
Chapter 4

Compact stars with charged

distributions on pseudo-spheroidal

spacetime

In this chapter, we have studied two models of charged anisotropic fluid distribu-

tions on the background of a pseudo-spheroidal spacetime by assuming two different

expressions for pressure distribution and electric field intensity. The physical ac-

ceptability of the models are investigated and found that they are compatible with

a number of pulsars of known mass and size.

4.1 Introduction

The equilibrium of a spherical distribution of matter in the form of perfect fluid

is maintained by the repulsive pressure force against the gravitational attraction.

For matter distribution in the form of dust, there is no such force to counter the

gravitational attraction. In such situations, the collapse of the distribution to a

singularity can be averted if the matter is accompanied by some electric charge. The
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CHAPTER 4. . . . 4.1. INTRODUCTION

Coulombian force of repulsion due to the presence of charge contributes additional

force to the fluid pressure when the matter is in the form of perfect fluid.

A systematic study of electromagnetic fields in the context of general relativity

was due to Rainich [1925]. The equilibrium of charged dust spheres within the

frame work of general relativity was examined critically by Papapetrou [1947] and

Majumdar [1947]. Bonner [1960, 1965] has shown that a spherical distribution of

matter can keep its equilibrium if it is accompanied by electric charge. Stettner

[1973] has shown that a uniform density fluid distribution accompanied by some

surface charge is more stable than the one without charge. Krori and Barua [1975]

obtained a singularity free solution for static charged fluid spheres. This solution

has been analysed in detail by Juvenicus [1976]. The solution obtained by Pant

and Sah [1979] for static spherically symmetric relativistic charged fluid sphere has

Tolman Solution VI as a particular case in the absence of charge.

Cooperstock and de la. Cruz [1978] have studied relativistic spherical distributions

of charged perfect fluids in equilibrium and obtained explicit solutions of Einstein

- Maxwell equations in the interior of a sphere containing uniformly charged dust

in equilibrium. Bonnor and Wickramsuriya [1975] have obtained a static interior

dust metric with matter density increasing outward. Whitman and Burch [1981]

have given a method for solving coupled Einstein - Maxwell equations for spherically

symmetric static systems containing charge, obtained a number of analytic solutions

and examined their stability. Conformally flat interior solutions were obtained by

Chang [1983] for charged fluid as well as charged dust distributions.

Tikekar [1984] has studied some general aspects of spherically symmetric static dis-

tributions of charged fluids for specific choice of density and pressure. This solution

admits Pant and Sah [1979] solution as a particular case. Patel and Mehta [1995]

have obtained solutions of Einstein - Maxwell equations. J. K. Rao and Trivedi
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[2000] have developed a formalism for generating new solutions of coupled Einstein

- Maxwell equations.

The study of charged superdense star models compatible with observational data

has generated deep interest among researchers in the recent past and a number of

articles have been appeared in this direction Maurya and Gupta [2011a,b,c], Pant

and Maurya [2012], Maurya et al. [2017b]. Theoretical investigations of Ruderman

[1972] and Canuto [1974] suggest that matter may not be isotropic in high density

regime and hence it is pertinent to study charged models incorporating anisotropy

in pressure. Relativistic models of charged fluids distributions on spacetimes with

spheroidal geometry have been studied by Patel and Koppar [1987], Tikekar and

Singh [1998], Sharma et al. [2001], Gupta and Kumar [2005] and Komathiraj and

Maharaj [2007a].

Charged strange and quark star models have been studied by Sharma et al. [2006],

and Sharma and Mukherjee [2001, 2002]. The study of charged fluid distributions

have been carried out recently by Maurya and Gupta [2011a,b,c], Pant and Maurya

[2012] and Maurya et al. [2017b].

In the present chapter, we have obtained new class of solutions for charged fluid

distribution on the background of pseudo spheroidal spacetime. Particular choices

for radial pressure pr and electric field intensity E are taken so that the physical

requirements and regularity conditions are not violated. The bounds for the geo-

metric parameter K and the parameter α associated with charge, are determined

using various physical requirements that are expected to satisfy in its region of va-

lidity. It is found that these models can accommodate a number of pulsars like

like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, SMC X-4, Cen X-3, given

by Gangopadhyay et al. [2013]. When α = 0, the model reduces to the uncharged

anisotropic distribution given by Thomas and Pandya [2015a].

92



CHAPTER 4. . . . 4.2. FIELD EQUATIONS

4.2 Field Equations

We shall take the interior spacetime metric representing charged anisotropic matter

distribution as

ds2 = eν(r)dt2 −

(
1 +K r2

R2

1 + r2

R2

)
dr2 − r2

(
dθ2 + sin2 θdφ2

)
, (4.1)

where K and R are geometric parameters and K > 1. This spacetime, known as

pseudo-spheroidal spacetime, has been studied by number of researchers Tikekar

and Thomas [1998, 1999, 2005], Thomas et al. [2005], Thomas and Ratanpal [2007],

Paul et al. [2011], Chattopadhyay and Paul [2010], Chattopadhyay et al. [2012] and

have found that it can accommodate compact superdense stars.

