
Chapter 1

Introduction

1.1 Introduction

General Theory of Relativity is at present one of the most acclaimed theory of grav-

itation. Among the four fundamental forces of interaction categorized into gravita-

tional interaction, electromagnetic interaction, strong interaction and weak interac-

tion, gravitational force is the only effective long range force in a macroscopic level.

General Theory of Relativity (GTR) is built upon certain fundamental assumptions

or postulates. The first among them is the principle of covariance which states that

in the neighbourhood of any point, one cannot distinguish between the gravitational

field produced by the attraction of masses and the field produced by the accelerating

frame of reference.

Another postulate is the principle of covariance which states that the laws of physics

must take the same form in all coordinate systems. The introduction of tensor theory

in general relativity is a direct consequence of this principle as tensor equations are

invariant under coordinate transformations.

In the Newtonian theory of gravitation space and time are considered as separate
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absolute entities. That is why Newton described time in Principia as “Absolute, true

and mathematical time, of itself, and from its own nature, flows equably without

relation to anything external”[Johns, 2005]. The deviation of path, from straight

line, of a particle in the 3-dimensional space is due to external force acting on

it. In the GTR Einstein fused space and time together in a 4-dimensional entity

called spacetime. Einstein suggested that the presence of gravitation curves up the

geometry of the spacetime and an infinitesimal separation between any two events

in the spacetime is given by the metric

ds2 = gijdx
idxj, (1.1)

where the metric coefficients gij are functions of the spacetime coordinates and the

matrix has signature (+ - - -).

The next principle of general theory of relativity states that the spacetime curvature

is created by the stress energy within the spacetime. In the presence of matter, this

can be described by Einstein’s field equations (EFEs)

Rij −
1

2
Rgij = −8πG

c2
Tij, (1.2)

where Rij, R and Tij are components of Ricci tensor, Ricci scalar and energy mo-

mentum tensor describing the physical content of the spacetime, respectively. Rij

and R have the following expressions:

Rij =
∂

∂xj
Γkik + ΓlikΓ

k
lj − ΓlijΓ

k
lk −

∂

∂xk
Γkij (1.3)

where

Γkij =
1

2
gkl (glj,i + gli,j − gij,l) (1.4)
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are components of Christoffel symbol of second kind and

R = gijRij. (1.5)

The most general spherically symmetric spacetime metric (line-element) in four-

dimensions with signature -2 can be written in the canonical form

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2θdφ2

)
, (1.6)

where ν = ν(r, t) and λ = λ(r, t).

GTR is widely used at present to describe different physical phenomena in the

universe related to the presence of strong gravitational field ever since the success of

experimental observations generally known as the crucial tests of general relativity.

Apart from this the recent detection of gravitational waves by researchers of LIGO

[Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), 2016] has

corroborated the veracity of Einstein’s theory of relativity.

GTR has played a dominant role in the areas of Cosmology, Astronomy and Astro-

physics. Since the universe is filled with matter and radiation gravitational fields are

present everywhere. Einstein examined cosmological problems using his theory. Dif-

ferent models of the universe, both static and non-static, were developed by Einstein,

de Sitter, Robertson-Walker and Friedmann in which Robertson-Walker-Friedmann

models are at present regarded as appropriate to describe the universe. Observa-

tions regarding the motion of galaxies indicate that the universe has emerged out

from a big bang. The cosmic microwave background detected by scientists in the

second half of the last century supported this finding.

Chandrasekhar [1931a,b] has shown that no stars with mass greater than 1.2 solar

masses can be in a state of hydrostatic equilibrium. This mass limit is known as
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Chandrasekhar limit [Misner et al., 1973].

When the thermonuclear energy in a star is exhausted the star loses its hydrostatic

equilibrium and undergo a contraction that can be halted when it reaches a new

state of equilibrium depending on its mass. The stellar remnant of a collapsing star

under its own gravitation can be a White dwarf, Neutron star or Blackhole. White

dwarfs keep its equilibrium by counterbalancing gravitational force by electron de-

generacy pressure. Similarly in Neutron stars the gravitational collapse is avoided

due to the repulsive neutron degeneracy pressure. When the mass of a star exceeds

approximately three solar masses, no force is sufficient to keep the equilibrium of

the star and the ultimate fate of such a massive star is a Blackhole.

1.2 Compact Stars

All the above three states described for a star during its evolution are known as

compact stars [Shapiro and A., 1983]. There are two distinguishing properties for

compact stars in comparison with normal stars. In normal stars the force against

inward gravitational force is produced due to thermal pressure generated through

burn of nuclear fuel, while in white dwarf stars the equilibrium is attained by the

electron degeneracy pressure and in Neutron stars by the pressure due to degenerate

neutrons.

