 1. Put CQ = 0 ,

Gj^ = |Cank “ i1:)%) (k > o), Ck = C_k (k < o) and suppose 

that Ck = 0 for all k such that |k| < V . Then

x>k|2 ^ -|iT I lfCx)|Z 5 C3'S>
*°° %

and

y2ick[2<c -r|p ( coC2)(i/p , f, e))z , (3.3)

ikl>p v

or more generally
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2Z^IGk|2 iff C^i2)0-/P , f , E))2 , (3.4)

IW>P

where C is constant, and. (l/p ) f j e) and

(i))2)(vP , f , e) are as in the hypothesis of Theorems -16 

and 17 with n replaced by p.

Proof of Lemma 2. We have

In I W

XL i°kir—ao
and if we put

oo
<Kr,x) =

— <x>

for all real x, then its 

and we obviously get
CP

(Kr,x) = (ank 

k=i

No\*, by a corollary to Zygmund’s theorem C 2 ; P.241 J 
2f 6 L C-ir , ir J and hence by a known theorem C39 ; P.87 3 

it follows that

f(x) = L2 — limit (|Kr,x) ( ix| < i. (3.7)

. r

Again, for T > V , put

$(r,x,T) = ' Cp

-T

<oo (0 < r < 1) (3.5)

In. k Ir exp(infcx) (0 < r < l) (3.6)

existence is assured by (2.5)

^ nkcos nkx + bnk sin nkx) r

exp(inpx) (0 < r < 1) (3.8)



Then

2|<|)(r,x,T)| cbc

%

T I n_ j \ /'rr^ ■* — I nq 1
Op r y exp(inpx)J / \ r ^ exp(-innx)) dx

J)

= ist y~" icpi2 r2lEpl

-e--, jUp|+ > GPr _ |n j rCq r 1 \ exp(i(np-nq)x)dx
PA

J
E

T, 2 21 n_ |> |l| ^ |0p| r * -
-T

l|l-^L;|cp|2r2|nPl

-t‘

= ^ricpi2^1
-T

(3.9)

applying the Lemma 1, where .' has the same meaning

PA
as in the Lemma 1. But from (3.5), (3.6) and (3.8) it 

follows that for any fixed r(0 < r < 1)

<|Kr,x,T)--- »~<jKr,x) as T.-->~oo

uniformly in E. Therefore, from (3.9), we get

f|(|>(r,x)|2dx > /^(CpI2 r2^P^ .
-ao'

(3.10)
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But (3.7) implies that

| <j)(r ,x) -f(x)| dx------0 as r--------- *-l

E

and By Minkowski1 s inequality

a
 2 \ 1/2 / r 2 \ 1/2 f r 2 >
|<|Kr,x)i dx J ; < M|f(r,x)-f(x)| dxj +(J|f(x)| dx^

% E ‘EE

as well as

2 \l/2
/ r 2 \l/2 / r 2 vl/2 / C 2 \:f i|f(x)[ dxj < f ||(r,x)-f (x) | dxj ^ M |(j)(r,x) | dx)

E "E EE
Therefore

2 \ 1/2
0 <

([|f(x)|2dx)1/2 - (jW,x)|2<ix) 

E EE

2 \l/2
< |(j!(r,x) - f(x)| dx ) ------ >-0 as r*---- >-l«

E

This implies that

^t^Crjx)! dx ------->-^"|f(x)l dx as r-----*-l.

% E

Hence from (3.10) we get

| f (x) | dx > V" I CL. ‘
2 Z__ , P

E
■CO

1/2
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and hence (3.2) is proved.

Nov put

g (x) = f (x + h) - f(x - h)

and

Cjj, = 2 i Ck sin n^h .

(3.11)

(3.12)

Then |C*| <_ 2 j C^.| and hence by (3.5) ve have

co #i2 |%|
l°k| * < oo ( 0 < r < 1 ) (3.13)

— <30

Put
CO ng(r,x) = °k r' k exp(i%x) (0 < r < 1)

—oo

for all real x, then its existence is assured by (3.13) 

and ve get the identity

g(r,x) = $(r , x + h) - $(r 5 x - h) 

and from it together with (3.7) and (3.1l) we get

g(x) = ~L —- limit g(r,x) C M £ O*

We now apply (3.2), with and f(x) replaced by Cfe and 

g(x) respectively, to get

(3.14)

(3.15)

>“X|2 < -rfr (is(x)l dx *
-(30 ' ' J

E
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Hence, by (3.1l) and (3.12) we obtain

co) 2 2 o f 24]O0kI ' sin lnklh 1 JfT If(x + h) - f(x - h)| dx . (3.16)

E

Integrating both the sides of (3.16) with respect to h 

over (0 , ir/p) ' (p 6 I ) , we shall have
7T/p

CO4 | Cj£ | | sin2|nk|h dh
— OD

O

TIT
■ s -aa B

|f(x+h) - f (x-h) | dx^ . (3.17)

Now, by Lemma 3 of Chapter II, taking 

7T/p

1 Qsin |nk(h dh > -j— when
*P

s = p in it, we get

P < Uk| •

o

Therefore, from (3.17), using

Cl}(2)(A/n , f , e) < C(A) (0-^(l/n , f , e)

( 0 , C(A ) is a constant depending on ^ ), we get

TL
P

|kj >P
Ci

<

T§7 1 (W(2)(ir/p , f , s) )2

Tir# •0<w<Z>CL/P , f , b)



from which (3.3) follows.