Since the metric potential grr is chosen apriori, the other metric potential ν (r) is to

be determined by solving the Einstein-Maxwell field equations

Rj
i −

1

2
Rδji = 8π

(
T ji + πji + Ej

i

)
, (4.2)

where,

T ji = (ρ+ p)uiu
j − pδji , (4.3)

πji =
√

3S

[
cic

j − 1

2

(
uiu

j − δji
)]
, (4.4)

and

Ej
i =

1

4π

(
−FikF jk +

1

4
FmnF

mnδji

)
. (4.5)

Here ρ, p, ui, S and ci, respectively, denote the proper density, fluid pressure,

unit-four velocity, magnitude of anisotropic tensor and a radial vector given by(
0,−e−λ/2, 0, 0

)
. Fij denotes the anti-symmetric electromagnetic field strength ten-
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sor defined by

Fij =
∂Aj
∂xi
− ∂Ai
∂xj

, (4.6)

which satisfies the Maxwell equations

Fij,k + Fjk,i + Fki,j = 0, (4.7)

and

∂

∂xk
(
F ik
√
−g
)

= 4π
√
−gJ i, (4.8)

where g denotes the determinant of gij, Ai = (φ(r), 0, 0, 0) is four-potential and

J i = σui, (4.9)

is the four-current vector and σ denotes the charge density.

The only non-vanishing components of Fij is F01 = −F10. Here

F01 = −e
ν+λ
2

r2

∫ r

0

4πr2σeλ/2dr, (4.10)

and the total charge inside a radius r is given by

q(r) = 4π

∫ r

0

σr2eλ/2dr. (4.11)

The electric field intensity E can be obtained from E2 = −F01F
01, which subse-

quently reduces to

E =
q(r)

r2
. (4.12)

The field equations given by (4.2) are now equivalent to the following set of the

non-linear ODE’s

1− e−λ

r2
+
e−λλ′

r
= 8πρ+ E2, (4.13)
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e−λ − 1

r2
+
e−λν ′

r
= 8πpr − E2, (4.14)

e−λ
(
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

)
= 8πp⊥ + E2, (4.15)

where we have taken

pr = p+
2S√

3
, (4.16)

p⊥ = p− S√
3
. (4.17)

Because eλ =
1+K r2

R2

1+ r2

R2

, the metric potential λ is a known function of r. The set of

equations (4.13) - (4.15) are to be solved for five unknowns ν, ρ, pr, p⊥ and E. So

we have two free variables for which suitable assumption can be made.

4.3 Charged Anisotropic Model 1

We shall assume the following expressions for pr and E with the central pressure

p0 > 0.

8πpr =
p0

(
1− r4

R4

)
R2
(
1 +K r2

R2

)2 , (4.18)

and

E2 =
α r2

R4
. (4.19)

The expressions for pr and E2 are so selected that it may comply with the physical

requirement. A physically acceptable radial pressure pr should be finite at the

centre r = 0, decreasing radially outward and finally vanish at the boundary of the

distribution. The gradient of pr is given by

8π
dpr
dr

= −
4 p0 r

(
K + r2

R2

)
R4
(
1 + Kr2

R2

)3 . (4.20)
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It can be noticed from equation (4.18) that 8πpr|r=0 = p0
R2 , which is a finite quantity

at r = 0. It vanishes at r = R, which is taken as the boundary radius of the

star. Further from equation (4.20) it can be noticed that pr is a radially decreasing

function of r. For a physically acceptable electric field intensity, E(0) = 0 and

dE
dr

> 0. From equation (4.19), it is evident that E is a monotonically increasing

function of r.

On substituting the values of pr and E2 in (4.14) we obtain, after a lengthy calcu-

lation

eν = C × exp

−
(

1 + r2

R2

)(
K2αr2

R2 + (2p0 + (2− 3K)Kα)
)

4K

R(K−1)(1−α)+
(1+K)p0
K2

×
(

1 +
r2

R2

) 1
2

(K−1)(1−α)

×
(

1 +K
r2

R2

) (1+K)p0
2K2

(4.21)

where C is a constant of integration.

Hence, with the help of the equation (4.21), spacetime metric (4.1) can be written

explicitly as

ds2 =

C × exp

−
(

1 + r2

R2

)(
K2αr2

R2 + (2p0 + (2− 3K)Kα)
)

4K

R(K−1)(1−α)+
(1+K)p0
K2

×
(

1 +
r2

R2

) 1
2

(K−1)(1−α)

×
(

1 +K
r2

R2

) (1+K)p0
2K2

 dt2 −

(
1 +K r2

R2

1 + r2

R2

)
dr2

−r2
(
dθ2 + sin2 θdφ2

)
. (4.22)

The interior spacetime metric (4.22) is suitable to represent the charged fluid dis-

tribution if it match continuously with Riessner-Nordström metric

ds2 =

(
1− 2m

r
+
q2

r2

)
dt2 −

(
1− 2m

r
+
q2

r2

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (4.23)
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across the boundary r = R. The continuity of metric coefficients across r = R

provide the estimates of the constant of integration C and M as

C =
2

K + 1

(
R
√

2
)(K−1)(α−1)

e
p0
K

+α(1−K)
(
(1 +K)R2

)− (1+K)p0
2K2 (4.24)

and

M =
R(α(K + 1) +K − 1)

2(K + 1)
. (4.25)

Here M = m(r = R) denotes the mass of the star inside the radius R.

