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FUNDAMENTAL CONCEPTS AND INTRODUCTION 

1.1 Fluid, Types of Fluid 

A fluid is that type of matter which needs some support to recollect its size and shape, which in turn 

means that fluid, is a substance which flows or is capable of flowing. The most common examples 

of fluid are water and air. 

 

1.2 Newtonian and non-Newtonian fluid 

A Newtonian fluid is a fluid in which relation between the stress tensor and rate of strain tensor is 

linear function (see Figure 1.1) which is established by Isaac Newton in 1687. Air, water and 

glycerin are few examples of Newtonian fluids.  

A fluid is said to be non-Newtonian if relation between the stress tensor and rate of strain tensor is 

not a linear function (see Figure 1.2). Therefore, non-Newtonian fluid is represented by curve. 

Blood, grease and sugar are some of non-Newtonian fluid. 

 

 

 

 

 

 

 

 

 

 

 

1.3 Classification of non-Newtonian fluid 

The Non-Newtonian fluids are divided in to three categories.  

 Time Independent Fluids 

 Time dependent Fluids 

 Elastic viscous Fluids 
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Figure 1.1: Newtonian Fluid Figure 1.2: non-Newtonian Fluid 
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1.3.1 Time Independent Fluids 

Time independent fluids are those fluids in which the values of shear rate at a point within the fluid 

is determined only by the recent values of shear stress. Viscosity of this type of fluid is dependent 

on temperature and shear rate. This type of fluid also known as, purely viscous, inelastic or 

generalized Newtonian fluids 

The characterization of flow behavior depending on how viscosity changes with the shear rate. 

 Shear thinning: Viscosity of the fluid reduces with increased shear rate. These fluids are also 

called Pseudo-plastic fluids.  Shampoo, slurries and ketchup are common examples of shear 

thinning fluids.  

 Shear thickening: Viscosity of the fluid raises with raised shear rate. These fluids are known 

as dilatant fluids. Wet sand and concentrated starch suspensions are examples of shear 

thickening fluids. 

 Plastic: Shear stress must be applied before flow occurs. Tomato paste, tooth paste, hand 

cream and grease are common examples of these fluids 

 

1.3.2 Time dependent Fluids 

They are those fluids in which the relation between shear rate and rate of stress shows further 

dependence. In this type of Non-Newtonian fluid, viscosity of the fluid changes with temperature, 

shear rate and time. 

The characterization of flow behavior depending on how viscosity changes with the time. 

 Thixotropic (time thinning): Viscosity of the fluid reduces with time. Some examples of such 

fluid are yoghurt and paint. 

 Rheopectic (time thickening): Viscosity of the fluid increase with time. Gypsum paste is 

time thickening fluids.    

 

1.3.3 Visco-elastic fluids 

They are those fluids which display a mixture of viscous fluid behavior and elastic behavior which 

are predominantly viscous but show partial elastic recovery after deformation, are termed as elastic 

viscous fluids. The term viscoelastic fluid is also used for such fluids. Plastics, polymer, colloidal 

solutions and foodstuffs, etc. are types of elastic viscous.  
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1.4 Micro-polar fluid 

Micro-polar fluids are fluids with microstructure. They belong to a class of fluids with non-

symmetric stress tensor which can be considered as polar fluids. Physically, micro-polar fluids may 

suggest fluids, including rigid, randomly oriented particles suspended in a viscous medium, where 

the deformation of fluid particles are ignored. Recently, the study of micro polar fluid has attracted 

many scholars as Navier–Stokes equations of Newtonian fluids cannot describe effectively the 

characteristics of fluid with suspended particles. Eringen [1] introduced the simple micro-polar 

fluids theory. According to his theory, simple micro-polar fluids is a fluent medium whose 

properties and behavior are affected by the local motion of the fluid fundamentals. Keeping this in 

mind, Eringen [2] simplified micro-polar fluids theory and obtained a subclass of these fluids called 

micro-polar fluids. This theory is one of the best established theories of fluids with microstructure. 

This theory is useful in explaining the features of certain fluids such as liquid crystals, suspensions 

and animal blood. 