Further, if we put

g(x) = T" C-l/^C?) (s.ll)'
■S-J Jj = 0

and
J

= Ck exp(-ink{h) (exp(2inkh)-l)

A ti t= 2^Ck exp(-i|nkh)(-l) ezp(i|(nkh - tt/2)) sin*nkh , (3.12)

then. |C^.| £ 2 |G^.| and hence by (3.5) we have

2^|c£| <oo ( 0 < r < 1 ) • (3.13)'

-oo

Put
co . I Hi, I *. g(r,x) = c£ r 8xp(lnkx) CO < r < 1) (3.14)
—OO

for all real x» then its existence is assured by (3.13) 

and we get the identity

$ r flrai
g(r,x) = (-1) ( . ) $(r , x + (2j - i )h).

3=° J
This together with (3.7) and (3.1l) gives

2 " / s.g (x) = L — limit g (r, x) \ | x | < v j .
■ £—>1

(3.15)
i



Then it follows from (3.13)‘ , (3.14)' and (3.15)* that 

we can apply the inequality (3.2), with and f(x) 

replaced by and g(x) respectively, to get

00 .*,2 . 2T~ i<£i s. jfr{|g(x)l •
B

— ex?

1 , . «In view of (3.11) and (3.12) , we obtain from this

2 k I . 21 j |
2 sin

< HT
ns

B

L 1-2
(-1) (j ) f(x+(2j-J!)h) J dx. (3.

Further, by Lemma 3 of Chapter II, taking s = p in it, 

we have

tt/V

when p < |njJ .^ sin^ In-^lh dh > TT

_Jt+l 2 P

Using this along with (3.16) , replacing 0)^^ O-^P j f >

by 0-/P , f , E) and proceeding analogously as in

the proof of the inequality (3.3), the inequality (3.4) is 

proved. This completes the proof of Lemma 2.

Proof of Theorem 16. Put n0 = 0 , n^ = (k < o); CQ - 0

c* = §(% - V Ck > o) , Cfc = C_k (k < o). We assume '
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throughout, without loss of generality, that % = 0 for 

all k such that |k| < V ? wherfe' y is as in the Lemma 1. 
Then putting

21
|k|>P °kl

2

in the inequality (3.3) of Lemma 2, we obtain

4/Z S. C (W<S) (Vp , f , E) )

where C is some constant depending on E. This implies

COs——f >■ . .P/2
> . Crp / p) <

P=1
00

on account of (1.24).
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<

p=i

p/2
'P

(A = constant)

< oo .

Hence (1.6) follows, completing the proof of Theorem 16. 

Remark. With p=l,E=E-?r,7rJ and without the lacunarity

and with the lacunarity condition (l.l), this is Theorem 9 due 

to the author.

Proof of Theorem 17. Applying the inequality (3.4) instead

and proceeding analogously as in the proof of Theorem 16, this 

theorem is proved.

Remark. With = 1 , this is Theorem 16. With p = 1 , E = I 

and with lacunarity condition (1.1) instead of the condition B2 

this is Theorem 11 due to the author.

Proof of Theorem 18. Observe that

condition, this is Theorem 6 due to Szasz ; while p - 1 , E = I

of (3.3), replacing (l/p , f , E) by (l/p » f » s)

0<h< Vn *£( j'l f^x+h) I cbc) J'

%%
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1/2*= |E| 00(l/n , f , E).

Similarly, we shall obtain

(2) 1/2 COj • (Vn , f , E) < |E| O^CVn , £ , E>.

Using these and applying Theorems 16 and 17, Theorem 18 

follows as a corollary.

Remark. With E = C-7r , n 3 , p =1 and without the gap 
condition, the first part of this theorem is the classical 

Theorem 3, due to Bernstein, for the absolute convergence of 
the Fourier series <T(£) of a function f .

We now proceed to prove Theorems 19 to 22. This requires 

the sharpened form of the inequalities we have proved in Lemma 2 
—which is done by a slight modification in the proof. We also 
prove a similar inequality involving the trigonometric best 
approximation to f in the space L (E). This, in turn, gives 

us the condition on f in terms of the best approximation to 
ensure the absolute convergence of (L). We need the following 
lemma. The inequalities (3.19) and (3.20) in this lemma are 

the sharpened versions of our inequalities (3.3) and (3.4) of 

Lemma 2 and their proofs are merely outlined.

