Chapter 4

Fourier coefficients properties of
functions of generalized bounded

variations

4.1 Order of magnitude of multiple Fourier co-
efficients of functions of generalized bounded

variations

Riemann-Lebesgue lemma [8, Vol.I, p.67] says that for any function f € L'(T),
where T = [0,27), its Fourier coefficients f(m) — 0 as |m| — co. Often, this
itself is an insufficient information for several purposes and it becomes necessary
to estimate the rate at which f(m) — 0 as |m| — co. But ingeneral, this rate
cannot be determined. In fact, even for the subspace C(T) of LY(T), f(m) — 0
as slow as possible [8, Vol.I, p.229]. In this context, the subspace BV (T) of
LY(T) distinguishes itself from other subspaces of L'(T). It is observed that
if f € BV(T) then its Fourier coefficients f(m) = O(ﬁ) as |m| — oo [8,
Vol.I, p.72]. Many mathematicians have generalized this result for functions of
generalized bounded variations. In fact, for the class BV®)(T), Siddiqi [55] in
1972 proved the following;:
f e BVP(T) implies f(m) =0 ( ! ) .

jm|7
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For the classes ABV ®(T) and ¢pABV/(T), in 1982 M. Schramm and D. Waterman
[53] proved the following;:

1

f € ABV®P(T) implies f(m) =0 —
(=)’

and
1

f € ABV (T) implies f(m) =0 ¢ —m 1
Z] 1>\

Also, for a function of N—variables, the Riemann-Lebesgue lemma holds: For
any function f € LI(TN), its multiple Fourier coefficients f(k) — 0 as |k| =
(K1, - kn)| = V/]ki]2+ -+ [kn[> — oo. Often, this itself is an insufficient
information for several purposes and it becomes necessary to estimate the rate
at which f(k) — 0 as |k| — oo. In 2004, V. Fiilop and F. Méricz [21] estimated

the order of magnitude of multiple Fourier coefficients of N—variables functions

of bounded variation in the sense of Vitali and Hardy (Theorem H and Corollary
H, p.29). Here, we have generalized these results by estimating the order of
magnitude of multiple Fourier coefficients of N—variables measurable functions

of generalized bounded variations in the sense of Vitali and Hardy.

4.1.1 New results for functions of two variables

First we estimate the order of magnitude of double Fourier series coefficients of
two variables measurable functions of generalized bounded variations in the sense

of Vitali and Hardy as follow.
Theorem 4.1.1.1. If f € A BV®(T") N L!(T") (p > 1) and k= (m,n) € Z2 is
such that mn # 0, then

. 1

f(k) =0
(Z‘m‘ Zlknll )\1 >\2>p

(4.1)

=
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Proof of Theorem 4.1.1.1. For any m,n € Z — {0},

R 1 —imx _—in
fonm) = o [ [ faye e dvdy
™ T
1 . T . s
L R
472 T2 m n
m —imx _—im _—iny —IiT d d
47T2 » x+a,y+ )e e e e T dy

=2 // T+ —,y—i— > e~ oYy dy.
T 2
// T y+ —imx —m(y—‘r )dl' dy

4 2 // T y+ e—imx e—iny €—i7r d[L‘ dy
v

=1 2// x y+ e*imx e~ dx dy.
T

Similarly, we get

Also,

f(m, n) = 47r2 /2 x + — e T da: dy.

Thus, we have

A 1
41 f(m,n)| = 2

[ L0 o Fowe D)=t (s )

— 1 —imx ,—iny
f <x+ m,y) + f(:p,y)) e e dx dy‘. (4.2)
Put

Afjle,y) zf(:c+‘ﬂ y+’%)—f (:c+

(j— ) zm)

for any j, k € Z.
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Then, because of the periodicity of f in each variable, we get

[ [L1asata e ay
// ’f x+—,y+ ) f(x y+%>—f(:c+%,y)+f(:c,y)‘dxdy.

Therefore,

|f(m,n)| < A f(a,y)| dr dy. (4.3)

1672

Dividing both sides of the above inequality by A} A} and then summing over j = 1

to |m| and k =1 to |n|, we have

| |n| IMI In|

|Afjk( T,y )|
m n ZZ 1y2 | = // T onlil dx dy,
1k1>\)\ 16%2 ’ jlkl)‘l)‘zpq

where ¢ is the index conjugate to p.

Applying Holder’s inequality on the right side of the above inequality, we get

Im| In|
7j=1 k= 1
Im|  |n]| IAfin(z, )P P [ |m| |n| a
J
<ioe | LSS PEST) (XX ) aw
7=1 k=1 j=1 k=1 ]
Hence,
Im| In| P 1 Im| In| IAfin(a, )P P
J
XY ] <me/ L(ZX P e
7j=1 k=1 7j=1 k=1
1
- T
< V(1 T).

This completes the proof of the theorem.
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Remark 4.1.1.2. The Theorem 4.1.1.1 is an extension of M. Schramm and D.

Waterman Theorem F' (p.29), for functions of two variables.

Corollary 4.1.1.3. If f € N*BV®(T") (p > 1) and k = (m,n) € Z2 is such
that mn # 0, then (4.1) holds true.

We need the following lemma to prove this corollary.

Lemma 4.1.1.4. If f € N" BV®)(R?) (p > 1) then f is bounded on R%.