4.4 Physical Requirements and Bounds for Pa-

rameters

Now, equation (4.13) gives the density of the distribution as

8πρ =
(K − 1)

(
3 +K r2

R2

)
R2
(
1 +K r2

R2

)2 − α r2

R4
. (4.26)

The condition ρ(r = 0) > 0 is clearly satisfied and ρ(r = R) > 0 gives the following

inequality connecting α and K.

0 ≤ α < 1− 4

(K + 1)2
. (4.27)

Since K > 1, the inequality (4.27) implies

0 ≤ α < 1. (4.28)
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Differentiating (4.26) with respect to r, we get

8π
dρ

dr
= −2 r

R4

K(K − 1)
(

5 + Kr2

R2

)
+ α

R4
(
1 + Kr2

R2

)3

 . (4.29)

It is observed that dρ
dr

(r = 0) = 0 and dρ
dr

(r = R) < 0. In fact ρ is a decreasing

function of r throughout the distributions.

The expression for p⊥ is

8πp⊥ =
1

2R4

p2
0r

2
(

1− r2

R2

)2 (
1 + r2

R2

)
2
(
1 + Kr2

R2

)3 +
(−1 +K)2r2

(
3 + Kr2

R2

)
2
(
1 + r2

R2

) (
1 + Kr2

R2

)2

+
p0

(
−K(K + 1) r

6

R6 + (K2 − 3K − 4) r4

R4 − 2r2

R2 + 2
)

R10
(
1 + Kr2

R2

)3

− r
2

R6

(
−p0

r6

R6 +K(K + 5) r
4

R4 + (p0 + 8K + 4) r
2

R2 + 6
)
α(

1 + r2

R2

) (
1 + Kr2

R2

)
+

1

2

r6

R4

(
1 + Kr2

R2

)
α2(

1 + r2

R2

)
 . (4.30)

The condition p⊥ > 0 at the boundary r = R imposes a restriction on α and p0

respectively given by

0 ≤ α <
K2 + 13K + 10

(K + 1)2
−

√
24K3 + 193K2 + 262K + 97

(K + 1)4
(4.31)

and

0 < p0 ≤
1

16

(
α2(K + 1)3 − 2α(K(K + 13) + 10)(K + 1) + (K − 1)2(K + 3)

)
.

(4.32)

The anisotropy can be written in the form
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8π
√

3S = 8πpr − 8πp⊥. (4.33)

The expression for dp⊥
dr

is given by

8π
dp⊥
dr

=
3

2

(
Kα2 − p0 (K2 − 1) (6K2 − p0(K + 1))

K
(
1 + Kr2

R2

)4

)
r5

R8

−

(
2K4(K − 1) + {(4−K − 7K2) 2K2 + (2K3 +K2 + 1) p0} p0

K2
(
1 + Kr2

R2

)3

+
α(Kα(K − 1)− 2p0)

K

)
× r3

R6

+

(
K4(3K − 5)− 4K3p0(1 + 3K) + p2

0 (K3 − 1) + 2Kα (K2 + p0(K + 1))

2K3
(
1 + Kr2

R2

)2

−(α− 1)(3−K + α(K − 1))

2
(
1 + r2

R2

)2

+
p2

0 −Kα (2 (K3 + 5K2 + p0(K + 1))Kα−K3α2(K − 1))

2K3

)
× r

R4
. (4.34)

Evidently, the value of dp⊥
dr

= 0 at the origin; and at the boundary dp⊥
dr

(r = R) < 0

gives the following bounds for α with p0 > 0

0 ≤ α ≤ K(K − 3) + 10

(K + 1)2
. (4.35)

Using (4.28) in above inequality (4.35), we get

K > 1.8 (4.36)

a lower bound for K.

In order to examine the strong energy condition, we evaluate the expression ρ−pr−

2p⊥ at the centre and on the boundary of the star. It is found that, for a positivity
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of ρ− pr − 2p⊥ at the centre,

0 < p0 < K − 1, (4.37)

and (ρ− pr − 2p⊥) (r = R) > 0 gives the bound on K and α, namely

1 < K ≤ 5, (4.38)

0 ≤ α ≤ K2 + 11K + 8

(K + 1)2
+

√
24K3 + 153K2 + 174K + 49

(K + 1)4
. (4.39)

The expressions for adiabatic sound speed dpr
dρ

and dp⊥
dρ

in the radial and transverse

directions, respectively, are given by

dpr
dρ

=
2p0

(
K + r2

R2

)
(K − 1)K

(
5 + Kr2

R2

)
+
(
1 + Kr2

R2

)3
α
, (4.40)

and

dp⊥
dρ

=
dp⊥
dr
dρ
dr

(4.41)

where dρ
dr

and dp⊥
dr

are given by expressions (4.29) and (4.34).

The condition 0 ≤ dpr
dρ
|(r=0) ≤ 1 gives the following bounds on p0 with α ≥ 0 and

K > 1,

0 < p0 ≤
5(K − 1)K + 2α

2K
. (4.42)

Moreover, 0 ≤ dpr
dρ
|(r=R) ≤ 1 leads to the following inequality

0 < p0 ≤ α(K + 1)2 +
(K − 1)K(K + 5)

2(K + 1)
. (4.43)
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Further, 0 ≤ dp⊥
dρ
|(r=0) ≤ 1, give the following bounds for K, α and p0.

