
CHAPTER VI

ABSOLUTE CONVERGENCE WHEN THE FUNCTION 

SATISFIES A BERNSTEIN TYPE HYPOTHESIS 

ONLY AT A POINT

J3L. It can be observed that with p = 1 and with F(n) = n 

for all n 8 N , the hypothesis (l«57) in Theorem 32, Chapter V, 

resembles that in the Bernstein’s Theorem 3 — except for the 
fact that instead of the modulus of continuity 6)0-/F(n),f,xo ) 

at a point xQ , 60* (l/F(n» is considered in our theorem. We

further continue investigating whether (0* (l/F(n)) can be 

replaced by (i) (l/F(n),f,x0 ) • Here, we wish to point out that 

the modulus of continuity 60 (]/F(n), f ,xQ ) at the point x0 , 

defined as in (1.48) with 8 replaced by 1/F(n) , does not 

satisfy the subadditivity property

60 (t^ *■ t2 , f » xG ) £ 60 (ti , f , XG) + 60 0=2? f? xo)

and hence for it the property (iii) of 60*(t) does not hold. 

Nevertheless,we are able to prove, in this concluding chapter of 

the present thesis, Theorem 33, 34 and 35 which involves Bernstein 

type hypotheses'on the function in terms of modulus of continuity 

or modulus of smoothness considered only at a point xQ 8 C-tt , v 3 . 

We see that, since 60(8 , f , xQ) or 60g(& , f , xQ) does not 

satisfy property (iii) of 60, (&) , the only loss in this 

transition from 60,(6) to 60(6 , f , xc) is that the constants
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A and B can not be taken out from F(%), f , xQ) and

, f , xQ) respectively. However, this loss is

not significant because the only effect of it is that the 

statements of our results are in terms of W (i/F(%), f, xQ) 

or (^(B/FCnfe), f, Xg) instead of the good looking form 

(OCl/FCn^), f, x0) or (j) (l/F(nk), f, xQ) of the modulus of 

continuity or modulus of smoothness respectively. Interestingly, 

it follows from our Theorem 33 that Kennedy’s Theorem 15 holds 

even if the set E having positive spread is replaced by a single 

point and the factor log % is suppressed from the gap hypothesis 

(1.22). This gives considerably more than the answer to the 

question raised by Kennedy L19J . Incidently, our this result 

betters the Theorems A and B (Chapter V) due to Chao and Izumi. 

Finally, we also study the condition on f which guarantees 

Theorem 15 at the critical index.

Observe that the method we used for proving Theorem 32 

in Chapter V depends on the fact that Fourier coefficients of 

f(x) are the same as those of f(x) P(x) for any trigonometric 

polynomial P(x) with constant term 1 and of degree less than 

min^rik - n^._1 , - nk } . Here P(x) is generally taken

to be either the polynomial considered by Noble ( e.g., refer : 

C233 , [193 ) [20 3 , [223 ) or the Fejer kernel (e.g., refer : 

[363 , C373 , [63 ) or the Jackson kernel (e.g., refer : 163)
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— all of -which are very small outside a small sub interval of 

|>7r ,7r] ; thus making |anjJ and J^%j depend mainly on

the local behaviour of f(x)• This technique is freely used 

later on for studying the properties of lacunary Fourier series 

(L). The proofs of our results in this chapter depend on a 

different method, namely, the Paley-Wiener method of approach 

to this kind of problems, which was also employed in proving 

the results of Chapter II.

| 2» We need the following lemmas.

LEMMA 1. The modulus of continuity (*)(t,~f,x0) of f at iQ , 

defined as in (1.48) with 6 replaced by t, is such that

Q(0,f,xo)=0 , G)(t,f,x0) >0 (t > 0) and 6)(t,f,x0)

is increasing.

Proof. Obviously 6i)(0,f,xo)=0 and for t > 0, 6Xt,f,xo)>0..

When 0 < t^_ < t£ then since

is a subset of
•[[f(x0 + h) - f(x0) I : 0 £ |h| < t2j

it follows that &J(t,f,x0) is increasing.

LEMMA 2. Let

and f 0 L2(I) for some I. Put nQ = 0 , nk = -n_k (k < o) ; 

Cn0 = 0 . °nk = | (%. ' “V1 Ck > o) and °nk = ^ (k < o)
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if

(rW - v
-1

> 8tr6 - for all k’ (6.1)

then

co, 2 -% ( 2<86, l |f(x)| dx ,

_frr* ' **

x
|o,, | < 64 (toOs/FCnj) , t , z^ y

nkl ^nT

or more generally

(6.2)

(6.3)

“» 2 * 2JCn | < D (GJ/B/FCnj) , f , x0)) , (6.4)

Kl - nT

where D is a constant and £ is an odd natural number.