Proof of Lemma 4.1.1.4. For any (z,y) € R?,
|f (2, y)]

< |f(m,y)—f(a,y)—f(x,c)—i—f(a, c)|+|f(x,c)—f(a, c)|+]f(a,y)—f(a,c)|

+1f(a,e)
— (A a2) (|f(:r,y) — f(a, y)A%—AJ%(%C) + f(a, C)Ip>”
# s (AT HEIEN Ty s (D AN 170,

< (AN Vp, (F, B+ 7 Vag(F( 0, [a, )+ () Vag(f(a, ), [e, )
+1f(a,c)| < o0, as f € \" BVP(R?).
Hence, f is bounded on R

Proof of Corollary 4.1.1.3. In view of the Lemma 4.1.1.4, f € A" BV(p)(TQ)
implies f is bounded on TZ, and hence f € L”(Tz), for all p > 1. Thus,
N BV ® (TQ) c \NBV® (T2) N LP(T2). Therefore, the corollary follows from
the Theorem 4.1.1.1.

Corollary 4.1.1.5. If f € \” BV(p)(TQ) (p > 1) and k = (m,0) € Z* is such
that m # 0, then

We need the following lemma to prove this corollary.
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Lemma 4.1.1.6. If f € \* BVO(T’) (p > 1) then

IVag (£ 9). Dlloe < AD)7 Vp (£, T) + Vay(£(,0),T),

where
Vas(£(9), Tlloo = sup Var (f(, %), T).

yeT

Proof of Lemma 4.1.1.6. For any y € T and for any finite collection of non-

overlapping subintervals {[x;, z;,1]} in T, we have

(Z \f(xm,y); fla, )| )

J

B =

— (Z |f(xj51,9) — f(x5,9) — f(2541,0) + f(25,0) + f(2541,0) — f($j70)|p>

5

3=

3 =

-

_ (@1, ) — F@5,9) = Fl@01,0) + £(25,0) + f(2501,0) — f(z3,0)]
- (> -
j (Aj)7
. (Z <|f(xj+1, v) = f(r;.9) =l (Z)A 1+)1f(wj, O+ 1f(2501,0) = f(a o>|>p>
|f(@jh1,9) = f(z5,9) = f2j01,0) + f(25,0)] | [f(7541,0) =
= 1 + 1
(=
3 (Z LGRS GRS CRUES o>|p> "o

f(xj,o>|)”>"

=

./,Uj+]_,0 - .CEJ',O p
. (Z tese1.0) = 2.0)

J

by Minkowski’s inequality.

Thus,

)

Vas(FG).T) < ()3 V(£ T) + Vag (£ 0).T), for all y € T.

Hence, the lemma follows.
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Proof of Corollary 4.1.1.5. For any m € Z — {0},

Fom0) =1 [ [ ste e o ay

1 ™ —im(x+Z
e
=1 //2 x + — e_imx e dx dy
oo e

//2 (z9) (“ Zy)) e da dy’. (4.4)

Thus, we have

2| f(m, 0)]

e

Put
Afe) = £ (24 270) = (04 L2D50) L foranyje

Then, because of the periodicity of f in each variable, we get

//TQ|Afj(xay)|dxdy—//ﬁ‘f(x,y)—f(x—i—%,y)’ dx dy.

Therefore,

Fom 0 < o5 [ L1850 de dy (1.5

Dividing both sides of the above inequality by /\Jl- and then summing over j = 1

to |m|, we have

Im| m|

’Af] Qf,y)’
m() Z_ —Sﬂz//Q 1% dz dy,
j=1

P
where ¢ is the index conjugate to p.

Applying Holder’s inequality on the right side of the above inequality, we get

1

|m| |m| q

le w//g Z'Afﬂ z,y)l? zj:l dz dy.
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e . g g 1 A :Ey g
|f(m, 0)] 25 38—// Z ! dx dy
< %vA;xf(.,y),T)
< SIVay (7). Dl
<5 (0% Vi, (1. T) + Vg (7,00, ).

in view of the above Lemma 4.1.1.6.
Hence, the corollary follows.

Theorem 4.1.1.7. If ¢ satisfies Ay condition, f € qﬁ/\BV(TQ) N LI(TQ) and
k= (m,n) € Z? is such that mn # 0, then

1

flky=0|o¢" (4.6)

Zlml In| 1
k=1 3T 22

Proof of Theorem 4.1.1.7. Put

Afiu(z.y) = f (x+%,y+k§)—f (x+ U jnmhwg)

(e g BT (5 U2l G

n n

for any j,k € Z.
Then, proceeding as in the proof of the Theorem 4.1.1.1, we get (4.3)

)| dx dy

Fm )| < 1

_42// |Afjr(z,y)| de dy.

For ¢ > 0, by Jensen’s inequality for integrals, we have

otel ftmm)) < 55 [ [ ol o)) da .

Dividing both sides of the above inequality by )\jl A? and then summing over j = 1

to m| and k =1 to |n|, we get
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lm||n|

Im| |n| A fn(a,
lemn (ZZ)\I )\2) _47T2//2 (ZZ¢ | )\Ji )\2 y )) dxdy

1 k=1 =1 k=1

< Vp,(ef, T, (4.7)
as ¢ satisfies Ay condition implies ¢f € ¢ A BV(TQ).
Since ¢ is convex and ¢(0) = 0, for ¢ € (0, 1] we have ¢(cx) < cp(x) and hence

we can choose sufficiently small ¢ € (0, 1] such that VA¢(C 1. TZ) < 1. Thus, from
(4.7), we have

1
E|m| Z|kn|1 ,\1 >\2

This completes the proof of the theorem.

fom,m)] < ~o7

Remark 4.1.1.8. The Theorem 4.1.1.7 is an extension of M. Schramm and D.