1 < K < 3.34441, (4.44)

0 ≤ α <
1

4
(K − 1)2, (4.45)

and

2(3K + 1)−
√

12α + 33K2 + 30K + 1 ≤ p0 ≤ 2(3K + 1)−
√

8α + 13K2 + 50K + 1.

(4.46)

Moreover at the boundary (r = R), we have the following restrictions on K, α and

p0.

1 < K < 16.4118, (4.47)

0 ≤ α <
3K3 + 20K2 + 31K + 10

(K + 1)2(7K + 5)
−

√
16K6 + 48K5 − 99K4 + 948K3 + 2054K2 + 1044K + 85

(K + 1)4(7K + 5)2

(4.48)

and

0 < p0 ≤
1

8α + 8αK2 − 8K2 + 16αK + 24K − 80
×
(
−5α2 + 20α− 7α2K4 + 6αK4 +K4

−26α2K3 + 46αK3 − 12K3 − 36α2K2 + 102αK2 − 78K2 − 22α2K + 82αK + 92K − 3

)
.

(4.49)

The necessary condition for the model to represent a stable relativistic star is that

Γ > 4
3

throughout the star. Γ > 4
3

at r = 0 gives a bound on p0 with K > 1 and

α ≥ 0,

p0 >
2α +K2 −K

3K
. (4.50)

The upper limits of α in the inequalities (4.27), (4.31), (4.35), (4.39), and (4.45) for

different permissible values of K are shown in Table 4.1. It can be noticed that the
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smallest bound for α is given by (4.31).

The lower bounds of p0 are calculated from (4.46) and (4.50). The upper bounds of

p0 are calculated from (4.32),(4.37),(4.42), (4.43), (4.46) & (4.49). They are listed

in Table 4.2. The required lower bound for p0 can be as taken as the largest values

listed for each K and the upper bound can be taken as the least values listed for

each K.

Table 4.1: The upper limits of α for different permissible values of K.
Inequality Numbers

K (4.27) (4.31) (4.35) (4.39) (4.45)
1.8001 0.4898 0.0150 0.9999 7.9882 0.1600
1.9001 0.5244 0.0179 0.9405 7.8029 0.2025
2.0001 0.5556 0.0209 0.8888 7.6282 0.2501
2.1001 0.5838 0.0239 0.8439 7.4632 0.3026
2.2001 0.6094 0.0270 0.8047 7.3072 0.3601
2.3001 0.6327 0.0301 0.7704 7.1594 0.4226
2.4001 0.6540 0.0333 0.7405 7.0192 0.4901
2.5001 0.6735 0.0364 0.7143 6.8861 0.5626
2.6001 0.6914 0.0396 0.6913 6.7594 0.6401
2.7001 0.7078 0.0427 0.6713 6.6388 0.7226
2.8001 0.7230 0.0459 0.6537 6.5239 0.8101
2.9001 0.7370 0.0490 0.6384 6.4142 0.9026
3.0001 0.7500 0.0521 0.6250 6.3093 1.0001
3.1001 0.7621 0.0552 0.6133 6.2091 1.1026
3.2001 0.7733 0.0583 0.6032 6.1131 1.2101
3.3001 0.7837 0.0613 0.5944 6.0211 1.3226
3.3401 0.7876 0.0625 0.5912 5.9853 1.3690

Similarly the lower bound for p0 can be easily seen from the next Table 4.2.

4.5 Application to Compact Stars

We shall use the charged anisotropic model on pseudo-spheroidal spacetime to

strange star models whose mass and size are known. Consider the pulsar 4U 1820-30

whose estimated mass and radius are 1.58M� and 9.1km. If we use these estimates
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Table 4.2: For a fixed value 0.05 of α from the above Table 4.1, the lower and upper
limits of p0 for different permissible values of K.

Inequality Numbers
Lower Bounds Upper Bounds

K (4.46) (4.50) (4.32) (4.37) (4.42) (4.43) (4.46) (4.49)
1.8001 0.0517 0.2852 -0.4458 0.8001 2.0280 2.1409 1.2451 1.8315
1.9001 0.0685 0.3176 -0.4425 0.9001 2.2766 2.4551 1.4281 2.2249
2.0001 0.0860 0.3500 -0.4333 1.0001 2.5252 2.7837 1.6147 2.6409
2.1001 0.1042 0.3826 -0.4178 1.1001 2.7741 3.1262 1.8045 3.0756
2.2001 0.1229 0.4152 -0.3957 1.2001 3.0230 3.4824 1.9972 3.5253
2.3001 0.1421 0.4479 -0.3666 1.3001 3.2720 3.8520 2.1925 3.9860
2.4001 0.1618 0.4806 -0.3302 1.4001 3.5211 4.2349 2.3902 4.4537
2.5001 0.1819 0.5134 -0.2862 1.5001 3.7702 4.6308 2.5901 4.9247
2.6001 0.2023 0.5462 -0.2343 1.6001 4.0195 5.0395 2.7921 5.3952
2.7001 0.2231 0.5790 -0.1740 1.7001 4.2688 5.4610 2.9959 5.8619
2.8001 0.2442 0.6119 -0.1051 1.8001 4.5181 5.8951 3.2015 6.3216
2.9001 0.2655 0.6449 -0.0271 1.9001 4.7675 6.3416 3.4086 6.7715
3.0001 0.2871 0.6778 0.0601 2.0001 5.0169 6.8005 3.6173 7.2091
3.1001 0.3089 0.7108 0.1570 2.1001 5.2664 7.2716 3.8273 7.6325
3.2001 0.3309 0.7438 0.2639 2.2001 5.5159 7.7549 4.0386 8.0398
3.3001 0.3531 0.7768 0.3811 2.3001 5.7654 8.2502 4.2511 8.4296
3.3401 0.3620 0.7900 0.4310 2.3401 5.8652 8.4517 4.3365 8.5804