LEMMA a. Let 1 , |nk^ and V be as in Lemma 1 and |e| 

denote the Lebesgue measure of the set E. Put CnQ = 0 ,
Cnk = !(ank - ll>nk) (k > o) ’ °nk = °n.k (k < °> ani
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suppose that = 0 for all k such that |k| £ V •

Then

co 2 of 2[cnK| < tit \if(x)i ’ <3-18)

XU ICrifcl2 i C -ftr (^W(2)(l/np , f , e)^) , (3.19)

|k| > p

or more generally

XX l°nk|2 1 0 jir (4Z)0/”p , f , E)) , (3.20)

ik| >p

and

l°nk|2 s. 0 iff Ov(f . E))2- (3.21)

I k | >p

where G is some constant and 

hypothesis of Theorem 22 with

(f , E) is as in the

k replaced by p.

tProof of Lemma 3. We have (2.3), (2.4) and (2.4) • Now,
2by a corollary to Zygmund's theorem C 2 ; P.2411 f 6 L C-7r , vj 

and hence by a known theorem C39 ; P.8713 we get (2.5). Then 

the inequality (3.18) is infact the inequality (3.2) of 

Lemma 2. Also, proceeding as in the proof of Lemma 2 we shall 

obtain the inequality (3.16) with now denoted by Cn^ .

Instead of integrating both the sides of (3.16) with respect 

to h over (0 , m/p) , p 6 N , we now integrate them over 

(0 , ir/pp. Then, observing that |k| > p implies )nk| > np ,



in view of (*) of Chapter II we see that the inequality 

(3.19) is proved proceeding as in the proof of the inequality 

(3.3) of Lemma 2. Similarly, we shall also get the inequality 

(3.16) with C^ denoted by C^ . Integrating both the

sides of (3.161* now over (O , ir/n^) and observing (**) of 

Chapter II we see that the inequality (3.20) is proved 

proceeding as in the proof of the inequality (3.19) and replacing

(jd^ C-L/rip , f , s) by (l/np , f , l) throughout.

Finally, let Tn (x) and Tn (r,x) be as in (2.21) and
r Jr

(2.22) respectively. We shall then get (2.23). Putting g(x),

Ajj. and g(r,x) as in (2.24), (2.25) and (2.27) respectively, 

we shall get (2.26) and (2.28) proceeding analogously. Then, 

instead of applying the lemma quoted by Kennedy, if we now 

apply the inequality (3.18) we shall get

21:M >p
<

2
f(x) - Tnp(r,x)j dx (3.22)

since (3.22) holds for arbitrary trigonometric polynomial of 

order not higher than Dp , we get the inequality (3.21).

This completes the proof of Lemma 3.

Remark. The inequalities (3.19) and (3.20) generalize our

inequalities (2.16) and (2.17) respectively, of Lemma 5 , 

Chapter II. Observe that in the inequalities (2.16) and (2.17)
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the gap condition involved is (l.l) and the quadratic modulus 

of continuity or the quadratic modulus of smoothness is 

considered on a subinterval I ; while in the inequalities (3.19) 

and (3.20) we consider the gap condition as the condition Bq 

hut the quadratic modulus^ of continuity or the quadratic modulus 

of smoothness is considered on a subset E of C-ir , it] of 

positive measure. It may be noted here that any sequence 

satisfying the Hadamard gap condition (1.2) satisfies the 

condition B2 as well as the gap condition (1.1).

Proof of Theorem 19. Define (k 6 Z) and {Cnkf (k 6 Z)

as in the hypothesis of Lemma 3. We assume throughout, without 

loss of generality, that = 0 for all k such that

|k| < V , where y is as in Lemma 1. Then putting

2

in the inequality (3.19) of Lemma 3, we obtain

(3.23)

where G is some constant depending on E

Then, using (3.23) and (1.30) instead of (2.31) and

(1.19) respectively and proceeding as in the proof of Theorem 12, 

Chapter II, this theorem is proved.
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Proof of Theorems 20 and 22. Applying the inequalities 

(3.20) and (3.21) instead of the inequality (3.19), throughout 

replacing (jj2^ (l/n^ , f , E) by 6-/\ , f , e) and

(2)Ejj (if , E) respectively and proceeding analogously as in 

the proof of Theorem 19, this theorem is proved.

Remark. With i = 1 Theorem 20 is Theorem 19.

Proof of Theorem 21. As in the proof of Theorem 18, we have

. (t)^(l/nk , f , E) X Ie)^2 (0(l/nk , f , E) 

and

(2) 1/2 
ty 0-/% , f , E) < |E| ' C0j<l/nk , f , E).

Hence, applying now Theoremsil9 and.2Q,'..’Theorem 21 follows 

immediately.

Rote: In view of the fact that w (s J f , e) and

Qq (8 , f j B) are non-decreasing functions of 6 , it may

be noted that Theorems 19, 20 and 21 are sharpened versions of 

Theorems 16, 17 and 18.

Remark 1. With 1 = 1 and with the gap condition (l.l) instead 

of the condition B£ 5 Theorems 19, 20 and 21 are our Theorems 

12, 13 and 14 respectively.



Bern ark 2. With p = 1 , E = C-7T , tt J, without the

gap condition and taking {n^ as an arbitrary sequence 

of natural numbers. Theorem 20 is Theorem 8 due to Steckin. 

This means ' ’if satisfies the condition Bq and (L) is

a Fourier series of f then (L) converges absolutely evenwhen 

the hypothesis in Steckin’s theorem is satisfied only in a

subset E of [>ir , irj of positive measure.