 

In micro-polar fluid theory, two new variables of the velocity are added which were not existing in 

the Navier-Stokes model. These are micro-rotation variables which represent rotation and micro-

inertia tensors which define the distribution of particles and molecules classified the atomic fluid 

particles. The details of micro-polar fluid theory can be found in the book by Eringen [3] and 

Lukaszewicz [4]. 

 

1.5 Second grade fluid 

A Second grade fluid is a fluid; whose stress tensor is the sum of all tensors that can be designed 

from the velocity field with couple of derivatives. The constitutive equation of a Second grade fluid 

is a linear relation between the stress and the first Rivlin-Ericksen tensor, square of the first Rivlin-

Ericksen tensor and second Rivlin-Ericksen tensor [5]. This constitutive equation has three 

coefficients and used for fluids of the visco-elastic type. The governing differential equations of a 

Second grade fluid are of higher order than the Navier-Stokes equations and thus, one needs 

conditions in addition to the usual adherence boundary condition in general. For a detailed 

discussion and some interesting examples, one can refer to Rajagopal [6].   
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1.6 Casson fluid 

Casson fluid is a shear thinning fluid which is supposed to have an immeasurable viscosity at zero 

rate of shear, a yield stress below which no movement happens, and a zero viscosity at an infinite 

rate of shear. Casson fluid is classified as the most popular non-Newtonian fluids which has several 

applications in food processing, metallurgy, drilling operations and bio-engineering operations. 

Casson fluid model was introduced by Casson [7] for the prediction of the flow behavior of pigment-

oil suspensions. Examples of Casson fluid are jelly, tomato sauce, honey, soup, concentrated fruit 

juices and Human blood. 

 

1.7 Types of Fluid flow 

1.7.1 Steady and unsteady fluid flow 

Flow, in which properties and conditions do not change with time. If ∅ represents velocity, density, 

temperature, pressure etc. of the fluid then 
𝜕∅

𝜕𝑡
= 0 for steady state flow. Thus in steady flow, the 

various field quantities become functions of the space co-ordinates only. On the other hand, the flow 

is said to be unsteady if 
𝜕∅

𝜕𝑡
≠ 0. So, in unsteady flow, fluid properties and conditions are time 

dependent. 

 

1.7.2 Compressible or incompressible fluid flow 

If density changes with pressure, fluids are regarded as compressible. On other hand, the flow is 

incompressible, if density is constant w.r.t pressure.  Liquids are usually nearly impossible to 

compress, whereas gases (also considered a fluid) are compressible. 

 

1.7.3 Rotational or Irrotational flow 

To test whether a flow has rotational component, one can put a small object in the flow and let the 

flow carry it. If the small object turns, flow is rotational otherwise flow is irrotational. 

 

1.8 Magnetohydrodynamics flow 

Fluid dynamics is an important science used to solve many natural phenomena such as flying of 

birds, swimming of fishes and the development of weather conditions. The study of the laws that 

govern the conversion of energy from one form to another, the direction in which the heat will flow, 
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and the availability of energy to do work is the subject of the Thermodynamics. The study of charge 

particle in motion, the forces created by electric and magnetic field, and the relationship between 

them give rise to the subject Electrodynamics. The collective effects of these three significant 

branches of science namely, Fluid dynamics, Thermodynamics and Electrodynamics give rise to the 

topic Magneto-fluid dynamics (MFD) which in the form of definition read as the science of motion, 

electrically conducting fluid in the presence of a magnetic field. It has two subtopics: 

Magnetohydrodynamics (MHD) and Magnetogasdynamics (MGD). MHD deals with electrically 

conducting liquids whereas MGD deals with ionized compressible gases. 

Magnetohydrodynamics (often referred to as MHD) deals with the dynamics of fluids having non-

negligible electrical conductivity which interact with a magnetic field. As a result, motion of an 

electrically conducting fluid in the presence of a magnetic field, electric current is induced in the 

fluid. An electrically conducting fluid moving in presence of a magnetic field (transverse) which 

generate a force called the Lorentz force. This force has a tendency to modify the initial motion of 

the conducting fluid. Moreover, the induced currents generate their own magnetic field, which is 

added to the primitive magnetic field. Thus there is an interlocking between the motion of the 

conductor and the electromagnetic field. MHD has several applications, namely, fusion research, 

MHD accelerator, power generator and in causing delay in the transition from laminar to turbulent 

flow. First theory of laminar flow of an electrically conductive liquid in a homogenous magnetic 

field was introduced by Hartman [8], whereas the finding of Alfven waves completed the formation 

of MHD as an individual science by Alfven [9]. Alfven received Nobel Prize in 1942 for his study. 