in (4.25) with α = 0.05, we get K = 2.718 which is well inside the permitted limits

of K. Similarly by taking the estimated masses and radii of some well-known pul-

sars like PSR J1903+327, 4U 1608-52, Vela X-1, SMC X-4 and Cen X-3, we have

calculated the values of K with α = 0.05 for each of these stars. These estimates

together with some relevant physical quantities like the central density ρc, surface

density ρR, the compactification factor u = M
R
, dpr
dρ (r=0)

and the charge Q inside the

star are displayed in Table 4.3. From this table it is evident that charged anisotropic

models can accommodate the observational data of pulsars recently given by Gan-

gopadhyay et al. [2013].
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Table 4.3: Estimated physical values based on the observational data with α = 0.05
fixed.
STAR K M R ρc ρR u(= M

R
)

(
dpr
dρ

)
r=0

Q

(M�) (Km) (MeV fm−3) (MeV fm−3) Coulombs

4U 1820-30 2.718 1.58 9.1 1875.15 240.29 0.256 0.251 2.36 ×1020

PSR J1903+327 2.781 1.667 9.438 1806.35 226.58 0.261 0.242 2.45 ×1020

4U 1608-52 3.010 1.74 9.31 2095.78 243.66 0.276 0.214 2.42 ×1020

Vela X-1 2.969 1.77 9.56 1947.00 229.38 0.273 0.218 2.48 ×1020

SMC X-4 2.230 1.29 8.831 1425.58 218.84 0.300 0.350 2.29 ×1020

Cen X-3 2.502 1.49 9.178 1610.99 223.03 0.239 0.287 2.38 ×1020

4.6 Validation of Model for 4U 1820-30

In order to examine the nature of physical quantities throughout the distribution,

we have considered a particular pulsar 4U 1820-30, whose tabulated mass and radius

are M = 1.58M�, and R = 9.1km respectively. From Table 4.3 it can be noticed

that the corresponding values of K = 2.718 with α = 0.05. We have shown the

variations of density and pressures in both the charged and uncharged cases in Fig-

ure 4.1, Figure 4.2 and Figure 4.3. It can be noticed that the density is decreasing

radially outward. Similarly the radial pressure pr and transverse pressure p⊥ are

decreasing radially outward.

The variation of anisotropy shown in Figure 4.4 is initially decreasing with negative

values reaches minimum and then increases. The square of sound speed in the radial

and transverse direction (i.e. dpr
dρ

and dp⊥
dρ

) are shown in Figure 4.5 and Figure 4.6

respectively and found that they are less than 1, showing that the causality con-

dition is fulfilled throughout. The graph of ρ − pr − 2p⊥ against radius is plotted

in Figure 4.7. It can be observed that it is non-negative for 0 ≤ r ≤ R and hence

strong energy condition is satisfied throughout the star.

A necessary condition for the exact solution to represent stable relativistic star is

that the relativistic adiabatic index given by Γ = ρ+pr
pr

dpr
dρ

should be greater than 4
3
.
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The variation of adiabatic index throughout the star is shown in Figure 4.8 and it is

found that Γ > 4
3

(Knutsen [1988a]) throughout the distribution both in charged and

uncharged case. For a physically acceptable relativistic star the gravitational redshift

must be positive and finite at the centre and on the boundary. Further it should be

a decreasing function of r (Murad [2013a]). Figure 4.9 shows that this is indeed the

case. For a physically acceptable charged distribution, the electric field intensity E

should be an increasing function of r (Murad [2013a]). The variation of E2 against

r is displayed in Figure 4.10. E2 is found to be radially increasing throughout the

distribution. The model reduces to the uncharged anisotropic distribution given by

Thomas and Pandya [2015a] when α = 0.

Figure 4.1: Variation of density against radial parameter r and charge parameter α
for K = 2.718.
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Figure 4.2: Variation of radial pressures against radial parameter r and charge
parameter α for K = 2.718.

Figure 4.3: Variation of transverse pressures against radial parameter r and charge
parameter α for K = 2.718.
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Figure 4.4: Variation of anisotropy against radial parameter r and charge parameter
α for K = 2.718.

Figure 4.5: Variation of 1
c2
dpr
dρ

against radial parameter r and charge parameter α
for K = 2.718.
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Figure 4.6: Variation of 1
c2
dp⊥
dρ

against radial parameter r and charge parameter α
for K = 2.718.

Figure 4.7: Variation of strong energy condition against radial parameter r and
charge parameter α for K = 2.718.
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Figure 4.8: Variation of Γ against radial parameter r and charge parameter α for
K = 2.718.

Figure 4.9: Variation of gravitational redshift against radial parameter r and charge
parameter α for K = 2.718.
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Figure 4.10: Variation of E2 against radial parameter r and charge parameter α for
K = 2.718.
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4.7 Charged Anisotropic Model 2

We shall assume the following expressions for pr and E.