Proof. The inequality (6.2) is infact the conclusion of Lemma 2, 

Chapter II. Now let g(x) and c£ be as in (2.6) and (2.7)

respectively. Then proceeding as in the proof of Theorem 9, 

Chapter II, we get the inequality (2.11); and hence1 by (2.6) 

and (2.7) we obtain

4 < 8
2

f(x+h) - f(x-h)| dx .

X

(6.5)

Integrating both the sides of (6.5) with respect to h over

(0 , ir/rij) we get
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In^lh dh

v/xiy,

C P(nm)
< 8 ----------- —

8v
0

x0+87t/(C F(nT))
I

J f(x+h)-f(x~h)| dx 

xq~8tt/(c F(nj,))

(6.6)

Now, we observe from (6.6) that x 6[xQ - 6 , xQ + 63 and 

hence we can put x = xQ ~ 6 + ^ , where 0 < < 88. Then, by

Lemma 1, using Tr/rhj, £ ir/FCn^) we obtain

| f(x+h)-f (x-h) | = |f(x0-*S+>2+h)- f(xQ) + f(xQ) - f(x0~8+ ^ - h) |

1 |f(x0+^ +h-o)-f(x0) |+| f(xQ+ ^-h~8)-f(x0> |

<(0(^+6+h, f, xQ) + (jJ(7l+ 6+h , f, xQ)

<2 (jJ (38 + h , f , xQ)

< 2 0) (247r/(C.F(nT); + m/F(nT) , f, xQ)

= 2 (i)(A/F(n^) 7 f, xQ), A= 24tr/C + ir . (6.7)

Using (6.7) and (*) of Chapter II, we get from (6.6)

m/rtm
,21! 1^1 • i£r <4 22! |°nk| j si^lnjjh dh

lnkl>nT 0
4
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< 8
C F(n^) 7r 16ir

8tr n„ c F(n>j>5

That is
t 2 v g|Cnk| <64 ^COCVFCnjijfjX^J) •

I ^ I£ ^

The inequality (6.3) is thus established.

* tFurther, if we let g(x) and Cnk to be as in (2.6)

iand (2.7) respectively then proceeding as in the proof of 

Theorem 11, Chapter II, we get the inequality (2.11) • Hence 

by (2.6)’ and (2.7)' we obtain 

22 - 00 ■ .2

z:i ^.1 sin

-CO
I

< 8 6,'

3=0
(-1) (i ) f (art(23- i)h) 

J
dx. (6.8)

Integrating both the sides of (6.8) with respect to h over 

(0 , 7r/nT) , we get

rr/nq
21

Jl=nkl2 J si“Z4l\lh *-*> 0

v/nT , x0+8t/(c F(nT))

< 8
0 F(nT)

8 rr
dh

^(-l/'"3(!)f(x+(23-i)h)|2dxj(6.9)

' xQ-8rr/Cc F(nrj,))0
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Now, in view of (6.9) we have x 61 x0 - 6 , xq + 6 ] and hence 

we can put x = xQ - 6 + , where 0 < <26. Then, - by

Lemma 1, using n/n^ < ir/F(nj) and the fact that I is an odd 

natural number ,we obtain

X | j£_j .
(-1) ■ O) f(V? “6+(2j- J?)h) I

ii
3=o

(-D
M ( {) f(x0+(23- j2 ) Ch+ty -6)/(23- 2 ))) ]

ij ''

< (x)|(h + l|. - 6 , f , xQ)

< + h , f , xQ)

£ (d{&/(P F(nj,)) + v/nT , f , xQ}

< Qgdsv/Cc P(nT)3 + r/F(nT) , f , xQ}

= (t)^(B/F(nT) , f , x^) , B = 877/C + tt . (6.10)

Using (6.10) and (**) of Chapter XI, alongwith (6.9), and 

proceeding analogously as in the proof of the inequality (6.3), 

the inequality (6.4) is proved. This completes the proof of 

the lemma 2.
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Proof of Theorem 33. Let nQ = 0 , nk = -n_k (k < o) ;

cn0 = 0 > = 2 ~ * ^nk^ (k > o) , Gnk = (k < o).

