TABLE OF CONTENTS

Co	ontent	Page No.
Ac	Acknowledgements	
Pro	eface	IX
Ta	ble of Contents	XII
Fig	gures caption	XIX
Та	bles caption	XXVI
No	omenclature	XXVII
Cha	apter 1 Fundamental Concepts and Introduction	
1.1	Fluid	1
1.2	Fluid Mechanics	1
	1.2.1 Statics	1
	1.2.2Dynamics	1
1.3	Viscosity	1
	1.3.1 Dynamic viscosity (Absolute Viscosity)	1
	1.3.2Kinematic viscosity	2
1.4	Nanofluid	2
1.5	Physical properties of nanofluid	2
	1.5.1 Density	2
	1.5.2Specific heat capacity	2
	1.5.3 Thermal expansion coefficient	3
	1.5.4 Electrical conductivity	3
	1.5.5 Dynamic viscosity	3
	1.5.6Thermal conductivity	3
1.6	Casson nanofluid	5
1.7	Types of fluid flow	5
	1.7.1 Uniform and non-uniform flows	6
	1.7.2 Steady and unsteady flow	6
	1.7.3 Laminar and turbulent flow	6

1.7.4 Compressible and incompressible flow	6
1.8 Magnetohydrodynamics flow	6
1.9 Heat transfer	8
1.9.1 Conduction	8
1.9.2 Convection	8
1.9.2.1 Natural convection	9
1.9.2.2 Forced convection	9
1.9.2.3 Mixed convection	9
1.9.3 Radiation	9
1.10 Mass Transfer	9
1.11 Porous media	10
1.12 Soret effect	10
1.13 Chemical reaction effect	10
1.14 Mathematical model	11
1.14.1 Lorentz force	11
1.14.2 Faraday's law	11
1.14.3 Ohm's law	12
1.14.4 Maxwell equations	12
1.14.5 Equation of continuity	13
1.14.6 The Navier Stokes equation	14
1.14.7 Energy equation	15
1.14.8 Mass transfer equation	15
1.15 Constitutive equations of Casson nanofluid	15
1.16 Laplace transform technique (LTT)	16
1.16.1 Laplace transforms technique in MHD	17
1.17 Homotopy analysis method (HAM)	17
1.17.1 Zero-order deformation equation	17
1.17.2 High-order deformation equation	19
1.17.3 Convergence analysis	19
1.18 Dimensionless parameters	20
1.18.1 Thermal Grashof number (Gr)	21
1.18.2 Mass Grashof number (Gm)	21

1.18.3 F	Prandtl number (<i>Pr</i>)	21
1.18.4 \$	Schmidt number (Sc)	21
1.18.5 N	Magnetic parameter or Hartmann number (M)	21
1.18.6 \$	Soret Number (Sr)	21
1.18.7 F	Reynolds number (<i>Re</i>)	22
1.18.8 H	Eckert number (<i>Ec</i>)	22
1.18.9 H	Brownian diffusion coefficient (D_B)	22
1.18.10	Thermophoresis diffusion coefficient (D_T)	22
1.18.11	Skin friction coefficient(C_f)	23
1.18.12	Nusselt Number (Nu)	23
1.18.13	Sherwood Number (Sh)	23
1.19 Review	of Relevant Literature	23

Chapter 2 Mathematical analysis of one dimensional unsteady free convective MHD nanofluid flow with heat transfer

2.1	Introduction of the problem	29
2.2	Novelty of the problem	31
2.3	Mathematical formulation of the problem	31
2.4	Solution of the problem	35
2.5	Nusselt number	37
2.6	Skin friction	38
2.7	Results and discussion	38
2.8	Conclusion	48

Chapter 3 Study of one dimensional MHD nanofluid flow with heat and mass transfer in porous medium.