Waterman Theorem G (p.29), for functions of two variables.

Corollary 4.1.1.9. If ¢ satisfies Ay condition, f € ¢\ BV(Tz) and k =
(m,n) € Z? is such that mn # 0, then (4.6) holds true.

We need the following lemma to prove this corollary.

Lemma 4.1.1.10. If f € ¢ \* BV(R?) then [ is bounded on R.

Proof of Lemma 4.1.1.10. For any (z,y) € R?,

f(z,y)|

< [fla,y)= fla,y) = f(x, o)+ fla, )| +| f(z, c) = fla, )| +|f(a,y) = f(a, )]
+1f(a,c)|

AN
Y (\f(x C)Alf(a c)!) e (If(a,y) -

i A
< (M AD) 07 (VA BA))+(N) &7 (Vi (f (0, [a, 8)+(A]) o7 (Vaz (f(a, ), [e, d)))
+|f(a,c)| < oo, as fe o\ BV(R?).
Hence, f is bounded on R%.

— ()\% )\%) (’f(l',y> _f<a7y) —f(:L‘,C) —|—f(CL,C)’)

/ “’”') T 1f(a,0)
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Proof of Corollary 4.1.1.9. In view of the Lemma 4.1.1.10, f € ¢ \* BV(TQ)
implies f is bounded on Tz, and hence f € Ll(Tz). Thus, ¢ A" BV(TQ) C
o\ B V(TQ) N Ll(TQ). Therefore, the corollary follows from the Theorem 4.1.1.7.

Corollary 4.1.1.11. If ¢ satisfies Ay condition, f € ¢ N" BV (T ) and k =
(m,0) € Z? is such that m # 0, then

. ) 1
fy =010 e )

We need the following lemma to prove this corollary.

Lemma 4.1.1.12. If ¢ satisfies Ay condition and f € ¢ \* BV (T ) then

Vi (FCa) Tl < d (N Vo, (£ T) + Vi (£(,0).T))

where
Vi (f (%), Tloo = sup Vi (f (), T).

ye’]I‘

Proof of Lemma 4.1.1.12. As ¢ is satisfying Ay condition and is increasing

implies
o(u+v) < ¢2maz{u,v}) < dp(maa{u,v}) < d(g(u) + 6(v)), for any u,v > 0.

For any y € T and for any finite collection of non-overlapping subintervals

{[z;,7j41]} in T, we have

Zﬁb |f(zj41,9) — f(z5,9)])

]

o A Sf (@, y) = g, y) = f(240,0) + f(25,0) + f(2541,0) — f(z5,0)])
> )
(| f(zje1,9) = f(25,y) = f(2541,0) + f(2;,0)] + | f(241,0) — f(z;,0)])
) x
< Z O f(j41,y) — f(2g,y) — f(2j41,0) JE f(25,0)]) + (| f(2541,0) — f(x5,0)]))
Aj
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- d( ey W) - f(xj,:i)l —AQf(SCjH, 0) + f(z;,0)))

SL’jJrl,O— :L‘j,O
3 ) - SO

J

Thus,

Vit (f(ay)aT) <d (A% V/\¢(fvT2) + VAi(f(’O%T)) , Jorally € T.

$
Hence, the lemma follows.
Proof of Corollary 4.1.1.11. Put

Afe) = £ (24 2y) - (04 U207

,y>, for any j € 7.

Then, proceeding as in the proof of the Corollary 4.1.1.5, we get (4.5)

fom 01 < g [ L 1af G do dy

1
< [ [ana)deay
T T2

For ¢ > 0, by Jensen’s inequality for integrals, we have

otelfm.0) < 75 [ [Lotlas o) do dy

Dividing both sides of the above inequality by )\} and then summing over j = 1

to |m|, we have

Im| [m|

AJ
o(c|f(m,0)|) Z)\l 47r2//2 Z¢C| fi(x,y)l) dz dy

< VAi(cf(-a y)7T)
< [[Var(ef (%), T)lloo

<d (X Vp(cf T+ Vay(ef(,0.T)),  (48)

in view of the above Lemma 4.1.1.12.
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Since ¢ is convex and ¢(0) = 0, so we can choose sufficiently small ¢ € (0, 1] such

that Vj (cf, Tz) < 5a5z and VA;(cf(wO),T) < 5. Hence, from (4.8), we have

1

~ 1 1

This completes the proof of the corollary.

Theorem 4.1.1.13. If f € T—BV(TQ) (r > 1) and k= (m,n) € Z* is such that

mn # 0, then

Proof of Theorem 4.1.1.13. Put

Afple,y) =f(x+‘7—7r y+k—”)—f (x+ﬂ,y+k—”)
n m n

f( L y+u)+f<x+(j—1)7r7y+(k:—1)7r>,

for any j, k € Z.

Then, proceeding as in the proof of the Theorem 4.1.1.1, we get (4.3)

(x,y)| dz dy.

f <

Similarly, we get

ol < (gez) [ 187 Sntol do ay.

Summing both sides of the above inequality over j =1 to [m| —r and k = 1 to

In| —r, we get

[m|—r [n|—r

(il =)l = DlF ) < (s ) [ [ 30 S 1t | o o

j=1 k=1

This together with

[m|—=r n|—r

, =2
Yo I e y) S VAL T, fm| = fm| =7 and |n] ~ |n| —r

j=1 k=1
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imply that

=0 ().