Huang et al. [10] discussed MHD waves and instabilities in the heat-conducting solar wind plasma. 

Wang et al. [11] studied energy of Alfven waves generated during magnetic reconnection.  

 

1.9 Heat transfer 

The study of heat transfer contains thermal energy which is transfer as a result of temperature 

variance. In studying the heat transfer, understanding of the temperature distribution in a system is 

necessary. Heat flow takes place whenever there is a temperature gradient in a system. Once the 

temperature distribution is known, the heat flux, which is the amount of heat transfer per unit area, 

per unit time is obtained from the rule connecting the heat flows to the temperature gradient. The 

basic categories of heat transfer are  

(i) Conduction (ii) Convection (iii) Radiation and (iv) Advection 
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i. Conduction 

Conduction can be termed exactly like heat is distributed by conduction when adjacent particles 

wobble against one another. The most important way of heat transfer is conduction when solid 

objects can be in thermal contact. Fluids, especially gases, are comparatively less conductive. 

ii. Convection 

Convection, which arises in a fluid by the mixing of one portion of the fluid with another portion 

due to gross moments of the mass of fluid. 

The convective mode of heat transfer is divided into two types: 

 Free or Natural convection in which the fluid moves as a result simply of changes in density 

of portions at different temperatures which results to buoyancy forces in streams and 

currents. 

 Forced convection in which the motion is maintained by external ways such as stirrers, fans, 

and pumps. i.e., Circulation sets through means of some mechanism.  

iii. Radiation  

The transfer of energy from a body by means of the release or absorption of electromagnetic 

radiation is referred as radiation. Thermal radiation increases without the existence of matter through 

the vacuum of space. In contrast to conduction and convection, thermal radiation can be collected 

in a small spot with the help of reflecting mirrors, which is utilized in concentrating solar power 

generation. 

iv. Advection  

Thermal energy is move by the physical transfer of a hot or cold object from one place to other. 

 

1.10 Mass Transfer 

Mass transfer is obtained as the transfer of matter by feature of species concentration variance in a 

system. The variance in concentration delivers a driving force for the transfer of mass. Mass transfer 

always occurs in the direction of reducing concentration gradient. The phenomena of mass transfer 

are very corporate in the concept of stellar structure and visible effects are measureable at least on 

the solar surface. 

The participation and application of mass transfer process spread to greater extent in several fields 

of Engineering, Science and Technology. In the fields of Electric Engineering, Civil Engineering, 
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Environmental Engineering, Air conditioning, Aeronautics, Metallurgy, Refrigeration, industrial 

and biological process and mass transfer process in general. 

In biological functions or process like respiratory mechanisms, oxygenation or purification of blood, 

kidney function, osmosis and assimilation of food and drugs, these processes are involved. Some of 

the mass transfer phenomena found in nature are smoke formation, evaporation of clouds, dispersion 

of fog, grooves of fruit trees, damage of crops due to freezing and pollution of the environment and 

distribution temperature and moisture over agricultural fields.  

 

1.11 Porous media 

The perfect porous medium, appropriate perfectly the definition required, may be most clearly 

understood by imagining a body of ordinary unconsolidated sand. It is present in such a medium 

immeasurable holes of varying sizes and shapes including “pore space” or gaps between the separate 

solid particles of sand. Moreover, each pore is connected by confined channels to other pores, the 

whole making a totally interconnected network of openings which form the channels through which 

the contained fluid may flow. It is the whole several interconnected of the minute openings that 

characterizes the ideal “porous media” assumed in this work and definitely differentiates this subject 

from that of the usual hydrodynamics or hydraulics by Muskat [12]. 

A porous medium is a solid containing invalid spaces (pores), connected or unconnected, distributed 

within it in either a regular or random manner. These so called pores may contain a variety of fluids 

such as air, water, oil etc. If pores represent a certain portion of the bulk volume, a complex network 

can be formed which is able to carry fluids. Various examples can be named where porous media 

play an important role or where the technology requires them as a tool. 

