
CHAPTER If

ORDER OP MAGNITUDE OP FOURIER COEFFICIENTS AND THE 

ABSOLUTE CONVERGENCE WHEN THE FUNCTION SATISFIES A 

CERTAIN HYPOTHESIS ONLY AT A POINT

<§1. The study of the order of magnitude of Fourier coefficients 

of the laeunary Fourier series (L) began with the consideration 

of the hypotheses on the function on a subinterval of C-tr , tt l .
The result is due to Noble £231 who proves that ''if (L) is the 

Fourier series of f with |nk| satisfying (1.4) then f 6 Lip fC(l), 

0 < < < 1 , ^respectively f S BV(l))implies (l.39) ^respectively 

ank , bn^ = OCnjj.1) ). Kennedy C17 J then employed the

Paley-Wiener method and proved this result under the less 

restrictive gap condition (l.l). He also showed later on C18 1 

that the result doesn't hold under a still weaker gap condition 

(1.7). The same author then began the study by considering the 

hypotheses on a function on a subset E of C-v , vJ , not 

necessarily a subinterval, and proved in his subsequent paper 

[193 that ' 'if f G Lip °((E) , 0 < °C < 1 and E has positive 

measure, then (1*39)' holds provided .£nkjj. satisfies the Hadamard 

gap condition (1.2).* * He also proves that ''if f 6 Lip '°C (E),

0 < < < 1 and E has positive spread, and if |nkj satisfies 
the condition (1.22) then (1.54) holds.'* He then conjectured 

that this result remains true if the term log nk is suppressed
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in the gap condition (1.22). The answer to this, in fact 

considerably more, is provided by Theorem 30 due to Izumi.

In the same paper C19 5 Theorem 3 1 Kennedy finally constructs 

a class of examples which shows that the estimate (1.54) is 

fairly sharp even when E has positive measure. The further 

study of the behaviour of Fourier coefficients involves the 

hypotheses on the function only at a point and starting with 

a paper of Tomic C361 , the development is given in Chapter I.

The entire study is really interesting and it reveals how nicely 

the more or less standard techniques are used to replace the 

hypothesis on the function from a subinterval to a subset of 

positive measure and then to a single point. The same techniques 

are further used in a nice way to better the estimates of Fourier 

coefficients under more general gap hypotheses. We generalize 

all these theorems by proving Theorem 31 in this chapter, and 

then we prove Theorem 32 concerning the absolute convergence. 

Finally, we show how our theorems generalize results of Izumi 

Ll5 ; Theorem 2 J and Chao C 6 ; Theorem 2 1.

The lacunarity condition considered by us in this chapter 

is the condition (1.47). Observe that the Hadamard gap condition 

(1.2) can be obtained from this condition by taking F(njj.) = n^ 
for all k £ S. Also, with F^^) =n^k^ (O<Y<1;0>Q), 

it gives rise to the gap condition.

(o < y < i , e > o). (*)



79

We now proceed to prove our theorems.

|2. Proof of Theorem 31. Without loss of generality we may 

assume that 6) (t) satisfies the required conditions (i), 

(ii) and (iii) in (0 , it) £40 ; p„911 and that xQ = 0 . 

Then, since (if( t) satisfies (i), (ii) and (iii), we have 

for any A6 E , A > 1 ,

A. . OOlCt) < CO*(At) < B • ^ • G)*(t) . (5.1)

Bet cnk tie the nk Complex Fourier coefficient of f, then

7T
9nk = ~2TT ^^ TMk(x^ exp(-inkx) dx ,

-7T

where Tj| (x) is a trigonometric polynomial of degree
i£

Mfc = C° ( C ] denotes the integral part) and with

constant term 1. Then

7t

cnk = lb TMk(x) exp(-inkx) dx

-7K

7T

------- + 1r/^nk) TMfc(x + exp(-inkx) dx

-n
n

= 1|7rJ*(f(x) %k(x) - f(x + m/nk) %^_(x + ^PkO e^P(~inkx)dx

-7T
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= ~ + TMk^ exp(-inkx)dx

-7T
7X

+ -^T ( f(x+7r/nk) (tm (x) - % (x+tt/i^)) exp (-inkx)dx
J k k-7T

I=1+1 , say*

Since the Fourier exponents of f(x + r/n^) with 

non-vanishing Fourier - coefficients are the same as those of 
f(x) and the trigonometric polynomial Tj* (x) - TM (x + v/n,)

is of degree not exceeding Mk and with the constant term zero,

iwe have I = 0 . Hence

1/M,k -1/M,

t
k

-VMfe VM*

'^(x)-f(x+v/nk)^) TM^(x) exp(~inkx)dx 

= 1^ + 12 + 13 ? say. (5.2)