8πpr =
K − 1

R2

1− r2

R2(
1 +K r2

R2

)2 , (4.51)

E2 =
α (K − 1)

R2

r2

R2(
1 +K r2

R2

) . (4.52)

It can be noticed from equation (4.51) that pr vanishes at r = R and hence we

take the geometric parameter R as the radius of distribution. Further pr ≥ 0 for

all values of r in the range 0 ≤ r ≤ R. It can also be noted that E2 is regular at

r = 0. On substituting the values of pr and E2 in (4.14) we obtain, after a lengthy

calculation

eν = CR
[K2−(2+α)K+α+1]

K

(
1 +K

r2

R2

)(K+α+1
2K )(

1 +
r2

R2

)K−α−3
2

, (4.53)

where C is a constant of integration. Hence, the spacetime metric takes the explicit

form

ds2 = CR
[K2−(2+α)K+α+1]

K

(
1 +K

r2

R2

)(K+α+1
2K )(

1 +
r2

R2

)K−α−3
2

dt2

−

(
1 +K r2

R2

1 + r2

R2

)
dr2 − r2

(
dθ2 + sin2 θdφ2

)
. (4.54)

The constant of integration C can be evaluated by matching the interior spacetime

metric with Riessner-Nordström metric

ds2 =

(
1− 2m

r
+
q2

r2

)
dt2 −

(
1− 2m

r
+
q2

r2

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (4.55)
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across the boundary r = R. This gives

M =
R

2

[K2 + α(K − 1)− 1]

(1 +K)2 , (4.56)

and

C = R
−[K2−(2+α)K+α+1]

K (1 +K)−( 3K+α+1
2K ) 2(α−K+5

2 ). (4.57)

Here M denotes the total mass of the charged anisotropic distribution.

4.8 Physical Requirements and Bounds for Pa-

rameters

The gradient of radial pressure is obtained from equation (4.51) in the form

8π
dpr
dr

= −2r(K − 1)

R4

1 + 2K −K r2

R2(
1 +K r2

R2

)3 < 0. (4.58)

It can be noticed from equation (4.58) that the radial pressure is a decreasing func-

tion of r. Now, equation (4.13) gives the density of the distribution as

8πρ =

(
K − 1

R2

)
3 + (K − α) r

2

R2(
1 +K r2

R2

)2 . (4.59)

The conditon ρ(r = 0) > 0 is clearly satisfied and ρ(r = R) > 0 gives the following

inequality connecting α and K.

0 ≤ α < 3 +K. (4.60)
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Differentiating (4.59) with respect to r, we get

8π
dρ

dr
= −2r(K − 1)

R4

5K + α +K(K − α) r
2

R2(
1 +K r2

R2

)3 . (4.61)

It is observed that dρ
dr

(r = 0) = 0 and dρ
dr

(r = R) < 0 leads to the inequality

K2 −K(α− 5) + α ≥ 0. (4.62)

The inequality (4.62) together with the condition K > 1 give a bound for α as

0 ≤ α <
K(K + 5)

K − 1
. (4.63)

The expression for p⊥ is

8πp⊥ =
4K − 4 +X1

r2

R2 +X2
r4

R4 +X3
r6

R6

R2
(
4 + Y1

r2

R2 + Y2
r4

R4 + Y3
r6

R6 + 4K3 r8

R8

) , (4.64)

where, X1 = 4K2 + (−12α− 16)K + 12α+ 12, X2 = 6K3 + (−10α− 22)K2 + (4α+

14)K + 6α+ 2, X3 = K4 + (−2α− 4)K3 + (α2 + 2α+ 6)K2 + (−2α2 − 2α− 4)K +

α2 + 2α + 1, Y1 = 12K + 4, Y2 = 12K2 + 12K and Y3 = 4K3 + 12K2.

The condition p⊥ > 0 at the boundary r = R imposes a restriction on K and α

respectively given by

K > 2
√

3− 1 (4.65)

and

0 ≤ α <
10 + 5K +K2

K − 1
−

√
89 + 102K + 57K2 + 8K3

(K − 1)2 . (4.66)
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The expression for dp⊥
dr

is given by

dp⊥
dr

=
−r
(

8K2 + (12α + 8)K − 12α− 16 + A1
r2

R2 + A2
r4

R4 + A3
r6

R6 + A4
r8

R8

)
R4
(
2 +B1

r2

R2 +B2
r4

R4 +B3
r6

R6 +B4
r8

R8 +B5
r10

R10 + 2K4 r12

R12

) ,

(4.67)

where, A1 = −4K3 + (28 − 4α)K2 + (16α − 20)K − 12α − 4, A2 = 3K4 + (−4α −

4)K3 + (−3α2 − 28α− 30)K2 + (6α2 + 44α+ 36)K − 3α2 − 12α− 5, A3 = 10K4 +

(−16α− 36)K3 + (−2α2 + 4α+ 16)K2 + (4α2 + 16α+ 12)K − 2α2 − 4α− 2, A4 =

K5 + (−2α − 4)K4 + (α2 + 2α + 6)K3 + (−2α2 − 2α − 4)k2 + α2 + 2α + 1, B1 =

8k + 4, B2 = 12K2 + 16K + 2, B3 = 8K3 + 24K2 + 8K, 2K4 + 16K3 + 12K2 and

B4 = 4K4 + 8K3.