The porosity of porous media is determined as the ratio of the volume of the pores to the 

total bulk volume of the media. By definition, the porosity can only range from 0 to 1, or as a 

percentage between 0–100 percent. 

The porous medium is also described by its supreme valuable fluid flow property called 

permeability which is a measure of the flow conductivity in the porous medium. The permeability 

is a statistical average of the fluid conductivity of all the flow channels in the medium. The average 

conductivity takes into account the variation in size, shape, direction and interconnection of all the 

flow channels. 

The permeability (k) can be defined as, 
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𝑘 =
−𝑄 𝜇

𝐴 𝜌𝑔
(
𝜕ℎ

𝜕𝑠
)
−1

     (1.1) 

Where A is cross sectional area of the fluid, Q is the total discharge of the fluid, 𝜇 is the viscosity 

of the fluid, g is the acceleration due to gravity, 𝜌 is the density of the fluid and 
𝜕ℎ

𝜕𝑠
 is the hydraulic 

gradient. 

Darcy’s law is a simple proportional relationship between the instantaneous discharge rate through 

a porous medium. The viscosity of the fluid and the pressure difference over a given distance. In 

modern notations this is expressed, in refined form by: 

𝑞 =
−𝑘

𝜇

𝜕𝑃

𝜕𝑥
       (1.2) 

where q is the flux, 
𝜕𝑃

𝜕𝑥
 is the pressure gradient, in the flow direction and 𝜇 is the dynamic viscosity 

of the fluid. The coefficient 𝑘 is independent of the nature of the fluid but it depends on the geometry 

of the medium.  

 

1.12 Chemical reaction effects 

In convective heat and mass transfer developments, distribution rates can be changed by chemical 

reaction. The effect of chemical reaction depends on whether the reaction is mixed or identical. In 

detailed, a reaction is called of first order, if the rate of chemical reaction is directly related to the 

concentration. In nature, the existence of pure water or air is not possible. Some external mass either 

may be existing naturally or mixed with air or water. The study of chemical reaction procedures is 

beneficial for improving a number of chemical technologies, such as food processing, polymer 

production and manufacturing of ceramics or glassware. In chemical reaction problems, Kr is 

chemical reaction parameter. If Kr > 0, then it is a destructive chemical reaction (means 

endothermic, i.e., heat is absorbed) if Kr < 0, then it characterizes a propagative chemical reaction 

(means exothermic, i.e., heat is generated). In many chemical reaction processes, there is chemical 

reaction between external mass and the fluid in which the plate moves.  

 

1.13 Soret effect 

In the simultaneous existence of heat and mass transfer in a moving fluid, it founds connection 

between the fluxes and the driving potentials. It is noticed that mass fluxes can be created by 
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temperature gradients and this embodies the thermal-diffusion (Soret) effect, named after the Swiss 

scientist Charles Soret [13], who investigated thermal diffusion in solutions in 1879–1881.  

 

1.14 Hall current effects 

It is observed that in an ionized fluid where the density is low and/or if a very strong magnetic field 

is present so that the cyclotron frequency beats collision frequency, charged particles can rotate 

round the lines of force numerous times before suffering crashes with other particles. This results in 

a drift of charged particles in a direction perpendicular to the directions of electric and magnetic 

fields. Thus if an electric field is applied at right angle to the magnetic field, total current will not 

flow along with electric field. This tendency of electric current to flow across an electric field in the 

presence of a magnetic field is called Hall effect and resulting current is known as Hall current. Hall 

effect was discovered by Hall [14] in 1879. 

 

1.15 Fundamental Equations 

The basic equations governing the motion of an incompressible viscous and electrically 

conducting fluid in the presence of a magnetic field 

 Equation of continuity 

 Equation of motion 

 Energy equation 

 Mass transfer equation 

 Maxwell equation 

 

1.15.1 Equation of continuity  

The equation of continuity is a differential equation that describes the transport of conserved mass. 