[mn
This completes the proof of the theorem.

Theorem 4.1.1.14. If f € Lip(p; a1, a2)(T) (p > 1, aq,a0 € (0,1]) and k =
(m,n) € Z? is such that mn # 0, then

Proof of Theorem 4.1.1.14. Proceeding as in the proof of the Theorem 4.1.1.1,
we get (4.2)

A 1
41 f(m,n)| = 2

[0 o Fowe D)=t (s )

—f (rc + %y> + f(rc,y)> e e dy dy"

Therefore,

- 1
ol < 1o [ [ 18RGep)] do dy,

where

Afuy)=f (v+ =g+ =) = f(zy+ ) = f (24 2 y) + fp).

Applying Holder’s inequality on the right side of the above inequality, we have

F(m.m) = 0(1) ( | L1asur as dy)’l’

1
=0 (ﬁ)
m|o1 [n|o2

Theorem 4.1.1.15. If f € AC’(TQ) and k= (m,n) € Z?* is such that mn # 0,
then .

f(k) =0 — |.

79 = ()

70
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Proof of Theorem 4.1.1.15. The Theorem 4.1.1.15 can be proved in a similar
way to the proof of the Theorem 4.1.1.1.

Corollary 4.1.1.16. If f € AC(T) and k = (m,0) € Z2 is such that m # 0,

then
w-a(i5)

Proof of Corollary 4.1.1.16. The Corollary 4.1.1.16 can be proved in a similar
way to the proof of the Corollary 4.1.1.5.

4.1.2 New results for functions of N—variables

Now, we extend the results of the Subsection 4.1.1 for functions of N —variables

in the following way.

Theorem 4.1.2.1. If f € ABVO(T )NLX(T") (p> 1) and k= (ky,---, ky) €
ZN is such that ky - - - kn # 0, then

fk) =0 ! e (4.9)

k1] k] 1 »
O 3

Remark 4.1.2.2. The Theorem 4.1.2.1, with A* = --- = AN = {1} and p =1,

reduces to V. Fiilép and F. Mdoricz Theorem H (p.29) as a particular case.

Corollary 4.1.2.3. If f € \" BV(p)(TN) (p>1) and k= (k1,- -+ kn) € ZV is
such that ky - - - ky # 0, then (4.9) holds true.

Corollary 4.1.2.4. If f € \" BV(p)(TN) (p>1) and k= (ky,- - -, kn) € ZV is
such that k; # 0 for (1 <)j1 < --- < ju(EN) and k; =0 for (1 <); <--- <
IN-m (S N), where {ly,-- -, In_n} is the complementary set of {j1,- - -, jm} with
respect to {1,--- N}, then

fk) =0 ! :

Z|kj1| L Zlij| 1 ?
T‘1:1 T'IWZI )\jl._)\j]\,f
1 M
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Theorem 4.1.2.5. If ¢ satisfies Ay condition, f € ng/\BV(TN) N Ll(TN) and
k= (ki, - ky) € ZN is such that ky - - - kx # 0, then

fy =0 (o 1

: (4.10)

Corollary 4.1.2.6. If ¢ satisfies Ay condition, f € ¢ \° BV(TN) and k= (ky, -
ky) € ZN s such that ky - - - ky # 0, then (4.10) holds true.

Corollary 4.1.2.7. If ¢ satisfies Ay condition, f € ¢ \" BV(TN) and k
- kn) € ZVN s such that k; # 0 for (1 <)j; <

= (ky,--

- < ju(< N) and kj = 0 for

(1l < -+ <Iy_m(< N), where {ly,- -+, Iy_p} is the complementary set of
{j1,"++ jm} with respect to {1,---, N}, then

. 1
f =0 | < |
PACERD D

P N,

Theorem 4.1.2.8. If f € r — BV(TN) (r>1) and k = (ky,-- -, ky) € ZV is
such that ky - - - kn # 0, then

A 1
k=0 —|.
f8 <|H§V1kj|>

Theorem 4.1.2.9. If f € Lip(p; v, - - -,ozN)(TN) (p>1, ag,- -, ay € (0,1])
and k= (ky,- -+ ky) € ZV is such that ky - - - kx # 0, then

A 1
=0 —— .
f8 (Hjil\kjlaj>

Theorem 4.1.2.10. If f € AC(T") and k = (ky,- - -, ky) € ZV is such that

kl---kN#O,then
A 1
fk)y =0 ——].
*) 0<|H§11kjr>

Corollary 4.1.2.11. If f € AC(TN) and k = (ki,- - -, ky) € ZV is such that
k’j 7é 0 for (1 S)]l <L - <]M(§ N) and kj = OfO?" (1 S)ll < K lN—M(S N),
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where {ly,- - -, Ix_n} is the complementary set of {j1,- - -, ju} with respect to

{1,--+, N}, then
A 1
k=0 —— 1.
= 1)

All extended results of this subsection can be proved in the same way as the

results in the Subsection 4.1.1.