Now, using m/n^ < v/Mk and (5.1), we obtain i 

if ]x| < 1/Mk then
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|f(x) - f(x+ir/nk)| = |f(x)~f(0)+f (0)-f(x+rr/nk) |

= 0(1) (0).C W ) + 0* C |x| + ir/nk)^)

=0ci) (W*tvMk) + co* c ci + "-)/Hk ))
= 0(1) (d* (1/Mk) (5.3)

and if I/Mk < |x| then

| f (x) - f(x+ir/nk)| =0(D (W!( W ) + GfX I x| + ^/nk)^

= Od) ((d.C |x| ) + U) ,( (1+tt) |x|

= 0(1) t)! (w )

= 0(l) ‘ M* Kt ‘ 0 (l/Mk) • (5.4)

Case 1. In case 0 < < < 1 , in the nropertv (ill) of Gd.(t), 
we take TMk(x) = » wiiere Kj^Cx) is'the Fejer kernel'

of order Mk . Hence

s in^ ((Mk +, 1) x/2)
1%, (x) I = *----- :---------n------------ D M. and

k (Mk+l)sin2(x/2)

\

1%. (x) I £ ~-—pr (0 < |x| < v ) , (5.6)
K M,
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where D and D* are constants. Therefore from (5.2), 

using (5.3) we get

lljJ = 0(1) • W*(l/Mk)-D-Mk-(2/Mk)

= Od) • W*(i/V

and using (5.4) we get

IT
\l2\ =0(1)-m£- 6)*(l/Mk)-(D’/Mk)- J /"* dx

1/Mk

= 0Cl)'^*CVMk) .

Similarly we get |lgj = 0 (l)> Cl), (l/Mk) . Further, from the 
inequality

1/Mk > I/F(nk) > l/(Mk + 1)

and using (5.1) repeatedly, we get

(x)*(l/Mk) = 0(D U)^(l/F(nk)) .

This together with (5.2) and the estimates of , I2 and Ig , 

finally gives us

Case 2. 

we take

Cnk = 0(D 0*(l/I'(nk)) •

In case °C > 1 , in the property (iii) of yj„ (t),

(5.6)
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where K^(x) is the Fejer kernel of order N =K/p] and 

P is such that < + 1 - 2P < 0 . Then

i 1—2P ~2P

|Tm^(x) J < E M^. and Jt^(x)J < E • . x. (0<|x|<Ctt), (5.7)

where 1 and E* are constants (refer s C6 ; P.310D). Therefore, 

proceeding analogously to the case 1 and observing that

°C + 1 ~ 2P < 0 implies o(-2P
x •dx = 0(1) -M,2P- <~1 

•k

1/M.k

we again get jl-J , jlgl , |lg| = 0(1) 6l)*(l/Mk) and hence 

finally
% = 0<D t)*C/l?(nk)) .

Thus in both the cases we get (1.56) and hence the theorem.

Remark. Observe that this theorem generalizes Theorem 29 not 

only by replacing the Hadamard gap condition (1.2) by the more 

general gap condition (1.47),, but also by suppressing the factor

log n^ in the estimation (1.51) of Fourier coefficients. Further,

taking u), (t)=t (0 < < < 1), we see that this theorem gives

theorem due to Chao £6 ; Theorem 1 D .

Proof of Theorem 32 For k 6 N ■ put
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fk(x) = f(x + ir/4nk) - f(x - it/4nk)

then
fjj-Cx)^^Gn. (exp Qii j (x+ir/4nk)) - exp (in^ (x-ir/4nk) 

■ * * 3 »

2i^> Cn sin(njTr/4nk) exp(in^x)

3
(5.8)

If Tj^Cx) is a trigonometric polynomial of order 

[0 F(nk)J and with constant term 1, then the Fourier exponents 
with non-vanishing coefficients of fk(x) Tj£ (x) in the

interval (n^ , 2nk) are the same as those of fk(x) in the

same interval. Therefore we get from (5.8)

r
* 2 r>jcn | sin / SKA

\ 4 /

TT
, i ( .2, : 2 , ,i n \ fk(x) TMk(x^ dx

•TT

where > ' signifies that summation is taken over all 3
4E

satisfying

“k ^ S1 ^2nk •
Hence

v* 2 1 ^ o o
Si - "fe J Vx) 'XCi),ta

-TT

‘~2ir +
!x < i/\

f,2(x) T^ (x) dx
x > k
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= + J2 5 say.