The second property of compact stars is that they are extremely small compared

to normal stars with very high densities. For example White dwarf stars are about

5000 kms in radius and about 1 ton/cm3 in density [Misner et al., 1973], while a

Neutron star is about 10 kms in radius and 1014 g/cm3 in density same as that of

atomic nucleus. Because of its large surface potential, GTR plays a dominant role

in the determination of structure of compact stars.
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1.3 Strange Stars

Strange stars (SS) are believed to have strange matter distribution in the form of

quarks, in hydrostatic equilibrium. According to Bethe-Jonson model, the maximum

allowable mass of such stellar configurations is estimated to be 1.64M�, whereas

Pandharipande-Smith suggested through their neutron star model, that such limit

may reach up to 2.24M�. It has been further pointed out that strange stars with

masses exceeding the maximum mass of neutron stars will not be in hydrostatic equi-

librium [Shapiro and A., 1983] and may start collapsing under its own gravitational

effect.

Strange stars can be classified into two categories according to their compactification

parameter u =
(
M
a

)
: Type I: SS with M

a
> 0.3 and Type II: SS with 0.2 <

(
M
a

)
<

0.3. In the later category, reliable information about the density profile, mass, radius

will be essential to distinguish them from their neutron star counterparts and the

lower limit may still be lower. Researchers believe that if the compact object is not

a black hole, it may exist in the form of SS only [Jotania and Tikekar, 2006].

1.4 The Energy-Momentum Tensor

The EFEs (1.2) connect the geometry of the spacetime with the matter content

producing curvatures in the spacetime. This according to John A. Wheeler can

be stated as: “Spacetime tells matter how to move, matter tells spacetime how to

curve”.

1.4.1 Perfect Fluid

The type of matter extensively studied by researchers is a perfect fluid. It is char-

acterized by a four-velocity vector ui which may vary from point to point, energy
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density ρ and isotropic pressure p in the rest frame of each fluid element. Shear stress,

anisotropic pressure and viscosity are absent in such fluid. The energy-momentum

tensor for a perfect fluid is given by

Tij = (ρ+ p)uiuj − pgij. (1.7)

A special case of equations (1.7) belongs to non-interacting incoherent matter or

dust. Such a field is characterized by two quantities a four-velocity vector field of

flow ui and a proper density ρ measured by a co-moving observer. Such a matter

content has energy-momentum tensor

Tij = ρuiuj. (1.8)

1.4.2 Electromagnetic Field

The energy-momentum tensor associated with a distribution of charge is given by

Ej
i =

1

4π

(
−FikF kj +

1

4
FmnF

mnδji

)
(1.9)

where Fij’s are components of electromagnetic field tensor satisfying Maxwell’s equa-

tions

Fij,k + Fjk,i + Fki,j = 0 (1.10)

and

∂

∂xk
(
F ik
√
−g
)

= 4π
√
−gJ i. (1.11)

The four current J i is defined as

J i = σui (1.12)
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where σ denotes the charge density of the distribution. For a static distribution

ui = (e−
ν
2 , 0, 0, 0). (1.13)

The spherical symmetry implies that electromagnetic field tensor Fij has F10 = −F01

as its only non-vanishing component. The Maxwell’s equations (1.10) and (1.11)

admit

F01 = −e
λ+ν
2

r2

r∫
0

4πr2σe
λ
2 dr (1.14)

as their solution.

1.4.3 Anisotropic Fluid Distribution

A fluid distribution with radial pressure different from tangential (transverse) pres-

sure is termed as anisotropic fluid distribution. Following Maharaj and Maartens

[1989], we write the energy-momentum tensor as

Tij = (ρ+ p)uiuj − pgij + πij (1.15)

where ρ is the proper density, p is the isotropic pressure, ui the four-velocity field of

the fluid. The anisotropic stress tensor is given by

πij =
√

3S

[
CiCj −

1

3
(uiuj − gij)

]
(1.16)

where ci = (0,−e−λ2 , 0, 0) is a radial vector. For a spherically symmetric anisotropic

distribution S = S(r) denotes the magnitude of the anisotropic stress. For the

spacetime metric (1.6) the non-vanishing components of energy-momentum tensor
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(1.15) are

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
. (1.17)

Consequently the radial and transverse pressure have expressions

pr = −T 1
1 =

(
p+

2S√
3

)
, (1.18)

p⊥ = −T 2
2 =

(
p− S√

3

)
. (1.19)

From (1.18) and (1.19) we get

S =
pr − p⊥√

3
(1.20)

as the magnitude of anisotropy. For a perfect fluid distribution pr = p⊥ and hence

S = 0.