The value of dp⊥
dr

= 0 at the origin and dp⊥
dr

(r = R) < 0 gives the following bounds

for K and α respectively

2
√

13− 5 < K < 5 (4.68)

and

0 ≤ α <
K3 + 10K2 + 25K − 20

K2 − 6K + 5
+

√
16K5 + 233K4 + 252K3 + 278K2 − 788K + 265

(K2 − 6K + 5)2

(4.69)

In order to examine the strong energy condition, we evaluate the expression ρ−pr−

2p⊥ at the centre and on the boundary of the star. It is found that

(ρ− pr − 2p⊥) (r = 0) = 0, (4.70)

and (ρ− pr − 2p⊥) (r = R) > 0 gives the bound on K and α, namely

1 < K < 1 + 2
√

6 (4.71)
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0 ≤ α <
8 + 3K +K2

K − 1
+

√
41 + 46K + 49K2 + 8K3

(K − 1)2 . (4.72)

The expressions for adiabatic sound speed dpr
dρ

and dp⊥
dρ

in the radial and transverse

directions, respectively, are given by

dpr
dρ

=
1 + 2K −K r2

R2

5k + α +K(K − α) r
2

R2

, (4.73)

and

dp⊥
dρ

=

(
1 +K r2

R2

)3 [
8K2 + (12α + 8)K − 12α− 16 + C1

r2

R2 + C2
r4

R4 + C3
r6

R6 + C4
r8

R8

]
2(K − 1)

[
5K + α +K(K − α) r

2

R2

]
× 1[

2 +D1
r2

R2 +D2
r4

R4 +D3
r6

R6 +D4
r8

R8 +D5
r10

R10 + 2K4 r12

R12

] , (4.74)

where, C1 = −4K3 + (18 − 4α)K2 + (16α − 20)K − 12α − 4, C2 = 3K4 + (−4α −

4)K3 + (−3α2 − 28α− 30)K2 + (6α2 + 44α + 36)K − 3α2− 12α− 5, C3 = 10K4 +

(−16α− 36)K3 + (−2α2 + 4α + 16)K2 + (4α2 + 16α + 12)K − 2α2− 4α− 2, C4 =

K5 + (−2α − 4)K4 + (α2 + 2α + 6)K3 + (−2α2 − 2α− 4)K2 + (α2 + 2α + 1)K,

D1 = 8K+4, D2 = 12K2+16K+2, D3 = 8K3+24K2+8K, D4 = 2K4+16K3+12K2

and D5 = 4K4 + 8K3.

The condition 0 ≤ dpr
dρ
≤ 1 is evidently satisfied at the centre whereas at the bound-

ary it gives a restriction on α as

0 ≤ α <
K2 + 4K − 1

K − 1
, K > 1. (4.75)

Further dp⊥
dρ
≤ 1 at the centre will lead to the following inequalities

K >
4

3
(4.76)
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and

0 ≤ α <
1

2
(3K − 4). (4.77)

Moreover at the boundary (r = R), we have the following restrictions on K and α.

− 5 + 2
√

13 ≤ K < 5 (4.78)

and

0 ≤ α ≤ K3 + 10K2 + 25K − 20

K2 − 6K + 5
+

√
16K5 + 233K4 + 252K3 + 278K2 − 788K + 265

(K2 − 6K + 5)2 ,

(4.79)

The necessary condition for the model to represent a stable relativistic star is that

Γ > 4
3

throughout the star. Γ > 4
3

at r = 0 gives a bound on α which is identical

to (4.60). Further, Γ → ∞ as r → R and hence the condition is automatically

satisfied. It can be noticed that E = 0 at r = 0, showing the regularity of the

charged distribution.

The upper limits of α in the inequalities (4.60), (4.63), (4.66), (4.69), (4.72), (4.75)

and (4.77) for different permissible values of K are shown in Table 4.4. It can be

noticed that for 2.4641 < K ≤ 3.7641 the bound for α is 0 ≤ α ≤ 0.6045.

4.9 Application to Compact Stars and Discussion

In order to compare the charged anisotropic model on pseudo-spheroidal spacetime

with observational data, we have considered the pulsar PSR J1614-2230 whose es-

timated mass and radius are 1.97M� and 9.69 km. On substituting these values in

equation (4.56) we have obtained the values of adjustable parameters K and α as

K = 3.58524 and α = 0.292156 respectively which are well inside their permitted
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Table 4.4: The upper limits of α for different permissible values of K.
Inequality Numbers

K (4.60) (4.63) (4.66) (4.75) (4.77) (4.69) (4.72)
2.4641 5.4641 12.5622 0.0000 10.1962 1.6962 0.0802 30.9893
2.5041 5.5041 12.4932 0.0170 10.1635 1.7562 0.0938 30.6186
2.6041 5.6041 12.3445 0.0599 10.0977 1.9062 0.1287 29.7861
2.7041 5.7041 12.2250 0.1036 10.0514 2.0562 0.1648 29.0693
2.8041 5.8041 12.1299 0.1480 10.0213 2.2062 0.2021 28.4488
2.9041 5.9041 12.0552 0.1931 10.0048 2.3562 0.2405 27.9094
3.0041 6.0041 11.9980 0.2388 10.0000 2.5062 0.2798 27.4388
3.1041 6.1041 11.9557 0.2852 10.0052 2.6562 0.3201 27.0271
3.2041 6.2041 11.9263 0.3321 10.0189 2.8062 0.3612 26.6662
3.3041 6.3041 11.9082 0.3795 10.0401 2.9562 0.4030 26.3495
3.4041 6.4041 11.8998 0.4275 10.0679 3.1062 0.4457 26.0714
3.5041 6.5041 11.9002 0.4760 10.1015 3.2562 0.4890 25.8272
3.6041 6.6041 11.9082 0.5251 10.1401 3.4062 0.5330 25.6130
3.7041 6.7041 11.9230 0.5745 10.1833 3.5562 0.5776 25.4254
3.7541 6.7541 11.9327 0.5995 10.2065 3.6312 0.6001 25.3407
3.7641 6.7641 11.9348 0.6045 10.2112 3.6462 0.6047 25.3244

