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1 Introduction

General Theory of Relativity is a geometric theory of gravitation. Among

the four forces of interaction, gravitation is the only long range force. General

Theory of Relativity is based on the following fundamental principles.

1. The principle of equivalence: In the neighbourhood of any point, one

cannot distinguish between the gravitational field produced by the at-

traction of masses and the field produced by accelerating frame of ref-

erence.

2. Principle of covariance: The laws of physics must take the same form

in all coordinate system.

3. The physical events are described in four dimensional spacetime man-

ifold with metric ds2 = gijdx
idxj.

4. The spacetime curvature is created by stress energy within the space-

time. In the presence of matter, this can be described by Einstein’s

field equations

<ij −
1

2
<gij = −

8πG

c2
Tij, (1)

where Tij’s are components of energy-momentum tensor which contains

all information about the physical content of the spacetime.

The Einstein’s field equations comprise a set of ten second order partial

differential equations connecting the metric and physical variables. However,

for a spherically symmetric static metric, they reduce to the following set of
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three equations

8πG

c4
T 0
0 = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
(2)

8πG

c4
T 1
1 = e−λ

(
ν ′

r
+

1

r2

)
− 1

r2
, (3)

8πG

c4
T 2
2 = e−λ

(
ν ′′

2
+
ν ′λ′

4
+
ν ′2

4
− λ′ − ν ′

2r

)
. (4)

For anisotropic fluid distributions the energy-momentum tensor can be

expressed in the form [Maharaj and Maartens (1989) ([8]),

Tij = (ρ+ p)uiuj − pgij + πij, (5)

where, ρ and p denote the energy-density and isotropic pressure of the fluid,

respectively and ui is the 4-velocity of the fluid. The anisotropic stress-tensor

πij has the form

πij =
√
3S

[
CiCj −

1

3
(uiuj − gij)

]
, (6)

where, Ci = (0,−e−λ/2, 0, 0). For a spherically symmetric anisotropic dis-

tribution, S(r) denotes the magnitude of the anisotropic stress. The non-

vanishing components of the energy-momentum tensor are the following:

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
. (7)

Consequently, radial and transverse pressures of the distribution are given
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by

pr = −T 1
1 =

(
p+

2S√
3

)
, (8)

p⊥ = −T 2
2 =

(
p− S√

3

)
, (9)

so that the anisotropy takes the form

S =
pr − p⊥√

3
. (10)

Theoretical investigations by Ruderman (1972)([13]) and Canuto (1974)

([2]) suggest that when the density of matter distribution exceeds that of

nuclear density, it is likely that the distribution is anisotropic. Bowers and

Liang (1974) ([1]) have shown that anisotropy may have non-negligible effect

on equilibrium mass and surface redshift. Since then number of researchers

worked on anisotropic superdense stars incorporating charge as well as devoid

of charge. Recently a lot of interest has been developed among researchers

in developing models of charged as well as uncharged anisotropic fluid distri-

butions compatible with observational data.

We have studied, in the Thesis, models of anisotropic charged as well

as uncharged superdense distributions of matter compatible with observa-

tional data on the background of spacetimes possessing definite geometry,

viz., pseudospheroidal and paraboloidal spacetimes. The Thesis is divided

into six chapters.
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2 Layout of The Thesis

Chapter 1 contains introduction to general theory of relativity and the

theoretical background needed for the problems studied in the subsequent

chapters. It also contains the summary of each chapter of the thesis .

In Chapter 2 we study the solution of Einstein’s field equations (EFEs) for

a static spherically symmetric anisotropic distribution by generalizing the

ansatz of Finch and Skea [Class. Quantum Grav. 6 467, 1989] described

by grr =
(
1 + r2

R2

)n
. By using the physical acceptability and regularity

conditions we have obtained the bounds on the model parameter p0 in terms

of the dimensionless parameter n which lies in the interval
(
1, 4√

3

)
. The

model so developed is in good agreement with the observational data of

pulsars , viz., 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR

J1614-2230, SAX J1808.4-3658 and Her X-1 (referred in Gangopadhyay et al

[5]).

Chapter 3 deals with a new class of solutions of Einstein’s field equations

representing a static spherically symmetric anisotropic matter distribution on

the background of pseudo-spheroidal spacetime characterized by the metric

potential grr =
1+K r2

R2

1+ r2

R2

, where K and R represent geometric parameters. The

field equations are integrated by assuming a particular, physically acceptable

form for the radial pressure pr given by the expression pr = p0
R2

(
1− r2

R2

)(
1+ r2

R2

)
(
1+K r2

R2

)2 .