We assume without loss of generality that (6.1) holds* In view 
of (1.58) this can be achieved, if necessary, by adding to 
f(x> a polynomial in exp (in-^x), a process which affects
neither the hypothesis nor the conclusion of the theorem (It 
should be noted that for different 8, that is for different T, 
this polynomial may of course be different). Then Lemma 2 holds 

and putting

r«T=m2 inki ~ ^
•in the inequality, (6.3) we get

(_ (3 60 <J/F(nT) , f , x0^)y , (6.11)

where G is some constant.

Then, using (6.13.) and (1.59) instead of (2.31) and 
(1.19) respectively and proceeding analogously as in the proof 
of Theorem.12, Chapter II, this theorem is proved.

Proof of Theorem 34. Applying the.inequality (6.4) instead 
of the inequality (6.3), replacing 65 ^A/P(nj), f , xQ )

hy (0^/F(nT), f , xQ ) throughout and proceeding
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analogously as In the proof of Theorem 33, this theorem is 

proved.

Remark. The inequalities (6.3) and (6.4) generalize the 

inequalities (3.19) and (3.20) respectively, of Lemma 3 , 

Chapter III (also refer : Remark, made at the end of the proof 

of Lemma 3, Chapter III). Of course it being meaningless to 

talk of quadratic modulus of continuity at a point, we have to 

consider either the modulus of continuity or the modulus of 

smoothness at a point; and then we observe that in' the 

inequalities (3.19) and (3.20) the gap condition involved is 

the condition Bg and the quadratic modulus of continuity on a 

subset E of positive measure, while in the inequalities (6.3) 

and (6.4) we consider the gap condition (1.58) but the modulus 

of continuity is considered only at a point ^while studying 
(3.19) and (3.20), we keep in mind that (^^(l/n^ , f , e)

< C CO (l/nk , f , E) ). It may be noted here that taking 

^(n^) = nk for all k, the gap condition (1.58) gives rise to 

the Hadamard gap condition which satisfies the condition B2 ; 

meaning by , there are sequences satisfying the condition Bq 

as well as the condition (1.58).

Proof of Theorem 35. Taking F(nk) = njj. for all k G I , we 

see that this theorem follows immediately from Theorem 34.

Remark. With modulus of continuity or modulus of smoothness
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considered, on a subset E of positive measure instead of at a 

point xQ , and with the gap condition as the condition B2 ,

Theorem 33 and 34 are equivalent to our Theorem 21.

43. Observe that with F(n^.) = n^ k® ^0 < Y < 1 , 0 > o),

the gap condition (1.58) reduces to the gap condition

nk+l “ > G nj k® (0 < Y < 1 , 6 > 0) , (6.12)

and with 0=0 (6.12) then reduces to the gap condition

Y^+1 “ “k > 0 nk (0 < Y < 1). (6.13)

The gap condition (6.13) is weaker than the gap condition 

(1.22) (considered by Kennedy) with log n^ suppressed.

In this section we propose to prove the following 

corollaries.

COROLLARY 1. If f G Lip °C(P) (0 < < < l) and if {nk}

satisfies the gap condition (6.12) then for the Fourier series (L) 

of f, we have (1.6) provided ,, °CpY + <=cp0 > (1 - p/2) (1 - Y).

COROLLARY 2. If ^ n-^ satisfies the gap condition (6.12) 

with C > S and if

|f(x0+h)-f(x0)1= o(bb
(4ChM2<h).........^£(h))(2<Y+s<e+i-rt/*CL-w

(6.14)
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then (1.6) holds in case =CpY + <=£pe = (l - p/2) (1 - Y) ,
■where m e N , £> 0 ; for h > 0 , J^Ch), /2(h)...... ,|m(h)

are as in (1.23) and S is the stun of the series

* , 6(6 - 1) 1 , 6(6 ~ 1) (6 - 2) 1 ,
2f k - . 31 k2 ........

in -which 6 = (1 + e)/(l - p) and k 6 N.

We need the following lemma due to Chao C6 ; Proof of 
Theorem 21 . We have already used its part (a) in Chapter V' 
and since its part (b) is. not proved there precisely, we prove 

it here for the sake of completeness.

LEMMA 3. If £nky satisfies (6.12) then

(a) . nk > A k for any 6 < (1 + 0)/(l - Y) and for all

sufficiently large k, where A is some constant ;

(b) . nk > k for 6 = (1 + 0)/(l - Y) and for all k provided

C > S , where S is as in Corollary 2.

Proof of Lemma 3. We prove (b) by induction. Since n^ 6 N , 
6 6n-^ > 1 . Assume that nk > k for any k 6 N. Then, since

6 = (l + 8)/(1 - Y) implies Y6 + 0 = 6 - 1 , and C > S , 

we get from (6.12)
"k+l > nk + C nk fe0

6 6Y+0> k + C k
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6 §~1 / 5(8-1) 1 5(5-1)(6-2) 1 A
>k ♦*- («--2j— E*—- -p + )
a (k + 1) •

Therefore (b) is proved.