limits. Similarly assuming the estimated masses and radii of some well known pul-

sars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, Cen

X-3, we have displayed the values of the parameters K and α, the central density

ρc, surface density ρR, the compactification factor u = M
R

, dpr
dρ

(r = 0) and charge

Q inside the star in Table 4.5. From the table it is clear that our model is in good

agreement with the most recent observational data of pulsars given by Gangopad-

hyay et al. [2013].

Table 4.5: Estimated physical values based on the observational data

STAR K M R ρc ρR u(= M
R

)
(

dpr
dρ

)
r=0

Q

(M�) (Km) (MeV fm−3) (MeV fm−3) Coulomb

4U 1820-30 2.815 1.58 9.1 1980.14 250.46 0.256 0.461 4.031× 1020

PSR J1903+327 2.880 1.667 9.438 1906.90 235.92 0.261 0.460 4.184× 1020

4U 1608-52 3.122 1.74 9.31 2212.22 252.97 0.276 0.455 4.127× 1020

Vela X-1 3.078 1.77 9.56 2054.99 238.25 0.273 0.456 4.240× 1020

PSR J1614-2230 3.585 1.97 9.69 2487.35 248.17 0.300 0.448 4.262× 1020

Cen X-3 2.589 1.49 9.178 1705.08 233.65 0.239 0.466 4.044× 1020

117



CHAPTER 4. . . . 4.9. APPLICATION TO COMPACT STARS...

In order to examine the nature of physical quantities throughout the distribution, we

have considered a particular star PSR J1614-2230, whose tabulated mass and radius

are M = 1.97M�, R = 9.69 km. Choosing K = 3.58524 and α = 0.292156, we have

shown the variations of density and pressures in both the charged and uncharged

cases in Figure 4.11, Figure 4.12 and Figure 4.13. It can be noticed that the pressure

is decreasing radially outward. The density in the uncharged case is always greater

than the density in the charged case. Similarly the radial pressure pr and transverse

pressure p⊥ are decreasing radially outward. Similar to that of density, pr and p⊥

in the uncharged case accommodate more values compared to charged case.

The variation of anisotropy shown in Figure 4.14 is initially decreasing with negative

values reaches a minimum and then increases. In this case also anisotropy takes

lesser values in the charged case compared to uncharged case. The square of sound

in the radial and transverse direction (i.e. dpr
dρ

and dp⊥
dρ

) are shown in Figure 4.15

and Figure 4.16 respectively and found that they are less than 1. The graph of

ρ− pr− 2p⊥ against radius is plotted Figure 4.17. It can be observed that it is non-

negative for 0 ≤ r ≤ R and hence strong energy condition is satisfied throughout

the star.

A necessary condition for the exact solution to represent stable relativistic star is

that the relativistic adiabatic index given by Γ = ρ+pr
pr

dpr
dρ

should be greater than 4
3
.

The variation of adiabatic index throughout the star is shown in Figure 4.18 and

it is found that Γ > 4
3

throughout the distribution both in charged and uncharged

case. Though we have not assumed any equation of state in the explicit form pr =

pr(ρ) and p⊥ = p⊥(ρ), we have shown the relation between pr, p⊥ against ρ in

the graphical form as displayed in Figure 4.19 and Figure 4.20. For a physically

acceptable relativistic star the gravitational redshift must be positive and finite at

the centre and on the boundary. Further it should be a decreasing function of r.
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Figure 4.21 shows that this is indeed the case. Finally we have plotted the graph

of E2 against r which is displayed in Figure 4.22. Initially E2 increases from 0

and reaches a maximum values and then decreases radially outward. The model

reduces to the uncharged anisotropic distribution given by Ratanpal et al. [2016]

when α = 0.

Figure 4.11: Variation of density against radial variable r.
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Figure 4.12: Variation of radial pressures against radial variable r.

Figure 4.13: Variation of transverse pressures against radial variable r
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Figure 4.14: Variation of anisotropies against radial variable r.

Figure 4.15: Variation of 1
c2
dpr
dρ

against radial variable r.
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Figure 4.16: Variation of 1
c2
dp⊥
dρ

against radial variable r.

Figure 4.17: Variation of strong energy condition against radial variable r.
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Figure 4.18: Variation of Γ against radial variable r.

Figure 4.19: Variation of pressures against density for charged case.

123



CHAPTER 4. . . . 4.9. APPLICATION TO COMPACT STARS...

Figure 4.20: Variation of pressures against density for uncharged case.

Figure 4.21: Variation of gravitational redshift against radial variable r.
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Figure 4.22: Variation of E2 against radial variable r.
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