
Chapter 3

Basic properties of functions of

p−bounded variation in the mean

3.1 New results for functions of two variables

While studying the convergence of a Fourier series, C. Jordan [30] introduced

the class BV (T) and D. Waterman [72] introduced the class ΛBV (T), where

T = [0, 2π). The classical Dirichlet-Jordan test [8, V.I, p.114] asserts that the

Fourier series of a 2π−periodic function f ∈ BV (T) converges at each point.

Dirichlet-Jordan test is further generalized in several directions. Some of the

results on convergence of Fourier series of one variable functions of generalized

bounded variations are listed in the paper of M. Avdispahić [6]. In 1996, F. Móricz

and A. H. Siddiqi [38] obtained a version of Dirichlet-Jordan test for the conver-

gence of Fourier series in L1(T)−norm. Generalizing the class BV (T) to the class

BVM(T) of functions of bounded variation in the mean, F. Móricz and A. H.

Siddiqi proved that the nth partial sum, Sn, of the Fourier series of f ∈ BVM(T)

converges to f in L1(T)−norm and also estimated ‖Sn−f‖1. In 2000, P. B. Pierce

and D. Waterman [45, p.2593] observed that the class BVM(T) is a Banach space,

with respect to the pointwise operations and the variation norm in mean as de-

fined earlier in (1.6) (p.28), and there exists a continuous function f /∈ BVM(T).

R. E. Castillo [11] in 2005 extended the class BVM(T) to the class BV (p)M(T).

In 2011, Castillo [12] proved that the class BV (p)M(T) is a Banach space, with
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respect to the poitwise operations and the suitable generalized variation norm

in mean, (Theorem D, p.28). Moreover, for any f ∈ BV (p)M(T) ∩ C1(T),

‖f ′‖p
Lp(T)

= 1
2π
V m
p (f,T) (Theorem E, p.28). We have extended Castillo’s results

(Theorem D and E, p.28) for the class BV (p)M(T2
) of two variables functions

of p−bounded variation in the mean, which are 2π−periodic in each variable, as

follow.

Theorem 3.1.1. The class BV (p)M(T2
) is a Banach space with respect to the

pointwise operations and the variation norm

‖f‖ = ‖f‖
Lp(T2

)
+(V m

p (f,T2
))

1
p +(V m

p (f(., 0),T))
1
p

+ (V m
p (f(0, .),T))

1
p , f ∈ BV (p)M(T2

).

Proof of Theorem 3.1.1. Let {fk}∞k=1 be a Cauchy sequence in BV (p)M(T2
).

Therefore, it converges to some function say f in Lp(T2
). In view of the Theorem

D (p.28), we have

lim
k→∞

(V m
p (fk(., 0)−f(., 0),T))

1
p = 0 (3.1)

and

lim
k→∞

(V m
p (fk(0, .)−f(0, .),T))

1
p = 0. (3.2)

Now,

(V m
p (fk,T

2
))

1
p ≤ (V m

p (fk − fl,T
2
))

1
p + (V m

p (fl,T
2
))

1
p

and

|(V m
p (fk,T

2
))

1
p − (V m

p (fl,T
2
))

1
p | ≤ (V m

p (fk − fl,T
2
))

1
p → 0 as k, l→∞.

Hence, {(V m
p (fk,T

2
))

1
p}∞k=1 is a Cauchy sequence in R and it is bounded by some

constant say M > 0. Therefore,(∑
i

∑
j

∫ ∫
T2

|f(Iix × Ijy)|p

|Iix|p−1 |Ijy|p−1
dx dy

) 1
p

= lim
k→∞

(∑
i

∑
j

∫ ∫
T2

|fk(Iix × Ijy)|p

|Iix|p−1 |Ijy|p−1
dx dy

) 1
p

≤ lim
k→∞

(V m
p (fk,T

2
))

1
p ≤M <∞.
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This together with (3.1) and (3.2) imply that f ∈ BV (p)M(T2
). Moreover,

(∑
i

∑
j

∫ ∫
T2

|(fk − f)(Iix × Ijy)|p

|Iix|p−1 |Ijy|p−1
dx dy

) 1
p

= lim
l→∞

(∑
i

∑
j

∫ ∫
T2

|(fk − fl)(Iix × Ijy)|p

|Iix|p−1 |Ijy|p−1
dx dy

) 1
p

≤ lim
l→∞

(V m
p (fk−fl,T

2
))

1
p → 0 as k →∞.

Hence, the theorem follows from (3.1) and (3.2).

Theorem 3.1.2. Let f ∈ BV (p)M(T2
)∩C2(T2

). Then fx(., s) ∈ Lp(T), fy(t, .) ∈
Lp(T), fxy ∈ Lp(T

2
) and

V m
p (f,T2

)+V m
p (f(., s),T)+V m

p (f(t, .),T)

= 4π2‖fxy‖p
Lp(T2

)
+ 2π‖fx(., s)‖pLp(T)

+ 2π‖fy(t, .)‖pLp(T)
,

where fxy = ∂
∂y

(
∂f
∂x

)
= ∂2f

∂y∂x
.

We need the following lemma to prove this theorem.

Lemma 3.1.3. ([23, Proposition 3.11, p.93]) Let f : [a, b] × [c, d] → R satisfy

the following.

(i) For each fixed y0 ∈ [c, d], the function given by x 7→ f(x, y0) is continuous on

[a, b] and differentiable on (a, b).