Proof of Corollary 1. We have

<pY + =cpe > (1 - (3/2) (l - Y) .

Hence

2°C(3Y + 2ocp0 + 2cCpY8 - 2<p6*Y > (2 - p) (l - Y) 

which means

2<pY(l + 0) > (2 - p) (1 - Y) - 2*Cp0 (1 - Y). 

Therefore

(1 + e)/(l-Y) > (2 - P - 2eCpe)/(&CpY).

Then choose 8 such that

(1 + e)/(l - Y) > 3 > (2 - P - 2cCpe)/(2*pY). (6.15)

How, since

(1) satisfies (6.12),

(2) f 6 Lip °c(P) implies 0(5 , f , xQ) 0 (5°S

and

(3) the inequality (6.15) implies °CpY6 + ocpe + p/2 > 1 , 

we get by Lemma 3(a)

-s”— (0)(l/F(nk),f,xo))P O (lj_ ...

2— ^^=k=l k=l
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CO 0(1)

k=l
Y ke ^ kP/2

oo
0(i)

k=l
k°cpYS + ocpie + p/2

= 0(1).

In view of the fact that f 6 Lip <(P) implies f is continuous 

at x0 , which gives f is hounded, in some neighbourhood I of 

xQ and hence that f 6 L (I), we can apply Theorem 3 to complete 

the proof of the corollary.

Proof of Corollary 2. For simplicity we take m = 2. Since {nk} 

satisfies (6.12) with C > S , Lemma 3(b) holds. Therefore, 

observing that the hypothesis °cpY + °cp0 = (1 - p/2) (1 - Y) implies

(1 + e)/(l - Y) S 5 S (2 - p - 2=Cpe))/2°cpY ,

and the equation (6.14) implies

(jO(k/F(nk) ,f,x )
0(1> <A/F(nk))

(S^FCi^-J^Ca/F^)) )\ ( 2=CY+2°C 0+1-Y)/ 2 (l—Y)

we obtain

p oov ' (ji)(A/F(nk), f,xQ)> ‘
Od)«

//2 . LW4 ke)£+£ Wnl ke)
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k=l

co

k=l

(1).

.kccpva * «pe ♦ p/2 g*(tf?** ))

Qd) \
k log^1 log1** k '

Therefore applying Theorem 33, the corollary is proved.

Remark 1. First taking p = 1, and then taking p = 1, 0 = 0, 

these corollaries give following four statements.

(I) If f 6 Lip <=c(P) (0 < < < l) and if -fn^J satisfies

(6.12) then the Fourier series (L) of f converges 

absolutely provided 2°CY + 2<<0 + Y > 1.

(II) If f 6 Lip <(P) (0 < cc < l) and if {n^ satisfies

(6.13) then the Fourier series (L) of f converges 

absolutely if 2<=CY + Y >1, that is, if * > ICy-1- •

(III)

(I?)

Statement (I) holds at the critical index, that is, 

when 2<Y + 2=C0 + Y = 1 if

|f(x0+h)-f(xD) Ot
4(b)-<i2(h)...........^+£(h)

(**)

In case °C = g (Y -£ , statement (II) holds provided 

(**) holds.

Observe that statement (I) (respectively (II)) sharpens 

Theorem A (respectively Theorem B) due to Chao (respectively
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due to Izumi) stated at the end of Chapter V ; while 

statement (III) (respectively (IV) ) gives a condition on 

f which guarantees these theorems at the critical index*

Remark 2. Kennedy has raised two questions in his paper £19 3 

concerning Theorem 15 stated in Chapter I. First, whether the 

factor log n^ can be suppressed from the gap'condition (1.22); 

and second, whether Theorem 15 holds at the critical index or 

breaks down. Izumi's Theorem B throws some light on Kennedy's 

first question; in fact, the factor log n^ is indeed suppressed 

and moreover the set 1 of positive spread is replaced by a 

single point, but the range of °C is limited to a smaller region. 

It may be noted that our statement (II) gives exact affirmative 

answer to Kennedy's question — even when the set E having 

positive spread is replaced by a single point.

Concerning Kennedy's second question, it can be seen 

from our statement (IV) that the answer is again affirmative 

even with the factor log n^ suppressed from (1.22) and with 

the hypothesis on a function only at a point — provided the 

hypothesis is in terms of generalized Lipschitz condition (**)

instead of in terms of the Lipschitz condition