We have obtained suitable bounds of model parameters K and p0 on the

basis of the physical acceptability conditions viz., regularity, stability and

energy conditions. It is found that the model is compatible with the wide

range of compact stars viz., 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela
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X-1, PSR J1614-2230, SMC X-4 and Cen X-3.

In order to validate the model for physical acceptability , we have studied

in detail the regularity, energy and stability conditions using numerical and

graphical methods for the pulsar 4U 1820-30 by taking the mass of the pulsar

as 1.58M� and radius is 9.1km The values of the parameters in this case are

p0 = 1.08 and K = 3.1.

In the second part of this chapter, we have taken a different form for radial

pressure, viz., pr = K−1
R2

(
1− r2

R2

)
(
1+K r2

R2

)2 . The bound for the geometric parameter

K is obtained as 2.4641 ≤ K ≤ 4.1231 using the physical acceptability

conditions. For validating the present model , we have studied in detail

the regularity, stability and energy conditions for the pulsar candidate PSR

J1614-2230 having mass equal to 1.97M� and radius 9.69km corresponding

to K = 3.997.

In Chapter 4, we have studied anisotropic charged fluid distributions on

pseudo-spheroidal spacetime. By choosing suitable expressions for radial

pressure pr = p0
R2

(
1− r2

R2

)(
1+ r2

R2

)
(
1+K r2

R2

)2 and electric field intensity E =
√
α r
R2 , where

α ≥ 0 is a constant, the field equations are integrated. The parameters K,R

and α are determined by imposing the physical acceptability conditions. The

present model is in good agreement with the observational data of various

compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, SMC

X-4, Cen X-3 given by Gangopadhyay et al. ([5]). When α = 0, the model

reduces to the uncharged anisotropic distribution described as first model in

chapter 3. In order to examine the nature of physical quantities throughout

the distribution, we have considered a particular pulsar 4U 1820-30, whose

tabulated mass and radius are M = 1.58M�, and R = 9.1(km), respectively,
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for K = 2.718 and α = 0.05. It is found that all physical variables behave

well for this particular pulsar.

We have studied a second model in this chapter by assuming a dif-

ferent form for radial pressure pr and electric field intensity E, namely,

pr = K−1
R2

(
1− r2

R2

)
(
1+K r2

R2

)2 and E2 = α(K−1)
R2

r2

R2(
1+K r2

R2

)2 . The bounds of geometric

parameter K and the parameter α appearing in the expression for E2 are

obtained by imposing the requirements for a physically acceptable model. It

is found that the model is in good agreement with the observational data of

number of compact stars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela

X-1, PSR J1614-2230, Cen X-3 given by Gangopadhyay et al. ([5]). When

α = 0, the model reduces to the uncharged anisotropic distribution discussed

as a second model in chapter 3.

Chapter 5 provides new exact solutions of Einstein’s field equations (EFEs)

by assuming a linear equation of state, pr = α(ρ− ρR) where pr is the radial

pressure and ρR is the surface density. The background spacetime metric is

a paraboloidal spacetime metric characterized by the metric potential grr =

1+ r2

R2 . By assuming estimated mass and radius of strange star candidate 4U

1820-30, various physical and energy conditions are used for estimating the

range of parameter α. The suitability of the model for describing pulsars like

PSR J1903+327, Vela X-1, Her X-1 and SAX J1808.4-3658 has been explored

and respective ranges of α, for which all physical and energy conditions are

satisfied throughout the distribution, are obtained.

In Chapter 6 we have obtained an exact solutions of Einstein’s field equa-

tions on the background of paraboloidal spacetime using Karmarkar condi-

tion, namely, R1414R2323 = R1212R3434+R1224R1334. For a spherically symmet-
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ric static paraboloidal spacetime this condition is equivalent to 2ν′′

ν′
+ ν ′ = 2

r
,

where the metric potential gtt = eν . The physical acceptability conditions of

the model are investigated and found that the model is compatible with a

number of compact star candidates like Her X-1, LMC X-4, EXO 1785-248,

PSR J1903+327, Vela X-1 and PSR J1614-2230. A noteworthy feature of

the model is that it is geometrically significant and simple in form.
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