(ii) For each fixed x0 ∈ (a, b), the function given by y 7→ fx(x0, y) is continuous

on [c, d] and differentiable on (c, d).

Then there is (x0, y0) ∈ (a, b)× (c, d) such that

f(b, d)− f(a, d)− f(b, c) + f(a, c) = fxy(x0, y0)(b− a)(d− c).

Proof of Theorem 3.1.2. In view of the Theorem E (p.28), we have fx(., s) ∈
Lp(T), fy(t, .) ∈ Lp(T),
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V m
p (f(., s),T) = 2π‖fx(., s)‖pLp(T)

(3.3)

and

V m
p (f(t, .),T) = 2π‖fy(t, .)‖pLp(T)

. (3.4)

Now, in view of the above Lemma 3.1.3, for any (x, y) ∈ T2
there exists (ε1i , ε

2
j) ∈

(x+ xi, x+ xi+1)× (y + yj, y + yj+1) such that

|A1 −B1 − C1 +D1|p

|xi+1 − xi|p−1|yj+1 − yj|p−1
= |fxy(ε1i , ε2j)|p (xi+1 − xi)(yj+1 − yj),

where A1 = f(x+xi+1, y+yj+1), B1 = f(x+xi, y+yj+1), C1 = f(x+xi+1, y+yj)

and D1 = f(x+ xi, y + yj).

Integrating the above equality over T2
and then summing it for i = 0 to n − 1

and j = 0 to r − 1, we get

4π2

n−1∑
i=0

r−1∑
j=0

|fxy(ε1i , ε2j)|p (xi+1 − xi)(yj+1 − yj)

=
n−1∑
i=0

r−1∑
j=0

∫ ∫
T2

|A1 −B1 − C1 +D1|p

|xi+1 − xi|p−1|yj+1 − yj|p−1
dx dy

≤ V m
p (f,T2

).

Therefore,

4π2

∫ ∫
T2
|fxy(x, y)|p dx dy ≤ V m

p (f,T2
) <∞.

Thus, fxy ∈ Lp(T
2
) and

4π2‖fxy‖p
Lp(T2

)
≤ V m

p (f,T2
). (3.5)

On the other hand, by Hölder’s inequality

A1−B1−C1+D1 =

∫ y+yj+1

y+yj

∫ x+xi+1

x+xi

fuv(u, v) du dv
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≤

(∫ y+yj+1

y+yj

∫ x+xi+1

x+xi

|fuv(u, v)|p du dv

) 1
p
(∫ y+yj+1

y+yj

∫ x+xi+1

x+xi

du dv

) p−1
p

.

Therefore,

|A1 −B1 − C1 +D1|p

|xi+1 − xi|p−1|yj+1 − yj|p−1
≤
∫ y+yj+1

y+yj

∫ x+xi+1

x+xi

|fuv(u, v)|p du dv.

Integrating the above inequality over T2
and then summing it for i = 0 to n− 1

and j = 0 to r − 1, we get

V m
p (f,T2

) ≤ 4π2‖fxy‖p
Lp(T2

)
. (3.6)

From (3.5) and (3.6), we have

4π2‖fxy‖p
Lp(T2

)
= V m

p (f,T2
). (3.7)

Hence, the theorem follows from (3.3), (3.4) and (3.7).

Theorem 3.1.4. If f ∈ Lp(T2
) satisfies the condition

|f([x1, x2]×[y1, y2])| ≤M |x2−x1| |y2−y1|, (3.8)

for all (x1, y1) ≤ (x2, y2) ∈ T2
, where M is constant, then V m

p (f,T2
) <∞.

Proof of Theorem 3.1.4. Consider any finite collections of non-overlapping

subintervals {[xi, xi+1]}, for all i = 0, 1, · · ·, n − 1, and {[yj, yj+1]}, for all j =

0, 1, · · ·, r − 1, in T. In view of (3.8), for any (x, y) ∈ T2
, we have

|f([x+ xi, x+ xi+1]× [y + yj, y + yj+1])| ≤M |xi+1 − xi| |yj+1 − yj|,

for all i = 0, 1, · · ·, n− 1 and for all j = 0, 1, · · ·, r − 1.

Thus,

|f([x+ xi, x+ xi+1]× [y + yj, y + yj+1])|p

|xi+1 − xi|p−1|yj+1 − yj|p−1
≤Mp |xi+1 − xi| |yj+1 − yj|,

for all i = 0, 1, · · ·, n− 1 and for all j = 0, 1, · · ·, r − 1.

Integrating the above inequality over T2
and then summing it for i = 0 to n− 1
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and j = 0 to r − 1, we get

n−1∑
i=0

r−1∑
j=0

∫ ∫
T2

|f([x+ xi, x+ xi+1]× [y + yj, y + yj+1])|p

|xi+1 − xi|p−1|yj+1 − yj|p−1
dx dy

≤ 4π2Mp

n−1∑
i=0

r−1∑
j=0

|xi+1− xi| |yj+1− yj|

= 4π2Mp

n−1∑
i=0

|xi+1−xi|

(
r−1∑
j=0

|yj+1 − yj|

)

≤ 8π3Mp

n−1∑
i=0

|xi+1−xi|

≤ 16π4Mp <∞.

Thus, V m
p (f,T2

) <∞.

This completes the proof of the theorem.
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