Chapter 5

Walsh—Fourier coefficients
properties of functions of

generalized bounded variations

5.1 Order of magnitude of Walsh—Fourier coef-
ficients of functions of generalized bounded

variations

5.1.1 New result for functions of one variable

Riemann-Lebesgue lemma [8, Vol.I, p.67] says that for any function f € L'(T),
its Fourier coefficients f(m) — 0 as |m| — oo. It is a fact that there is no definite
rate at which Fourier coefficients tend to zero; and the study of definite rate at
which Fourier coefficients tend to zero has been carried out for the functions of
bounded variation as well as for the functions of generalized bounded variations.
In 1949, N. J. Fine [20, Theorem VI, p.383], using second mean value theorem,
carried out the study of definite rate at which Walsh—Fourier coefficients tend to
zero for the functions of bounded variation. N. J. Fine proved that if f € BV (I)
then its Walsh—Fourier coefficients f(m) = O (L), where I = [0,1). Generalizing

this result in 2008 [22], the order of magnitude of Walsh—Fourier coefficients of
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functions of the classes ABV )(I) and ¢ABV (I) were estimated (Theorem T and
U, p.34). We have estimated the order of magnitude of Walsh—Fourier coefficients
of functions of the class ABV (p(n) 1 0o, ¢, 1) as follows.

Theorem 5.1.1.1. If f € ABV (p(n) 1 00, ,1) (1 < p(n) 1 oo as n — o) then

1

femy=o0 <22u1 L)M
J=112,

bl

where
7(m) =min{k : k € N,o(k) > m}, m > 1.

We need the following lemma to prove this theorem.

Lemma 5.1.1.2. ([58, Lemma 3.1, p.217)) If f € ABV (p(n) T p,¢,1) (1 <p <

o0) then f is bounded on I.

Proof of Theorem 5.1.1.1. In view of the above Lemma 5.1.1.2, f € ABV (p(n) 1
00, ¢, 1) implies f is bounded on I, and hence f € L*(I).

For fixed u € Ny, let h = 5. Put

g(x) =f <334— 2—1u + 2u1+1> — f(x), forallzel

Then g € L*(I). For m = 2%,

1 1 2u 1
= 5) o ) o ) ()

where r, and 7y are as defined earlier on page 9.
1 1 1 24
o (32) = () =re(3) = () =i =1

§(m) = / 9(2) () da

Also,

Thus,
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= (7 (v gt ) @) i)

/f< +—+2u+1) (o) do — [ F(0) (i) do
_ /]I 1(2) <x+2—1u—i-2u1+1> dz — f(m)
=[50 @) v () o () = S
~ b (50) o (s ) Fl) =

= —2f(m)

and

2| f(m |</‘f(:v+—+2u+1)—f(33)
-/ f(<x+2u1+l>+(2iu+2ulﬂ>)—f<x+2u1+1>
[l (et 5) =1 (o5 )

Similarly, we get
.4 .3
f (5’7"1' 2u+1) —f (x—l— 2u+1>

2fm)| < [
i< [ 1 (o 55) = 1 (o B o

and in general we have
forall y=1,---,2% — 1.

dx

dx

dx.

dx

Dividing both sides of the above inequality by A; and then summing over j =1

to 2¥ — 1, we have

o (E S 1AL@)
A7) (ZA_)S/H(Z ERE= . R

]:1 ]:1
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where

s =1 (o 2) - v+ E20)

and ¢(7(2")) is the index conjugate to p(7(2%)).

Applying Holder’s inequality on the right side of the above inequality, we get

R 24 —1 2v—1 A m 2v—1 m
2rf<2">r<z ) /(Z' hiz ) (ZAi) .

7j=1 7j=1
Hence,
“ —1 1\ e L AS ()@ P
o0 f(2%) (Zr) < [(X =) dr. (5.1)
=1 j=1 J

For any = € R, all these points = + 2jh, x+ (25 — 1)h, for j=1,---,2%—1, lie
in the interval of length 1. Thus, f € ABV (p(n) 1 oo, ¢, 1) implies

2% —1 u p(T(12“))
Afi(z)[Pr@)
<§ A5 A)" = 0O(1).
J

j=1

This together with Z?; /\i ~ ZJQ 1 —_ and the above inequality (5.1) imply that
J

1
1
Zzu 1) 2@
1

This completes the proof of the theorem.