For compact objects with central density greater than nuclear density, matter distri-

bution may not be isotropic with principal stresses equal. Theoretical investigations

of Ruderman [1972] and Canuto [1974] have shown that matter distributions may

show anisotropy in pressure when the density exceeds nuclear density where grav-

itational effects play a dominant role. Bowers and Liang [1974] have shown that

anisotropy has non-negligible effect on the maximum equilibrium mass and surface

red-shift. Herrera and Santos [1997] have given an exhaustive review of the works

on anisotropic fluid distributions. Anisotropy can arise due to diverse reasons like

the existence of a solid core or the presence of type 3A super fluid [Kippenhahn and

Weigert, 1990], different kind of phase transitions [Sawyer, 1972].

A method was developed by Tolman [1939] to find exact solution of Einstein’s field

equations in terms of known functions for static fluid spheres. Pant and Sah [1979]

obtained analytic solution for charged fluid on spherically symmetric spacetime. In
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their analysis, if charge is absent, the solution is Tolman’s solution V I with B = 0.

Cosenza et al. [1981] developed the procedure to obtain solution of Einstein’s field

equations for anisotropic matter from known solutions of isotropic matter. Bayin

[1982] found the solution for anisotropic fluid sphere by generalizing equation of

state p = αρ and also studied radiating anisotropic fluid sphere. By generalizing

Tolman’s I, IV and V solutions and the de Sitter solution Pant and Sah [1982] have

obtained class of new static solutions by assuming an equation of state. Durgapal

[1982] has obtained a class of new exact solutions for spherically symmetric static

fluid spheres with the ansatz eν ∝ (1 + x)n, and found that for each integer value

of n, one can have new exact solution. In 1984, Krori et al have obtained the exact

solutions of Einstein’s field equations for anisotropic matter with the modification in

Tolman III, IV, V and VI Solutions [Krori et al., 1984]. Maartens and Maharaj [1985]

have developed a new ansatz to find an exact solution of Einstein’s field equations.

Ram and Pandey [1986] have obtained static and spherically symmetric solutions

of the field equations in the bimetric theory of gravitation with the consideration

of both isotropic and anisotropic matter content when the physical metric admits a

1-parameter family of conformal motions. de León [1987] has presented two exact

analytical solutions to Einstein’s field equations for anisotropic matter distribution

describing the maximum mass, causality condition and central and surface redshifts.

The charged analog of Vaidya and Tikekar [1982] solution on spheroidal spacetime

was obtained by Patel and Koppar [1987]. Maharaj and Maartens [1989] have devel-

oped new ansatz to obtain interior solution of the Einstein’s field equations. Delgaty

and Lake [1998] analysed physical plausibility conditions for 127 solutions of Ein-

stein’s field equations and found that only 16 of them satisfies all the conditions

and only for 9 solutions sound speed is decreasing with radius. Tikekar [1990] ob-

tained new exact solution for a static fluid sphere on spheroidal spacetime. Tikekar

and Thomas [1999] found exact solution of Einstein’s field equations for anisotropic
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fluid sphere on pseudo spheroidal spacetime. The key feature of their model is the

high variation of density from centre to boundary of stellar configuration also radial

and tangential pressure are equal at the centre and boundary of the star. Mak and

Harko [2003] obtained classes of exact anisotropic solutions of Einstein’s field equa-

tions on spherically symmetric spacetime metric. Komathiraj and Maharaj [2007a]

studied analytical models of quark stars where they found a class of solutions of

Einstein-Maxwell system by considering linear equation of state. Karmarkar et al.

[2007] analysed the role of pressure anisotropy for Vaidya-Tikekar model [Vaidya

and Tikekar, 1982]. The exact solutions for Einstein-Maxwell system were exten-

sively studied by Komathiraj and Maharaj [2007b], Maharaj and Komathiraj [2007]

& Thirukkanesh and Maharaj [2008]. Chattopadhyay and Paul [2010] obtained the

solutions of static compact stars on higher dimensional spacetime. The space part

of spacetime metric considered by them is (D − 1) pseudo spheroid immersed in

D-dimensional Euclidean space. Numerous researchers have contributed in recent

past on mathematical model of compact superdense stars such as pulsars and quark

stars compatible with observational data [Maurya and Gupta, 2011a,b,c, Sharma

and Ratanpal, 2013, Murad, 2013a,b, Murad and Fatema, 2013, Fatema and Mu-

rad, 2013, Pandya et al., 2015, Murad and Fatema, 2015a, Thomas and Pandya,

2015c,b, Ratanpal et al., 2015b,a, Murad and Fatema, 2015b, Maurya et al., 2017b,