4.2 Absolute convergence of multiple Fourier se-
ries of functions of generalized bounded vari-

ations

In the rest of this chapter we study the S—absolute convergence (0 < g < 2)
of multiple Fourier series of N—variables functions of generalized bounded vari-
ations. Generalizing sufficient conditions for the absolute convergence of Fourier
series of one variable functions of generalized bounded variations, many mathe-
maticians have obtained sufficient conditions for the f—absolute convergence of
Fourier series of functions of such classes. In fact, the conditions (1.16), (1.18),
(1.19) and (1.20) (p.31—32) are sufficient conditions for the S—absolute conver-
gence of Fourier series of functions of the classes L*(T), ABV(T), ABV®)(T)
and r — BV (T) respectively. In 1947, Minakshisundaram and Szész [35] obtained
sufficient condition for the S—absolute convergence of multiple Fourier series of
a function f satisfies the condition (1.21) (Theorem Q, p.33). F. Méricz and A.
Veres [39] in 2008 obtained sufficient conditions for the f—absolute convergence of
multiple Fourier series of functions of the classes L? (TN) and BVép ) (T) (Theorem
R and S, p.33). Here, we have obtained sufficient condition, in terms of quadratic
modulus of continuity of higher differences of order » > 1, for the S—absolute
convergence of multiple Fourier series of a function of the class LQ(TN). Also, we
have obtained sufficient conditions, in terms of integral modulus of continuity or
modulus of continuity, for the f—absolute convergence of multiple Fourier series

of N—variables functions of generalized bounded variations.
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4.2.1 New results for functions of two variables

First we generalize the Theorem R (p.33) for a function of two variables as follows.

Theorem 4.2.1.1. If f € LQ(TQ) and

then .
YN 1fmn)’ <00, 0<p<2 (4.11)

[m|=1 [n|=1

Proof of Theorem 4.2.1.1. Let hy, hy > 0 be given. For any » > 1 and for any
(Q?, y) € TQu pU-t g?"<x7y) = Arf(xv Y3 h17 h2)7 where

A" (@, y; by, ha) ZZ yute ( ) (Z) fla+ (r—uwhy,y+ (r —v)hy).

u=0 v=0

Then, for any m,n € Z, we have

o 1 —imx _—in
gl(m,n)zm/Azgl(x,y)e e~ dx dy
472// A'f(x,y; hi, ho) €™ ™ dx dy
47T2// f(@+hi,y+ho)— f(z, y+he)— f(z+hi,y)
+ f(x,y)) e oY da dy
== // f(@ 4Ry y+ hy) €™ 7™ da d
_47-‘-2 T2 xT 1,Y 2) € (& T ay
i / / f(@,y+hy) e ™™ da dy

e // f(z+hy,y) e ™ ™™ dg dy

SR

_ eimhl ez’nhg f(m,n) mhz f(m 77,) zmh1 f(m n) +f(m,n)
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— fA(m’ n) (eimhl einhg . einhz o 6imh1 + 1)
— fm,m) (e — 1) (et - 1)

A~ .mhy .mhy _,mhy . mhy .nhg .nho _.nho .nhgy
:f(m,n)<e’2el2 —612612><6Z2612 —e’?e’?)

A~ mhy 4nh2 .mh1 _.mhq .nhg _:nhy
:f(m,n)e’2e2(el2—612)<ez2—e’2>
jmhi nhy My nhs

= —4f(m,n) e 2 €2 sin ——= sin —=

and

~ 1 —imx _—in
gz(m,n)zm//Tng(x,y)e e "™ dx dy

472// A2 f(z,y; hy, ho) €™ e da dy

4W2// f(z+2hy,y + 2hg) — 2f (z + 2hy,y + he) + f(x + 2k, y)
—2f (x4 h1,y +2ha) + 4f (x + h,y + ha) — 2f(x + hq,y)
ey 2he) = 20 0,y + ha) 4 [(@,)) € e da dy

_ f(m, n) < pi2mhy gi2nhy _ o i2mhy ginhy 4 i2mhy _ o imhy gi2nh

| feimhy ginha _ ggimhy y i2nhy _ gginha | 1)
— f(m,n) (e — 2eimh 4 1) (gi2Mhz _ 9einh2 4 1)
= flm,n) (& = 1) (@02 - 1)

A mhy .mhy _.mhy .mhy\2 / .nhy _.nhy _.nhy .mhg\ 2
:f(m,n)<ez2ez2 —e’?el2> <e’2e’2 —e’2e’2>

Repeating this process r times, we see that

mhy . nhy mhy

. , A h
Gr(m,n) = (—4) f(m,n) &3 % sin T sinr 12

S —.

2 2

5



Since f € L2(T"), it follows that g, € L2(T"). Thus, Parseval’s formula gives

hl . ,,nhg 2

SN | fmn) s m2 sin” 2| = O (llgrll3) - (4.12)
MmEZ nel
Putting hy = i and hy = 57, where 1, ¢, € N, taking into the account that
T_|mlr o ‘
Z§2t1+1<§’ 2170 <Im| < 2, (4.13)
and i
s nlr W to_1 .
Z < oot < 5, 22 < |TL| < 27, (414)
we get
St1t2 = Z Z |f(m n)| (”gT” ) .
21 -1<|m|<2t1 20271 <nj<2t2
Thus,

Stz = O <( (f’ ot 21))2) ' (4.15)

Now, for 0 < 8 < 2, in view of Holder’s inequality, we have

> S )

2817 1< |Im|<2t1 2t2—1<|n|<2t2

@

=0 | (2hr2t)-% > > Iftmn))?