/29l =0

5.1.2 New results for functions of two variables

In the Subsection 4.1.1, we have estimated the order of magnitude of double
Fourier series coefficients of two variables measurable functions of generalized
bounded variations in the sense of Vitali and Hardy. Here we estimate the order of
magnitude of double Walsh—Fourier series coefficients of two variables measurable

functions of generalized bounded variations in the sense of Vitali and Hardy.
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Theorem 5.1.2.1. If f € /\BV(p)(EQ) N Lp(f) (p>1) then

fe 29y =0 ! - |- (5.2)

(2 )

Proof of Theorem 5.1.2.1. For fixed u,v € Ny, let hy = i+ and hy = 5.
Put

1 1 1 1 1 1
g(a:,y)Zf +2_u+2u+1’y+2v+21;+1 _f y+2v+2v+1

f(:c+21u+ 2u1+17y) + f(z,y),

for all (x,y) € T

For m = 2" and n = 2°, ¢y, (h1) = ¥u(he) = —1 and ¥y, (35) = Un (55) =1
imply that

)= [ [, a(e.9) (o) vul) o dy

1 1 1 1 1
//2( ( +_+2u+1’y+2 +2v+1) f<xy+2v+2v+1)
—f <w+ —+ 2u1+1,y) + f(=, y)) V() VYu(y) dz dy
1 1 1
:/\/]IQf( +_+2u+1’y+2v 2v+1> wm( )wn(y) dx dy
—//Qf(x,yjr%%t?—lﬂ) () Yuly) do dy
-/ |1 ( 2u1+1,y) b(2) () de dy
s [ [ ) vnte) vty do ay
//fwy wm(x+— 2u1+1) wn(y+2—1v+ )dﬂsdy
//f:vy Vm (T wn<y+ +2U+1) dz dy
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-/

< +_+2u+1’y+ +2v+1 —flzy+g +2v+1>

f( +2i+2u+1,y)+f<x )

o1 . 1 .
f T+ Ju+1 + ﬁ + 2u+1 ) 21)+1
( 2u+1’( Qu+1
1[4 5m) (=
+f<$+2u+l’y+21)+1>
1 o1 | 1
f<x+§,y+—v)—f(x+ﬁ,y+§)
1 o1
(ot gyt g ) +F (o4 o
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2u+1) y +

dx dy

o1
Y + u+1

dx dy

1
2v+1

) ()

)

dz dy.



Similarly, we get

4|fmn|<//2

.4 .3 o
2u+1’y+21)+1 _f x+2u+1’y+2v+1

.4 .3 .3 .3
_f(x+2u+l’y+21)+l) +f<x+2u+1’y+2v+1) ' dz dy

and in general we have

fmml < [ [ 1Afuo) do dy (5.

where

. 2g . 2k (25 -=-1) . 2k
Afj(r,y) = f (w + 2u+1’y + 2v+1> —f (:E + Qu+1 Y+ Qu+1

2 (2k—1) L@i=1) @k
—f(ft-l—%,y—f- Qu+l )+f( Qu+1 ’y—l_w )

forall j=1,---2*—1and forall k=1,--- 2" — 1.

Dividing both sides of the above inequality by )\]1- A% and then summing over j = 1
to2¥ — 1 and k=1 to 2 — 1, we have

2u—-12v—-1 A
w2 (S5 i) < [ (5 2 5] v

=1 k=1

where ¢ is the index conjugate to p.