2016a,b,c, Dayanandan et al., 2016].
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1.5 Some Important Spacetime Metrics

1.5.1 Spheroidal Spacetime Metric

A three-spheroid immersed in a 4-dimensional Euclidean flat space with metric

dσ2 = dx2 + dy2 + dz2 + dw2 (1.21)

has the Cartesian equation

w2

b2
+
x2 + y2 + z2

R2
= 1. (1.22)

The sections w = constant of equation (1.22) represent a family of concentric spheres

for w < b while sections w = constant, y = constant or z = constant represent a

family of ellipsoids. Using the transformation

x = Rsinλsinθcosφ,

y = Rsinλsinθsinφ,

z = Rsinλcosθ,

w = bcosλ, (1.23)

metric (1.21) takes the form

dσ2 =
(
R2cos2λ+ b2sin2λ

)
dλ2 +R2sin2λ(dθ2 + sin2θdφ2). (1.24)

Choosing r = Rsinλ, metric (1.24) reduces to

dσ2 =
1−K r2

R2

1− r2

R2

dr2 + r2(dθ2 + sin2θdφ2) (1.25)
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where

K = 1− b2

R2
. (1.26)

The metric (1.25) is regular for all points for which r2 < R2 and K < 1. When

K = 1, the metric (1.25) corresponds to the metric of flat space. When K = 0, the

metric (1.25) represents metric on a 3-sphere.

The spacetime metric with the above properties for its physical three space may be

written as

ds2 = eν(r)dt2 −
1−K r2

R2

1− r2

R2

dr2 − r2(dθ2 + sin2θdφ2) (1.27)

(i) When K = 0 and eν(r) =

[
A+B

√
1− r2

R2

]2

metric (1.27) gives Schwarzschild

interior solution.

(ii) When K = 0 and ν = 0 metric (1.27) gives the metric of Einstein’s universe.

(iii) When K = 0, and eν(r) = 1− r2

R2 metric (1.27) gives the metric of the de Sitter’s

universe.

A number of researchers have used spacetime metric (1.27) to describe physically

viable models of superdense stars with matter distribution in the form of perfect

fluid, charged fluid distribution, anisotropic fluid distribution and fluid distributions

accompanied by radial heat flux [Vaidya, 1951, Vaidya and Tikekar, 1982, Finch

and Skea, 1989, Singh and Kotambkar, 2005, Paul et al., 2011, Thirukkanesh, 2013,

Pandya et al., 2015].
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1.5.2 Pseudo-Spheroidal Spacetime Metric

A 3-hyperboloid immerse in a 4-dimensional Euclidean flat space with metric (1.21)

has the Cartesian equation

w2

b2
− x2 + y2 + z2

R2
= 1. (1.28)

The sections w = constant are spheres of real or imaginary radii according as w2 > b2

or w2 < b2, while the sections x = constant, y = constant or z = constant represent

hyperboloids of two sheets.

Using the transformation

x = Rsinhλsinθcosφ,

y = Rsinhλsinθsinφ,

z = Rsinhλcosθ,

w = bcoshλ, (1.29)

the Euclidean metric (1.21) takes the form

dσ2 =
(
R2cosh2λ+ b2sinh2λ

)
dλ2 +R2sinh2λ(dθ2 + sin2θdφ2) (1.30)

Taking r = Rsinhλ, metric (1.30) reduces to

dσ2 =
1 +K r2

R2

1 + r2

R2

dr2 + r2(dθ2 + sin2θdφ2) (1.31)

where

K = 1 +
b2

R2
. (1.32)
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The metric (1.31) which is regular at all points with K > 1 is called Pseudo-

spheroidal metric [Tikekar and Thomas, 1998]. We have extensively used the space-

time metric

ds2 = eν(r)dt2 −
1 +K r2

R2

1 + r2

R2

dr2 − r2(dθ2 + sin2θdφ2) (1.33)

with K > 1 to describe anisotropic fluid distributions. The spacetime metric (1.33),

has been studied by many researchers [Tikekar and Thomas, 1998, 1999, 2005,

Thomas et al., 2005, Thomas and Ratanpal, 2007, Paul et al., 2011, Chattopad-

hyay and Paul, 2010, Chattopadhyay et al., 2012].

1.5.3 Paraboloidal Spacetime Metric

A 3-paraboloid embedded in a 4-dimensional Euclidean flat space with metric (1.21)

has the Cartesian equation

x2 + y2 + z2 = 2wR. (1.34)

The w = constant sections are spheres, while the sections x = constant, y =

constant or z = constant give 3 - paraboloids.