3.1 Section I: Study of water based nanofluid flow with heat and mass transfer in porous medium.

3.1.1	Introduction of the problem	50
3.1.2	Novelty of the problem	51

3.1.3	Mathematical formulation of the problem	52
3.1.4	Solution of the problem	56
	3.1.4.1 Solution for plate with ramped wall temperature	56
	3.1.4.2 Solution for plate with isothermal temperature	58
3.1.5	Nusselt number	61
3.1.6	Sherwood number	61
3.1.7	Skin friction	61
	3.1.7.1 For ramped wall temperature	61
	3.1.7.2 For isothermal temperature	61
3.1.8	Results and discussion	63
3.1.9	Conclusion	70
3.2 Sec	ction II: Study of thermal radiation effects on MHD Casson nanofluid flow with he	at
and ma	ass transfer in porous medium	
3.2.1	Introduction of the problem	71
3.2.2	Novelty of the problem	71
3.2.3	Mathematical formulation of the problem	72
3.2.4	Solution of the problem	76
	3.2.4.1 Solution for plate with ramped wall temperature	78
	3.2.4.2 Solution for plate with constant temperature	78
3.2.5	Nusselt number	79
3.2.6	Sherwood number	79
3.2.7	Skin Friction	79
	3.2.7.1 For ramped wall temperature	80
	3.2.7.2 For isothermal temperature	80
3.2.8	Results and discussion	80
3.2.9	Conclusion	87

Chapter 4 Thermal diffusion and heat generation effects on one dimensional MHD nanofluid flow

4.1	Introduction of the problem	89
4.2	Novelty of the problem	89

4.3	Formulation of the problem	90
4.4	Solution of the problem	94
	4.4.1 For ramped wall temperature and ramped surface concentration	94
	4.4.2 For isothermal temperature and ramped surface concentration	94
	4.4.3 For isothermal temperature and constant concentration	94
4.5	Nusselt number	95
	4.5.1 For ramped wall temperature and ramped surface concentration	95
	4.5.2 For isothermal temperature and ramped surface concentration	95
	4.5.3 For isothermal temperature and constant concentration	95
4.6	Sherwood number	95
	4.6.1 For ramped wall temperature and ramped surface concentration	95
	4.6.2 For isothermal temperature and ramped surface concentration	95
	4.6.3 For isothermal temperature and constant concentration	95
4.7	Skin friction	96
	4.7.1 For ramped wall temperature and ramped surface concentration	96
	4.7.2 For isothermal temperature and ramped surface concentration	96
	4.7.3 For isothermal temperature and constant concentration	96
4.8	Results and discussion	96
4.9	Conclusion	104

Chapter 5 Analysis of heat transfer performance of two dimensional nanofluid flow in presence of magnetic field.

5.1	Introduction	105
5.2	Novelty of the problem	106
5.3	Mathematical formulation of the problem	106
5.4	Solution by Homotopy analysis method	109
	5.4.1 Convergence of solution	112
5.5	Results and discussion	113
5.6	Conclusion	122

Chapter 6 Study of heat and mass transfer in unsteady two dimensional nanofluid flow between parallel plates

6.1	Introduction	123
6.2	Novelty of the problem	123
6.3	Mathematical formulation of the problem	124
6.4	Solution by Homotopy analysis method	127
	6.4.1 Convergence of solution	131
6.5	Results and discussion	132
6.6	Conclusion	138

Chapter 7 Study of flow and heat transfer behavior of three dimensional MHD nanofluid flow considering thermal interfacial resistance and micro mixing in suspensions

7.1	Introduction	139
7.2	Novelty of the problem	140
7.3	Mathematical formulation of the problem	140
7.4	Solution by Homotopy analysis method	144
	7.4.1 Convergence of solution	148
7.5	Results and discussion	148
7.6	Conclusion	157

Chapter 8 Study of heat and mass transfer characteristics of three dimensional MHD nanofluid flow in rotating system

Cond	clusion and future scope	179
8.6	Conclusion	178
8.5	Result and discussion	171
	8.4.1 Convergence of solution	169
8.4	Solution by Homotopy analysis method	164
8.3	Mathematical formulation of the problem	160
8.2	Novelty of the problem	160
8.1	Introduction	159

Appendix	180
Bibliography	186
List of published/accepted research work	197

List of communicated research work	199
List of presented research work in conferences	200