Applying Holder’s inequality on the right side of the above inequality, we get

2v—12v-1
e (55 0)

7j=1 k=1
2u_12v—1 Afiu(ey)| 3 /2uo12v-1 7
//2( 2 JAl A2 ) (ZZ)\l )\2> do dy.
j=1 k=1 j=1 k=1 "9
Hence,
2u—12v—1 2u—12 N v
U v k
4 f(2%,2Y) <Z y A) //(ZZ JAIAQ ) dx dy. (5.4)
J=1 k=1 j=1 k=1
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For any z,y € R, all these points « + 2jhy, x+ (2j — 1)hy, for j=1,---,2"—1,
and y + 2khs, y + (2k — 1)hy, for k=1,---,2" — 1, lie in the interval of length
1. Thus, f € A BV® (Ez) implies

2u—-12v—-1 A T »
(ZZ' . ) - o),

j=1 k=1

This together with Z Zk 13T )\2 A ZQU ! Ziv Lt XXz and the above inequal-
ity (5.4) imply that

1
(250 )’

f(24,2")] = O

This completes the proof of the theorem.

Corollary 5.1.2.2. If f € \" BV(p)(ﬁQ) (p > 1) then (5.2) holds true.

Proof of Corollary 5.1.2.2. In view of the Lemma 4.1.1.4 (p.62), f € A" BV® (ﬁz)
implies f is bounded on E2, and hence f € 1}7@2)7 forall p > 1. Thus, A" BV® @2)
c AN\BV® (ﬁg) ﬂLp(ﬁg). Therefore, the corollary follows from the Theorem 5.1.2.1.

Theorem 5.1.2.3. If ¢ satisfies Ay condition and f € gb/\BV(f) ﬂLl(f), then

1
Z k 1)\11)\2

feu2y=0|9¢" (5.5)

Proof of Theorem 5.1.2.3. For fixed u,v € Ny, put

. 2j . 2k (25 -1) . 2k
Afj(r,y) = f (37 + 2u+1’3/ + 2v+1) —f (x + Qu+tl Y+ Qutl

] . (2k—1) (2j—1) - (2k—1)
_f($+2u+1’y+ Qu+1 )+f( Qu+1 Y Qu+1 ’

forall j=1,---,2*—1and forall k=1,--- 2" — 1.

Then, proceeding as in the proof of the Theorem 5.1.2.1, we get (5.3)
fer < g [ [1amta) iy

< [ |15t do dy
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For ¢ > 0, by Jensen’s inequality for integrals, we have

(c]f (2%,27)] // o(c|Afjr(x,y)|) dx dy.

Dividing both sides of the above inequality by A} A} and then summing over j = 1
to2* —1and k=1 to 2" — 1, we get

2v—-12v—-1 —-12v-1 A
o(c|f(24,2Y)] <Z ) . /\2> //2 < qb (c| )\]ijk)ff y)|)> dr dy.
Jj=1 k=1 "1 j=1 k=1 J Tk

For any z,y € R, all these points © + 2jhy, x+ (2j — 1)hy, for j=1,---,2"—1,
and y + 2khs, y+ (2k — 1)hy, for k=1,---,2" — 1, lie in the interval of length
1, where h; and hy are as defined earlier in the Theorem 5.1.2.1. Thus,

2v—-12v-1

A -
Z Z ¢ Cl )\]i]k)\f y)’) < V/\¢<Cf7]12>7

7=1 k=1

as ¢ satisfies Ay condition implies cf € ¢ A BV(EQ).

Therefore,

Vp,(cf, I)
(C T )
Since ¢ is convex and ¢(0) = 0, for ¢ € (0,1] we have ¢(cz) < c¢p(x) and hence
we can choose sufﬁciently small ¢ € (0, 1] such that VA, (cf, EQ) < 1. This together

with Z] S N2 AQ ~ 221 PR D X and the above inequality (5.6) imply
that

o(elf(2",2"))) <

(5.6)

1
Z Zk VIV ,\2

This completes the proof of the theorem.

Frou ov 1 -1
) < o

Corollary 5.1.2.4. If ¢ satisfies Ay condition and f € ¢ )\ BV(EZ), then (5.5)
holds true.