Using the transformation

x = rsinθcosφ,

y = rsinθsinφ,

z = rcosθ,

w =
r2

2R
, (1.35)
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the Euclidean metric (1.21) takes the form

dσ2 =

(
1 +

r2

R2

)
dr2 + r2(dθ2 + sin2θdφ2) (1.36)

where R is a geometric parameter. The spacetime metric whose physical 3-space

has paraboloidal geometry has the form

ds2 = eν(r)dt2 −
(

1 +
r2

R2

)
dr2 − r2(dθ2 + sin2θdφ2) (1.37)

is called paraboloidal spacetime. This spacetime metric has been extensively studied

by Jotania and Tikekar [2006].

1.6 Karmarkar Condition

We noted earlier that, a purely gravitational field is represented by a 4-dimensional

Riemannian metric. Sometimes a useful consideration would be the immersion of a

field in a flat space of higher dimensions. If the lowest number of dimensions of a flat

space in which a given Riemannian space of n dimensions can be immersed is n+ p,

the latter is said to be of class p. For example, Schwarzschild’s exterior solution is

a Riemannian metric of class 2 while Einstein’s and de Sitter’s cosmological models

are Riemannian spaces of class 1. Karmarkar [1948] has stated that, the general

spherically symmetric metric is of class 2.

In 1948, Karmarkar (Karmarkar [1948]) established the necessary and sufficient

condition for a spherically symmetric spacetime in 4-dimensions embedded into 5-

dimensional flat spacetime. Later Pandey and Sharma [1982] have shown that the

condition is only a necessary condition for the embedding. Such spacetimes are

called embedding class one type spacetimes. The condition for the spacetime metric
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(1.6) is of class one is that the Riemannian curvature tensor satisfy the relation

R1414R2323 = R1212R3434 +R1224R1334 (1.38)

with R2323 6= 0. The components of Rhijk for metric (1.6) are given by

R2323 = r2sin2θ
[
1− e−λ

]
, (1.39)

R1212 =
1

2
λ′r, (1.40)

R1334 = R1224 sin
2θ = 0, (1.41)

R1414 = −eν
[
ν ′′

2
+
ν ′2

4
− 1

4
λ′ν ′

]
, (1.42)

R2424 = −1

4
ν ′reν−λ, (1.43)

R3434 = sin2θR2424. (1.44)

Using (1.39) – (1.44) in (1.38), we obtain the differential equation

2ν ′′

ν ′
+ ν ′ =

λ′eλ

eλ − 1
(1.45)

For a given expression for eλ, the expression for eν can be determined by solving

equation (1.45) for ν.

1.7 Einstein’s Field Equations with Spherical Sym-

metry

A non-static spherically symmetric spacetime metric can be written in the form

ds2 = eν(r,t)dt2 − eλ(r,t)dr2 − r2(dθ2 + sin2θdφ2), (1.46)
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The EFEs (1.2) corresponding to metric (1.46) are equivalent to the following set of

equations

8πT 1
1 = −e−λ

(
ν ′

r
+

1

r2

)
+

1

r2
, (1.47)

8πT 2
2 = 8πT 3

3 = −e−λ
(
ν ′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′ − λ′

2r

)
+ e−ν

(
λ̈

2
+
λ̇2

4
− λ̇ν̇

4

)
, (1.48)

8πT 0
0 = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
, (1.49)

8πT 1
0 = −e−λ

(
λ̇

r

)
, (1.50)

8πT 0
1 = e−ν

(
λ̇

r

)
, (1.51)

where the accents denote differentiation with respect to r and the dots differentiation

with respect to t.

For a spherically symmetric static metric ν(r, t) = ν(r) and λ(r, t) = λ(r) and hence

equations (1.47) – (1.51) reduces to the following set of three equations

8πT 0
0 = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
, (1.52)

8πT 2
2 = 8πT 3

3 = −e−λ
(
ν ′′

2
− ν ′λ′

4
+
ν ′2

4
+
ν ′ − λ′

2r

)
, (1.53)

8πT 1
1 = −e−λ

(
ν ′

r
+

1

r2

)
+

1

r2
. (1.54)

Equations (1.52) through (1.54) form a system of three highly non-linear second

order ordinary differential equations.
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1.7.1 Field Equations for Anisotropic Fluid Distribution

The energy-momentum tensor for anisotropic fluid distribution is given by Maharaj

and Maartens [1989]