2t1-1<|m|<2t1 2t2—1<|n|<2t2

@ (e 723\\7?
Wr f,T,T
:O 2t12t2< ( 21522)>

(21122)

Therefore,

Yo MmnlfP=3">" > Yo fmn)’

|m|=1 |n|=1 t1=1t2=12t1-1<|m|<2t1 2t2—1<|n|<2t2

—o Sy g ( ot <f;2%,2%)>ﬂ

1
t19t2) 3
t1=1t2=1 2 2 )2

Hence, the theorem follows.
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Corollary 4.2.1.2. If f € Lz’p(al,ag)(Tg), 0 < ay,as <1, then, for

5> 2 2
max y s
20&1 +1 2&2 +1

(4.11) holds true.

Proof of Corollary 4.2.1.2. For any t¢,t5 € N, put

T T
Af <x,y;ﬁ,272>

—f (24 gyt o )=f (2 o )=F (4 o) 41 (@),

Then, for r = 1, hy = 57 and hy = 57;, proceeding as in the proof of the Theorem
4.2.1.1, from (4.12), we get

Z Z ‘f(m,n) sin ;:j:l sin 227; ‘2 =0 (|Af]3) -

MEZ neEl

In view of (4.13) and (4.14), we have

Sty = Z Z ]f(m,n)]Q

2t1-1<|m|<2t1 202~ 1 <|n|<2t2

_O<//T2‘Af<x,y;%,%>2dxdy>.
Since
T
A1 (w5 3m)| =0 (@ (115 53))
we have

Sty =0 (( <f’ 20 27:2>>2)

as f € Lip(ov, 042)(T2)-

Now, applying Holder’s inequality and proceeding as in the proof of the Theorem
4.2.1.1 (from (4.15) onward), we obtain the corollary.

7



Similarly, we obtain following results for the functions of generalized bounded
variations like A BV(T"), A BV®(T") and r — BV(T").

Theorem 4.2.1.3. If f € ABV(T") N C(T") and

N1

< 00, (4.16)

then (4.11) holds true.

Proof of Theorem 4.2.1.3. Put

T v LT v . T T

Abk@uﬁipgg)=f<x+J§;y+k§ﬂ—f($+(%—U§py+kgﬂ
LT e

~f (ot izt (k= 1g)

(oG- D+ k=15 ).

for any t1,t5 € N.

Then, for any m,n € Z, we have

@jk(m’m _ f(m, n) <6sz2% ok _ mU) G Sink gl

22 sin sin . (4.17)

Since f € L? (TZ), it follows from Parseval’s formula that

A .omm . nm |2
Z Z ’f(m,n) St 2t1+1 S Qta+1

meZ nel

=0 (Afl) -
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In view of (4.13) and (4.14), we have

Sty = Z Z \f'(m, n)?

21~ 1< Im|<2f1 2021 <|n|<2t2

o] b )

forall j=1,---,2% and for all k =1, - - -, 22,

dx dy) : (4.18)

Dividing both sides of the above equation by /\]1- A? and then summing over
j=1to2" and k =1 to 2", we have

2t1 2t2
|Afjk T 3/7 2t17%) |2
Stth = O ZQtl oto </ /2 ZZ )\Jl /\i dl’ dy

lcl)\l)\2 j=1 k=1

|Afk 'ry7 tl)% |
>y Bl o)
=1 k=1
Thus, we have
Stt -0 (f’Ztl’%)

Now, applying Holder’s inequality and proceeding as in the proof of the Theorem
4.2.1.1 (from (4.15) onward), we obtain the theorem.

Corollary 4.2.1.4. (i) If a measurable function f € N\* BV(TQ) satisfies the
condition (4.16) then (4.11) holds true.

(i5) If f € BV (T") N C(T") and

=

ZZ ;m’ﬁ)) < 00, (4.19)

m=1 n=1

then (4.11) holds true.
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(i13) If f € BVV(TQ) N Lip(al,ag)(Tz), 0 < aq,ay <1, then, for

8> 2 2
max , s
2+C(1 2+C¥2

(4.11) holds true.

Proof of Corollary 4.2.1.4. Proof of Corollary 4.2.1.4 (7). In view of the earlier
Lemma 4.1.1.4 with p =1 (p.62), f € /\* BV(_Z) implies f is bounded on T,
and hence f € LQ(T ). Thus, A" BV(T ) c ANBV(T )DLZ(TQ). Therefore, the
Corollary 4.2.1.4 (i) follows from the Theorem 4.2.1.3.

Proof of Corollary 4.2.1.4 (i7). Take A' = A% = {1} (that is, AL = A2 =1, for all
n) in the Theorem 4.2.1.3.

Proof of Corollary 4.2.1.4 (¢ii). Put
T
Afix <x Y i 2t2> =/ (xﬂzt Y+ k2t2> f <$+ (7 - 1)2t1,y+k2t2>

—f(x+j%,y+(k‘—1)%>

+f (4 G- Vgry+ (k=15),

2 2tz
for any t1,t5 € N.

Then, proceeding as in the proof of the Theorem 4.2.1.3, we get (4.18)

Styty = Z Z ‘Ja(m7 n)|?

2t~ 1< |m| <2t 2t2-1<|n|<2t2

~o(f [olasn (g E) aew).

forall j =1,---,2% and for all k =1, - - -, 2%,

A (r 0| =0 (¢ (F3-35))

and f € BVV(T2), it follows that

Since

2t1 2t2
ZZ‘Aka< Y e 27;>’:O(1)'
71=1 k=1
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Thus, we have

Siutz = O (w (f3 55 = 2@))
1\ L as
as f € Lip(al,ag)(Tg)' =0 ((2,51) (2t2) ) )

Now, applying Holder’s inequality and proceeding as in the proof of the Theorem
4.2.1.1 (from (4.15) onward), we obtain the Corollary 4.2.1.4 (ii).

