
GHABTEB.... IV -

CONVERGENCE AND SIMM ABILITY WHEN THE FUNCTION 

SATISFIES A CERTAIN CONTINUITY CONDITION ONLY •

AT A POINT

ii. Our study of the properties of lacunary Fourier series (L)
* i

depend mainly on two things — first, the localness and the 

type of the hypothesis to be satisfied by the underlying function 

and the second is the kind of gaps in the Fourier series. The 

results of the previous two chapters reveal the connection between 

these two things —* in a sense that when tlie hypothesis is relaxed 

from subinterval to subset of positive measure, the gap condition 

is strengthened from (1.1) to the condition Bq- Now, from this 

chapter onwards, we consider the hypothesis on a function only 

at a point and study the convergence, summability and the order 

of magnitude of Fourier coefficients of lacunary Fourier series.

We have mentioned in Chapter I that first results regarding such 

study are Theorems.23 and 24 due to Masako Sato and that in the 

proof of Theorem 24 r the conclusion of Theorem 23 is used. This 

means in the hypothesis of Theorem 24 *- Y is required to be 

conditioned by 0 < Y < min ^1 - < , (2 - °c)/3 } . That is, 

geometrically speaking, °C and Y must be chosen in such a way 

that the point (°C , Y) lies in the interior of the triangular 

region bounded by °C = 1/2 , °C + Y « 1 and Y = 0 . In this 

chapter we propose to prove Theorems 25, 26 and 27 — all of
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which are proved only under the less restrictive hypothesis 

of Theorem 23. In fact, in the case of the absolute convergence 

(Theorem 25), we have been able to exhibit that the above 

triangular region, for the choice of (°C , Y), can be enlarged 

to the quadrilateral bounded by Y = 0,«c + Y = l,oC + 3Y = 2 

and 2< + Y = 1. In case (°C > Y) lies outside this region, we

l) Since

Y/2 < «c - a < (2 - «c - Y)/4 implies

implies 2 - °C - 3Y > 4°C - 4a - 2Y

we have

2/(2 - <=C - 3Y) < 1/ (2°C ~ 2a ~ Y) ; 

and hence (1.40) implies (1.35).
Also, using Cauchy's inequality and'(1.42), we get (l«37) 
as under:

h

f(t)

h

f(t+h)jdt = l*^jf(t) - f(t+h) IAl) * * * V) dt

o
h

< h
Y/2 (^5 |f(t) “ f(t+h)| dt

= OoA.
Similarly (1.43) implies (1.38).

It now follows that hypothesis of Theorem 24 is more 
restrictive than that of Theorem 23.

1/2



study the convergence almost everywhere and the absolute 

summability (C,0) , 0 > 1/2 , of lacunary Fourier series (L) 

in Theorems 26 and 27.

We need the following lemma.

LEMMA. If 0 < «c < 1 , 0 < Y < (2 - «c)/3 and if

satisfies (1.36) then
6

nfe > C*k,

for all k > 5 and for any £ < 2/(1 - Y) , where 

some constant such that 0 < G < 1.

Proof. We prove the Lemma by induction. Choose C ,

6
such that n^ > C k, for k = 5. Assume np > C p 

p > 5. Then, using (1.36) and observing that C < CY

Vl >
Y

itp + 4 e p rip

Since

6 Y
> C p + 4 e C p

>Cp^ (l + 4 e p

1+6Y

1+6Y-6

(i) 6 < 2/(1 - Y) implies 1 + 6Y - 6 > — 1,

(ii) 0 < Y < (2 - «c)/3 implies 2 < 2/ (1 - Y)

and

ink!

(4.1)

C is

0 < C < 1,

6
for some 

, we get

(4.2)

< 6

(iii) p > 5 implies



(1 + 1/p)6 = 1 +(l/p) (6 + 15/p + 20/p2 + 15/p3 + 6/p4 + 1/p5 )

< 1 +(l/p) (6 + 3 + 0*8 + 15/53 + 6/54 + 1/55 )

<1 + 4 e/p ,

we obtain
, ,8 8. , 6 C(p + 1). <0 p (1 + 1/p)

< C p8(l + 4 e/p)

< C p60- + 4 ep1+SY.6) . (4.3)

8It follows from (2.2) and (2.3) that Hp+1 > C(p + 1). and 

henee the Lemma.