Tij = (ρ+ p)uiuj − pgij +
√

3S

[
CiCj −

1

3
(uiuj − gij)

]
(1.55)

where Ci =
(

0,−e−λ2 , 0, 0
)

is a radial vector and S = S(r) is the magnitude of

anisotropic stress. For the energy momentum tensor (1.55) the EFEs (1.52) – (1.54)

is equivalent to the following system of three equations

1− e−λ

r2
+
e−λλ′

r
= 8πT 0

0 = 8πρ, (1.56)

e−λ − 1

r2
+
e−λν ′

r
= −8πT 1

1 = 8π

(
p+

2S√
3

)
= 8πpr, (1.57)

e−λ
(
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

)
= −8πT 2

2 = 8π

(
p− S√

3

)
= 8πp⊥,(1.58)

of three equations, where

pr =

(
p+

2S√
3

)
, (1.59)

p⊥ =

(
p− S√

3

)
, (1.60)

so that the anisotropy is given by

S =
pr − p⊥√

3
. (1.61)
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Equations (1.56) – (1.58) can be couched to an alternative form

e−λ = 1− 2m

r
, (1.62)(

1− 2m

r

)
ν ′ = 8πprr +

2m

r2
, (1.63)

−4

r
(8π
√

3S) = (8πρ+ 8πpr)ν
′ + 16πp′r, (1.64)

where m given by

m(r) = 4π

r∫
0

u2ρ(u)du (1.65)

is the mass enclosed within a radius r.

1.7.2 Field Equations for Anisotropic Charged Fluid Distri-

butions

Einstein’s field equations for a charged anisotropic fluid distribution is given by

Rj
i −

1

2
Rδji = 8π

(
T ji + πji + Ej

i

)
, (1.66)

where

T ji = (ρ+ p)uiu
j − pδji , (1.67)

πji =
√

3S

[
cic

j − 1

2

(
uiu

j − δji
)]
, (1.68)

and

Ej
i =

1

4π

(
−FikF jk +

1

4
FmnF

mnδji

)
. (1.69)

where ρ, p, ui, S and ci denote the proper density, fluid pressure, unit-four velocity

vector, magnitude of anisotropic tensor, and a radial vector given by
(

0,−e−λ2 , 0, 0
)

.

Fij denote the anti-symmetric electromagnetic field strength tensor whose properties
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are given in subsection (1.4.2).

Equation (1.66) for the spacetime metric (1.6) is equivalent to the following system

of three equations:

1− e−λ

r2
+
e−λλ′

r
= 8πρ+ E2, (1.70)

e−λ − 1

r2
+
e−λν ′

r
= 8πpr − E2, (1.71)

e−λ
(
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

)
= 8πp⊥ + E2, (1.72)

where pr and p⊥ are given by (1.18) and (1.19).

1.8 Elementary Criteria for Physical Acceptabil-

ity

We have already seen that the EFEs are highly non-linear and hence it is difficult to

obtain exact solutions. However, several different exact solutions are now available

[Kramer et al., 1980]. If the solution so obtained is a complicated expression, it

is difficult to discuss the physical properties of the model and in this case one has

to resort to numerical or graphical techniques. Delgaty and Lake [1998] examined

127 models for physical acceptability conditions and only 16 of them are found to

satisfy the test and out of which only 9 of them have a sound speed monotonically

decreasing with radius.

A physically acceptable solution must comply with the following requirements,

[Knutsen, 1988a,b, 1989, Murad and Fatema, 2015b].

(a). Regularity Conditions:

(i) The solution should be free from the physical and geometric singularities.

That is, eλ(r) > 0, eν(r) > 0 in the range 0 ≤ r ≤ a, where a is the radius
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of the spherical distribution.

(ii) The radial and transverse pressures and density of the distribution should

be positive. That is pr(r) ≥ 0, p⊥(r) ≥ 0, ρ(r) ≥ 0 in the range

0 ≤ r ≤ a.

(iii) Radial pressure pr = 0 at r = a. The energy density and transverse

pressure may follow ρ ≥ 0, and p⊥ ≥ 0 for r = a.

(b). Stability Conditions:

(iv) In order to have an equilibrium configuration, the matter must be stable

against collapse of local regions. This requires that the radial pressure pr

must be a non-decreasing function of density ρ. That is, dpr
dρ
≥ 0.

(v) The relativistic adiabatic index is given by Γ = pr+ρ
pr

dpr
dρ
. A necessary

condition for the exact solution to serve as a model for a relativistic star

is that Γ > 4
3
.