Theorem 4.2.1.5. If f € /\BV(p)(TQ) N C(TQ), 1<p<2r, 1<r<oo, and

B
2

ii (@Dt (f;;,;;)flf . a20)
m=1 n=1 mn (Z] IZk 1)\1 )\2>

where 2 + 1 =1, then (4.11) holds true.

Proof of Theorem 4.2.1.5. Put

T T 7T

—f(xﬂ'%,yﬂk 1)2t2>

, T
+f (e 4+0 - Dgry+ k=15,
for any t1,t5 € N.

Then, proceeding as in the proof of the Theorem 4.2.1.3, we get (4.18)

Stltz = Z Z ’fA(mvn)P

201~ 1< m| <2t 2t2—1<|n|<2t2

:O(//TQ‘Afjk (x?J%%)‘Q dx dy),

forall j =1,---,2% and for all k =1, - - -, 2%,

Since

2 —
g 2=Pst+p p

by using Holder’s inequality, we get
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T m\|?
//TQ‘Afjk@;y;ﬁ,ﬁ)
T T (2—p)s+p %
< ([ Llas (g g)| 7 as )
T
(// ‘Af]’“ Y onn 2t2>

dx dy) ,

dx dy

dx dy)

= sz (// ’Aff’“ <I Yion 2t2>

where ,
0O, = (w((zfp)sﬂo) < 1 1)) T_p‘

2fiol2 T ot1? 9to

This, together with (4.18), implies

1 ™ p
Stm - <ta112t2 (/ /EQ )Af]k <£L', Y %j ﬁ)

forall j =1,---,2% and for all k =1, - - -, 2%,

r s T p
(Stm) =0 (ta112t2 //]1‘2 ’Af]k ([L’, Y ﬁ’ ﬁ)

Dividing both sides of the above equation by )\Jl- A and then summing over
j=1to2" and k = 1 to 2", we have

ot1 9t
St1t2 <ZZ )\1 )\2)

1
dx dy) ) ,

Thus,

dz dy) .

=1 k=1
2t1 2t2
A (@, y; 55 5)I”
:O( - <//QZZ DY dr dy | | .
j=1 k=1 J Tk
Therefore,

Q. " A,y A P ’
. 1 of g\, Y3 2t172t2)|
St = O = </ LE DY e

>
k=1 XT'X\2
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Since f € A BV®) (TQ), it follows that

21 2t2
’Af]k T, Y; 2t1 %) ’p
=0(1).
) YBY (1)

=1 k=1

Thus, we have

S

1
_ of12t2
Stt, = O

2t 2t
Z : Zk21 >\1 A2

Now, applying Holder’s inequality and proceeding as in the proof of the Theorem
4.2.1.1 (from (4.15) onward), we obtain the theorem.

Corollary 4.2.1.6. If a measurable function f € \* BV® (TQ), 1<p<2r, 1<
r < 00, satisfies the condition (4.20) then (4.11) holds true.

Proof of Corollary 4.2.1.6. In view of the earlier Lemma 4.1.1.4 (p.62),
fen BV (TQ) implies f is bounded on T, and hence f € LQ(T2). Thus,
N BV®(T ) c ANBV® (']I‘Q) N LQ(TQ). Therefore, the corollary follows from the
Theorem 4.2.1.5.

Theorem 4.2.1.7. If f € r — BV(Tz) (r > 1) satisfies the condition (4.19) then
(4.11) holds true.

Proof of Theorem 4.2.1.7. Put

Afik (x,y;%,%) f<x+j2t ,y+/€2t ) f<x+(j—1)2t 7y+k2t2>

T T
—f<x+J§,y+(k—1)ﬁ)

. ™ T
for any t1,t5 € N.
Then, proceeding as in the proof of the Theorem 4.2.1.3, we get (4.17)

3 o ; im(j—3) - in(k—3)- mm . N7
Afip(m,n) = —4f(m,n) e 25t e 22 sin SOEE sin St

Similarly, we have

ion(k—L1)-—7 . mm nmw
! "( ) 2 gin? S sin? i1’
1 2

Zz\fjk(m,n) = (—4)2f(m,n) G247

»
N




Repeating this process r times, we see that

7 rr irm(i—=3)7  irn(k=21)-—7 mm .. NI
A" fp(m,n) = (=4)"f(m,n) e =23 em-d) 7 otir1 M SrT

N)
N
wn
—-
=

Since f € L? (TQ), it follows from Parseval’s formula that

2.2,

MEZ nEL

- ., mm . onm |2 ,
Fm,m)sin” S sin” S| = O(1A” fiel):

In view of (4.13) and (4.14), we have

Sty = Z Z |f(m7 n)?

281~ 1< Im|<2t1 2t2—1<|n|<2t2

-0 (//JTZ ’Arfjk (x,y;%,%)f dx dy) .

Summing both sides of the above equation over j = 1 to 2%t —r and k = 1 to

22 — r we have

201 —p 22— 9
212 (S,4,) = O (/ /1r2 Z Z ’Arfjk (x,y; %, %)’ dz dy) ,

j=1 k=1

as 211 &~ 2 — p and 202 ~ 22 — .

5 (g )| =0 6 (7 50 55)

and f €r— BV(TQ), it follows that

Since

2t177' 2t277' - -
j=1 k=1
Thus, we have
w (f; 3+ )
Stt, = O ( 2190 .