Now, taking %^(x) = 2 KM^ (x) and using (5.3), (5.4) and

(5.9)

k

(5.5) we get

and

|Jxi =0(1)C^*(1/Mk)) M^(2/Mk)

S 0(1) • Mk- (6)*(1/Mk) )2

U2I = 0> • (W*d/^))2 ■ • j (*/ (4 * ))
x I >1/M-k

OCD ■ Mfe- (Clf (1/Mk) )2 .

Therefore from (5.9) we obtain

yjcn,j2 =0(1) Mk (W’d/Mj,.))2

= 0(1) F(nk) •

Hence, taking nk = 2 , an application of Holder’s inequality

yields

^--- '*1 P r^r \ /k---»*i 2v p/2 . . l-p/2

EN =0ci) d>ii >
= 0(1) (?(.&) y?/Z (U*(VF(2k)) <2k/ F(2k) )1 P/2

= 0<1) (2k)1“p/2 (F(2k))^1 (^W#(l/F(2k)) ) (5.10)
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Finally, from (5.10), we have

y-|c„.|p --T1 (£
y ] 1 c ^ \ 4—-<

—oo

= 0(1)
(5.11)

on account of (1.57) and Cauchy's condensation test.

Note that in case < > 1 , in the property (iii) of GJ„(t),

we take for TM^(x) the polynomial considered in (5.6), use

(5.7) and proceed as above to get (5.10) and hence (5.11).

This completes the proof of Theorem 32.

We shall now show that the following theorems due to 
Chao C6 ; Theorem 23 and M. Izumi and S. I. Izumi C15 ; Theorem 23 

can easily be obtained from our results.

THEOREM A. (Chao). If f G Lip <(P) ( 0 < « < 1 ) and if {nfc}
satisfies (*), then the Fourier series (L) of f converges

absolutely provided °CY + <0 + Y > 1.

THEOREM B. (Izumi). If f 6 Lip =c(P) (0 < «< < l) and if ^nfc^

satisfies (*) with 0 = 0, then the Fourier series (L) of f
converges absolutely provided °C > min |l/2Y , Y,1 - 1 ^ .

Observe that the case when < > 1/Y - 1 in Theorem B 

follows from Theorem A when 0=0.
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We need the following Lemma. It is due to Chao E 6 ;

Proof of Theorem 2 3 hut is not explicitely stated there.

LEMMA. If |nkJ satisfies (*) then

nk > A kS

for any 6 < (l + 0)/(l - Y) and for all sufficiently large k, 

where A is some constant.

Now, suppose the hypothesis of Theorem A holds. Therefore 

°CY + =C0 + Y > 1 and hence (1 - °C0)/<Y < (1 + 0)/(l - Y). Choose 

6 such that

(1 - °C0)/°£Y < 6 < (1 + 0)/(l - Y). (5.12)

* °CSince f 6 Lip <(P), in view of (1.55) we take Ci)((t) = t 

in the hypothesis of Theorem 31* Hence, observing that 

Y ftP(njc) = n^ k , we get using the Lemmai:

0)* (l/F(nky) . = CKl) ke )°t)

= OU) -
Therefore, using (5.12) and applying Theorem 31, we obtain

OP t
T-JSl -OcdXZ «*0<v>
-as’ K -L

= 0(1) z:

k = 1

= 0(1) •



Thus, the Fourier series (L) of f converges absolutely 

and hence the Theorem A.

The case °c > (Y. ' ~ 1) of Theorem B is obviously included

in this

Y
Again, when f e Lip °c(P) , F(nk) = % and °C > V2Y 

then taking (/)*&)=** and p = 1 in Theorem 32, we obtain

which implies the absolute convergence of (L). Thus the ease 

°C > 1/2Y of Theorem B is established.

Finally, in viexv of our. Theorems 18 and 21 of Chapter III 

which involve the hypothesis on a function in terms of either 

the modulus of continuity or the modulus of smoothness, considered 

on a subset E of Ov , Tr J of positive measure, we pose the 

question whether {J*(i/F(n}) in our Theorem 32 can be replaced 

by the modulus of continuity considered only at a point. We 

investigate this problem in the next chapter*

= 0a>