(c). Causality Conditions:

(vi) For isotropic fluids
√

dpr
dρ

and
√

dp⊥
dρ

represent the speed of sound, which

should be less than the speed of light. This requires that 0 ≤
√

dpr
dρ
≤

1, 0 ≤
√

dp⊥
dρ
≤ 1.

(d). Energy Condition:

(vii) A physically reasonable energy-momentum tensor has to obey the condi-

tions: ρ ≥ pr + 2p⊥ and ρ+ pr + 2p⊥ ≥ 0.

(e). Monotone decrease of physical parameters:

(viii) The pressure and density should be maximum at the centre of the star

and monotonically decrease towards the boundary. Mathematically, this
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means

dpr
dr

= 0,
dp⊥
dr

= 0, and
dρ

dr
= 0 at r = 0

and

d2pr
dr2

< 0,
d2p⊥
dr2

< 0, and
d2ρ

dr2
< 0 at r = 0,

so that

dpr
dr

< 0,
dp⊥
dr

< 0, and
dρ

dr
< 0, for 0 < r < a.

(ix) Velocity of sound should decrease radially outward. That is, d
dr

(
dpr
dρ

)
<

0, d
dr

(
dp⊥
dρ

)
< 0 for 0 ≤ r ≤ a.

(x) Further the ratio of pressure to density, pr
ρ

and p⊥
ρ
, should be monotoni-

cally decreasing towards the boundary. That is, d
dr

(
pr
ρ

)
= 0 and d

dr

(
p⊥
ρ

)
=

0 at r = 0 and d2

dr2

(
pr
ρ

)
< 0 and d2

dr2

(
p⊥
ρ

)
< 0 at r = 0.

(f). Matching Conditions:

(xi) For uncharged matter distribution, the interior solution obtained should

match continuously with Schwarzschild exterior metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2
(
dr2 + sin2θdφ2

)
, r ≥ a

across the boundary r = a. This gives

eν(a) = e−λ(a) = 1− 2M

a
.

(xii) For a charged matter distribution, the interior metric should match with

the exterior Riessner-Nordström metric

ds2 =

(
1− 2M

r
+
q2

r2

)
dt2−

(
1− 2M

r
+
q2

r2

)−1

dr2−r2
(
dθ2 + sin2θdφ2

)
, r ≥ a
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across the boundary r = a. This gives

eν(a) = e−λ(a) = 1− 2M

a
+
q2

a2
.

(g). Charge Distribution:

(xiii) The electric field intensity E should be such that E(0) = 0 and monoton-

ically increasing towards the boundary. That is, dE
dr
> 0 for 0 ≤ r ≤ a.

(h). Pressure Anisotropy:

(xiv) Pressure anisotropy ∆ = pr − p⊥ should vanish at the centre. That is,

∆(0) = 0.

(i). Mass to Radius Ratio:

(xv) For isotropic fluid spheres, the allowable mass to radius ratio is given by

M
a
≤ 4

9
(c = G = 1). [Buchdahl, 1979].

For a charged fluid sphere the ratio M
a

must be bounded between two

limits as follows

(
q2

2a2

18a2 + q2

12a2 + q2

)
≤ M

a
≤

(
a+

√
a2 + 3q2

3a

)2

.

(j). Gravitational Redshift:

(xvi) The gravitational redshift z should be monotonically decreasing towards

the boundary of the star. The central redshift zc and boundary redshift

za must be positive and finite. That is,

zc = e−
ν(r)
2 − 1 > 0, at r = 0
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and

za = e−
λ(r)
2 − 1 > 0, at r = a.

1.9 Layout of the thesis

The thesis is organized as follows:

Chapter 1 contains introduction to general theory of relativity and the theoretical

background needed for the problems studied in the subsequent chapters. It also

contains the summary of each chapter of the thesis .

In Chapter 2 we study the solution of Einsteins field equations (EFEs) for a static

spherically symmetric anisotropic distribution by generalizing the ansatz of Finch

and Skea [Class. Quantum Grav. 6 467, 1989] described by grr =
(

1 + r2

R2

)n
.

By using the physical acceptability and regularity conditions we have obtained the

bounds on the model parameter p0 in terms of the dimensionless parameter n which

lies in the interval
(

1, 4√
3

)
. The model so developed is in good agreement with the

observational data of pulsars , viz., 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela

X-1, PSR J1614-2230, SAX J1808.4-3658 and Her X-1 (referred in Gangopadhyay

et al Gangopadhyay et al. [2013]).