Proof of Corollary 5.1.2.4. In view of the earlier Lemma 4.1.1.10 (p.66),
feon BV(_Q) implies f is bounded on I, and hence f e Ll(ﬁz). Thus,
o N\ BV (I ) c o ANBV(I ) N Ll(f). Therefore, the corollary follows from the
Theorem 5.1.2.3.
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Definition 5.1.2.5. Given a function [ € LP(EQ), where p > 1, the dyadic

p—integral modulus of continuity of f is defined as

W(p)(f§51,52)

~ aup { (] [ast i nap s ay)’

where

: 0§h1<51, O§h2<62}7

Af(z,y;hisha) = f(x 4+ by, y 4 ha) = f(o,y 4+ ha) — f(o + ha,y) + flz, ).
For p > 1 and oy, a3 € (0,1], we say that f € Lip(p; Oél,Oég)(EQ) if
W(p)(fs o1,02) = O(67165°).

Theorem 5.1.2.6. If f € Lip(p; al,ag)(f) (p>1, ar,as € (0,1)) then

£rou ov 1
f(2 ’2 ) =0 (2ua1+va2) ’

Proof of Theorem 5.1.2.6. For fixed u,v € Ny, put

At =1 (o g+ s )= (w0 g )=F (0 ) £

For m = 2" and n = 2%, 9, (2u—1+1) =1, (2,1%) = —1 implies
v 1 1 - 1 .
&) =i (s ) 0 (g ) Fomm=n (5 ) Fomom)

1 . .
(s ) Fmn) 4 fomn)

and

|f(m,n)| < = //]Afxy|dxdy

Applying Holder’s inequality on the right side of the above inequality, we have

2,27 = (// IAf (@, y)P da dy)l
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1
=0 (2ua1+voz2) )

. —2
as f € Lip(p; an, an)(I).
Hence, the theorem follows.

Theorem 5.1.2.7. If f € AC(T’) then

Frou ov 1
f(2+,2 ):0(2u+v>.

Proof of Theorem 5.1.2.7. The Theorem 5.1.2.7 can be proved in a similar

way to the proof of the Theorem 5.1.2.1.

5.1.3 New results for functions of N—variables

Now, we extend the results of the Subsection 5.1.2 for functions of N —variables

in the following way.
Theorem 5.1.3.1. If f € /\BV(p)(EN i

YNLP(I) (p>1) then

fm,...2v) =0 L 1. (5.7)

2U1 2UN 1 P
(o 0l i)

Corollary 5.1.3.2. If a measurable function f € N\ BV(p)(EN

(5.7) holds true.

) (p > 1) then

Theorem 5.1.3.3. If ¢ satisfies Ay condition and f € ng/\BV(ﬂN) N LI(EN),
then
1

20 2N
Zrllzl T Zerl W
Corollary 5.1.3.4. If ¢ satisfies Ay condition and a measurable function f €
o N\ BV(ﬁN), then (5.8) holds true.

A

f@n, 2y =0 (¢ (5.8)

Definition 5.1.3.5. Given x = (1, -+, zy) € ™ and fe LP(EN), where p > 1,
the dyadic p—integral modulus of continuity of f is defined as
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w(p)(f751a 75N)

zsup{</.../HN|Af(x17...’IN;hl,...JhN”p dx)p

: 0< h; < é; for allizl,Z,---,N}, where

Af(xlv = IN, hlv ) hN)

1 1
= Z Z (—1)u1+~-~+uN f(;pl—i—(l—ul)hl,"',IN‘i—(l_UN)hN)'
u1=0 un=0

For p > 1 and «o; € (0,1], for all i = 1,2,-- - N, we say that f € Lip(p;ay, - -
Lan)@) if
w(p)<f;517 T '>5N) = 0(5?1 T 6?\6/1\])'

Theorem 5.1.3.6. If f € Lip(p;aq,- - ',ozN)(ﬁN) (p>1, ag, -, ay € (0,1])

then A 1
f(2u17"'72UN>:O( )

Quiai+--tuyan

Theorem 5.1.3.7. If f € ACT") then
[TCCI % Y (R -
I ) 2U1+"'+UN :

All extended results of this subsection can be proved in the same way as the

results in the Subsection 5.1.2.
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