Now, applying Hoélder’s inequality and proceeding as in the proof of the Theorem
4.2.1.1 (from (4.15) onward), we obtain the theorem.
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Remark 4.2.1.8. The double Fourier series of a function f is said to be f—absolute
convergence (0 < f < 2) if

S 3 [ mn)lf < oo,

MEZ neEZ
where
Yod M mm)P =" > [Fmn)P+ Y 1 f(m,0))7+ ) 1f(0,m)17 =1 £(0,0)|.
meZ ne’ m|>1 |n|>1 meZ nez

If a function f € Ll(T2) is such that

~

f(m,n)=0 form=0 or n=0, (4.21)
then condition (4.11) is sufficient for the f—absolute convergence of the double
Fourier series of f.

If condition (4.21) is not satisfied, we may proceed as follows.
In the special case when m = 0 or n = 0, we write

~

f(m,0) = fi(m), where f(z) = %/Tf(x,y) dy, z€T; (4.22)
and

f(O,n) = fg(n), where fa(y) = %/Ef(x,y) de, yeT. (4.23)

Combining Corollary L (i) and (ii) (p.31), for the S—absolute convergence of a
Fourier series, of a function of one variable, with Corollary 4.2.1.2 (p.77) and

Corollary 4.2.1.4 (i17) (p.80) respectively, we obtain the following corollaries.

Corollary 4.2.1.9. If f € Lip(ay,as)(T"), 1 € Lip(as)(T) and f» € Lip(c)(T)
for o; € (0,1], where j = 1,2,3,4 and the functions fi and fo are as defined in
(4.22) and (4.23), then, for

2 2 2 2
B > max , , , ,
2&1+1 20&2—|—1 20{34-1 20&4—{—1

the double Fourier series of f is B—absolute convergence.
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In view of the Corollary 4.2.1.9, if f € Lip(al,ag)(T2), fi € Lip(as)(T) and
fo € Lip(au)(T) for a; € (1,1], j =1,2,3,4, then the double Fourier series of f

is absolute convergence.

Corollary 4.2.1.10. If f € BVi/(T")NLip(cn, a2)(T"), fi € BV (T)NLip(as)(T)
and f, € BV(T)NLip(ay)(T) for o € (0,1], where j = 1,2, 3,4 and the functions
f1 and fy are as defined in (4.22) and (4.23), then, for

2 2 2 2
£ > max , , , ,
2+Oél 2+062 2+063 2+Oé4

the double Fourier series of f is B—absolute convergence.

In view of the Corollary 4.2.1.10, if f € BVV(TQ)ﬂLip(Oq, Oég)(TQ), fi € BV(T)N

Lip(az)(T) and f, € BV(T) N Lip(cy)(T) for a; € (0,1], j = 1,2,3,4, then the

double Fourier series of f is absolute convergence.

Similarly, combining Theorem 4.2.1.1 (p.74) and Theorem L (p.31) or Theorem
4.2.1.3 (p.78) and Theorem N (p.32), we can easily find sufficient conditions
imposed on f, f; and f, for the S—absolute convergence of the double Fourier
series of f. Finally, combining Theorem 4.2.1.5 (p.81) and Theorem O (p.32)
or Theorem 4.2.1.7 (p.83) and Theorem P (p.32), we can easily find sufficient
conditions imposed on f, f; and f; for the f—absolute convergence of the double

Fourier series of f.

4.2.2 New results for functions of N—variables

Now, we extend the results of the Subsection 4.2.1 for functions of N —variables

in the following way.

Theorem 4.2.2.1. If f € Lz(TN) and

o0 oo <w7(~2) <f’k11”&>> ?
klz=1k;1 (ki k)2 =
then . N
. |f(kr, k)| <00, 0<B<2 (4.24)
|k1]=1 |kn]=1



Corollary 4.2.2.2. If f € Lip(ay, - - -,aN)(TN), 0<ay,- -, ay <1, then, for

5> 2 2
max .« e
200 +17 "2anx+1])7

(4.24) holds true.

Theorem 4.2.2.3. If f € /\BV(TN) N C(TN) and

e’} [e’s) w <f s 71') 2
A
Z . E - - kN 1 < 00, (4.25)

then (4.24) holds true.

Corollary 4.2.2.4. (i) If a measurable function f € N\ BV(TN) satisfies the
condition (4.25) then (4.24) holds true.

(i) If f € BVy(T )N C(T") and

i . i (w <fk11 ' %» < 00, (4.26)

k1=1 kn=1

then (4.24) holds true.

(130) If [ € BVV(TN) N Lip(ay, - - -,aN)(TN), 0<ay,- - ay <1, then, for

5> 2 2
ma,x ’-..’ s
2+CY1 2+OéN

(4.24) holds true.

Theorem 4.2.2.5. If f € ABVO(T )N C(T"), 1<p<2r, 1<r < oo, and

< 00, (4.27)
k=1 kn=1 \ k- ky (Efllzl . 'ij\\;:l m)

where £ +1 =1, then (4.24) holds true.
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Corollary 4.2.2.6. If a measurable function f € \* BV® (TN), 1<p<2r 1<
r < 00, satisfies the condition (4.27) then (4.24) holds true.

Theorem 4.2.2.7. If f € T—BV(TN) (r > 1) satisfies the condition (4.26) then
(4.24) holds true.

All extended results of this subsection can be proved in the same way as the

results in the Subsection 4.2.1.

88