Chapter 3 deals with two models obtained as the solutions of Einstein’s field equa-

tions representing a static spherically symmetric anisotropic matter distribution on

the background of pseudo-spheroidal spacetime characterized by the metric potential

grr =
1+K r2

R2

1+ r2

R2

, where K and R represent geometric parameters. In the first model,

the field equations are integrated by assuming a particular, physically acceptable

form for the radial pressure pr given by the expression pr = p0
R2

(
1− r2

R2

)(
1+ r2

R2

)
(

1+K r2

R2

)2 . We

have obtained suitable bounds of model parameters K and p0 on the basis of the

physical acceptability conditions viz., regularity, stability and energy conditions. It
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is found that the model is compatible with the wide range of compact stars viz., 4U

1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4 and

Cen X-3.

In order to validate the model for physical acceptability , we have studied in detail

the regularity, energy and stability conditions using numerical and graphical meth-

ods for the pulsar 4U 1820-30 by taking the mass of the pulsar as 1.58M� and radius

9.1km The values of the parameters in this case are p0 = 1.08 and K = 3.1.

In the second model, we have taken a different form for radial pressure, viz., pr =

K−1
R2

(
1− r2

R2

)
(

1+K r2

R2

)2 . The bound for the geometric parameter K is obtained as 2.4641 ≤

K ≤ 4.1231 using the physical acceptability conditions. For validating the present

model , we have studied in detail the regularity, stability and energy conditions

for the pulsar candidate PSR J1614-2230 having mass equal to 1.97M� and radius

9.69km corresponding to K = 3.997.

In Chapter 4, we have studied anisotropic charged fluid distributions on pseudo-

spheroidal spacetime. By choosing suitable expressions for radial pressure pr =

p0
R2

(
1− r2

R2

)(
1+ r2

R2

)
(

1+K r2

R2

)2 and electric field intensity E =
√
α r
R2 , where α ≥ 0 is a constant,

the field equations are integrated. The parameters K,R and α are determined

by imposing the physical acceptability conditions. The present model is in good

agreement with the observational data of various compact stars like 4U 1820-30, PSR

J1903+327, 4U 1608-52, Vela X-1, SMC X-4, Cen X-3 given by Gangopadhyay et

al. (Gangopadhyay et al. [2013]). When α = 0, the model reduces to the uncharged

anisotropic distribution described as first model in chapter 3. In order to examine

the nature of physical quantities throughout the distribution, we have considered a

particular pulsar 4U 1820-30, whose tabulated mass and radius are M = 1.58M�,

and R = 9.1(km), respectively, for K = 2.718 and α = 0.05. It is found that all

physical variables behave well for this particular pulsar.
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We have studied a second model in this chapter by assuming a different form for

radial pressure pr and electric field intensity E, namely, pr = K−1
R2

(
1− r2

R2

)
(

1+K r2

R2

)2 and

E2 = α(K−1)
R2

r2

R2(
1+K r2

R2

)2 . The bounds of geometric parameter K and the parameter α

appearing in the expression for E2 are obtained by imposing the requirements for a

physically acceptable model. It is found that the model is in good agreement with the

observational data of number of compact stars like 4U 1820-30, PSR J1903+327,

4U 1608-52, Vela X-1, PSR J1614-2230, Cen X-3 given by Gangopadhyay et al.

(Gangopadhyay et al. [2013]). When α = 0, the model reduces to the uncharged

anisotropic distribution discussed as a second model in chapter 3.

Chapter 5 provides new exact solutions of Einstein’s field equations (EFEs) by

assuming a linear equation of state, pr = α(ρ − ρR) where pr is the radial pressure

and ρR is the surface density. The background spacetime metric is a paraboloidal

spacetime metric characterized by the metric potential grr = 1 + r2

R2 . By assuming

estimated mass and radius of strange star candidate 4U 1820-30, various physical and

energy conditions are used for estimating the range of parameter α. The suitability

of the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX

J1808.4-3658 has been explored and respective ranges of α, for which all physical

and energy conditions are satisfied throughout the distribution, are obtained.

In Chapter 6 we have obtained an exact solutions of Einstein’s field equations

on the background of paraboloidal spacetime using Karmarkar condition, namely,

R1414R2323 = R1212R3434+R1224R1334. For a spherically symmetric static paraboloidal

spacetime this condition is equivalent to 2ν′′

ν′
+ ν ′ = 2

r
, where the metric potential

gtt = eν . The physical acceptability conditions of the model are investigated and

found that the model is compatible with a number of compact star candidates like

Her X-1, LMC X-4, EXO 1785-248, PSR J1903+327, Vela X-1 and PSR J1614-2230.

A noteworthy feature of the model is that it is geometrically significant and simple
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in form.

Chapter 6 is followed by the appendix of units used in throughout the course of

research and then the Bibliography is provided.
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