Proof of Theorem 25. We have 2<</(l - Y) > 1 by (1.44).
Choose S such that 2</ (1 - Y) > S > 1 and put 6 = S/°C .
Then, since °C6 > 1, using (1.39) and applying the inequality 
(4.1) of the Lemma we get

oo op2Z1 0%! + 1^1 ) = 0(1)
k = 1 k = l

= 0(D ^ iA*8
k = 1

= 0<i)
and hence the theorem.
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Proof of Theorem 26. We have 4°C/(1 - Y) > 1 by (1.45). 

Choose S such that 4«c/(l - Y) > S > 1 and put 5 » S/2°C . 

Then, since 2=C<5 > 1 , using (1.39) and applying the inequality 

(4.1) of the Lemma we get

CO oo

2^ C< + <) =OcdZ^ vt*4

= Od)

2which implies that f 6 L C-v , ir J . Therefore, by Carleson‘s 

theorem [5 ] , the Fourier series (D of f converges almost 

everywhere and hence the theorem.

Proof of Theorem 27. For a real number t, other than a 

negative integer, put

when n 6 N and Eq = 1 .

Denoting the n Cesaro mean of order 0 > 0 by (J^, (x) ,

replacing the absent terms in (L) by zeros and considering 

the equality quoted by T. M. Flett [10 ; P.115 3 , we get



74

Let 0=1. Using (1.39) and the inequality (4.1) of the 
Lemma, we obtain from (2.4)

nk ^nk + b P =i ■

= 0(d
k-i- > /\2 fn^

S 0(1) _ k2 cc-i 
"k 'nk-

it o Hvy 1. «c6+(6-l)

Up;

(4.5)

Since 2/(1 - Y) >2 and (4.1) holds for any £ < 2/(1 + Y), 
we choose 6 such that 2 < £ < 2/(1 - Y). This together with 
(4.5) gives

which implies the absolute summability (C,l) of the lacunary 
Fourier series (L).

Let 6=1/2. Becuase (2< + l)/(l - Y) > 1 , and (1.46) implies

2(2=c + Y + 1) / 3(1 - Y) > 1 ,



we choose S such that

** rr/

1 < S < min {
2<=c + 1 2(2°C + Y + l)
1 - Y ’ 3(1 - Y) }

and put

6 = max. \ 2S/(2< + l) , 3S/(2<< + Y + 1) } .

This choice of 6 and S gives 

6 < 2/(1 - Y)

and

(2< + 1)6/2 > 1 ; (2°C + Y + 1)6/2 - 1/2 > 1. (4.6)

Since
6 6(i) En — n ,

(ii) (1.39) implies np(^ ja^l + l^npj } = Ofcp-*)

and
Y(iii) (1.36) implies - Up| > 4 e k nfe

for p = 1, 2, ....... k-1,

we obtain from (4.4) and the inequality (4.1) of the Lemma



76
= 0<i>(:/k*(oC+e>

= Oci)(k'<a<+1>s/2
/ 6(=<+e+Y-Ye)-e + 1/ k

- (2c<+Y+l) <6/ 2+1/2 
+ k.

)
) *

Hence, using (4.6) we get

which implies absolute summability (C , 1/2) of the lacunary 
Fourier series (L).

This completes the proof of the theorem.

Completing the study of the convergence and summability 
of the lacunary Fourier series (L) under the hypothesis of 
Theorem 23 of Masako Sato, we observe that much work is done 
later on concerning the order of magnitude of Fourier coefficients 
of (L) — considering hypothesis on the function of course only 
at a point. We proceed to study, in the next chapter, the order 
of magnitude of Fourier coefficients and hence the absolute 
convergence of (L).