A conserved mass means such mass that cannot increase or decrease, it can only move from one 

place to another place. The conservation of mass gives the equation of continuity which may be 

written as 

Dρ

Dt
+ 𝜌 div(𝑢⃗ ) = 0                                                                                                          (1.3) 
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1.15.2 Equation of motion  

The equations of motion are derived from the Newton’s second law of motion, which states that 

Rate of change of linear momentum = Total force 

Therefore, the equations of motion is 

𝜌 [
𝐷𝑢⃗⃗ 

𝐷𝑡
] =  𝜌𝐹 – 𝛻𝑃 + 𝜌𝑒𝐸⃗  + 𝐽 × 𝐵 + 𝑑𝑖𝑣 (𝜏 ).      (1.4)  

Where, 𝜏 = 𝜏𝑖𝑗 = 2𝜇 𝑒𝑖𝑗 + (𝜉 −
2

3
𝜇) 𝑒𝑘𝑘𝛿𝑖𝑗 &  𝑒𝑖𝑗 =

1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)                   (1.5) 

 

1.15.3 Energy equation 

The law of conservation of heat transfer is an empirical law of Physics. It said that the full amount 

of heat transfer in an isolated system remains constant over time. The energy equation in this case 

includes both viscous and Joulean dissipations functions then reduces to 

ρCp [
∂T

∂t
+ (𝑢⃗ . ∇)T] =  𝑘4∇

2T + ϕ +
𝐉𝟐

σ
+ 𝑄.  (1.6) 

 

1.15.4 Mass transfer equation 

Though mass diffusion is concerned with the conductivity of the medium, the magnetic field has 

minor effect on this process. So, ordinary diffusion equation can be applied for MHD problems 

under the suitable assumptions is 

∂C

∂t
+ (𝑢⃗ . ∇)C = D∇2C                   (1.7) 

 

1.15.5 Maxwell equations   

Maxwell's equations are a set of four partial differential equations that relate the electric and 

magnetic fields to their sources, charge density and current density. Individually, the equations are 

known as Gauss's law, Gauss's law for magnetism, Faraday's law of induction, and Ampère's law 

with Maxwell's correction. The set of equations is named after James Clerk Maxwell which can be 

expressed as 

 

∂𝐁

∂t
= −∇ ×  𝐄                                                                                                                      (1.8) 

 

∇ × 𝑯𝟏 = 𝐉                                                                                                                         (1.9) 
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∇. 𝐁 = 0                                                                                                                              (1.10) 

 

∇. 𝐉 = 0                                                                                                                                (1.11) 

 

1.16 Constitutive equations of micro-polar fluid 

The constitutive equations for micro-polar fluids with stress tensor 𝜏𝑖𝑗 and couple stress tensor 𝐶𝑖𝑗 

are given as Lukaszewicz [4] 

𝜏𝑖𝑗 = (−𝑃 + 𝜆𝜈𝑘,𝑘)𝛿𝑖𝑗 + 𝜇(𝜈𝑖,𝑗 + 𝜈𝑗,𝑖) + 𝜇𝑟(𝜈𝑗,𝑖 − 𝜈𝑖,𝑗) − 2𝜇𝑟𝜀𝑚𝑖𝑗𝑁𝑚    (1.12) 

and 

𝐶𝑖𝑗 = 𝐶0𝑁𝑘,𝑘𝛿𝑖𝑗 + 𝐶𝑑(𝑁𝑖,𝑗 + 𝑁𝑗,𝑖) + 𝐶𝑎(𝑁𝑗,𝑖 − 𝑁𝑖,𝑗) − 2𝜇𝑟𝜀𝑚𝑖𝑗𝑁𝑚     (1.13) 

where 𝜆 and 𝜇 are the usual viscosity coefficients, 𝜇𝑟 is the dynamic micro rotation viscosity, p is 

the pressure, N is the angular velocity of rotation of particles of the fluid and 𝐶0, 𝐶𝑎 𝑎𝑛𝑑 𝐶𝑑   are 

constants, called coefficients of angular viscosities. 

The symmetric part of the stress tensor 𝜏𝑖𝑗in equation (1.12) is given by 

𝜏𝑖𝑗
(𝑠) = (−𝑃 + 𝜆𝜈𝑘,𝑘)𝛿𝑖𝑗 + 𝜇(𝜈𝑖,𝑗 + 𝜈𝑗,𝑖)        (1.14) 

Local conservation laws of mass, linear and angular momentum and energy for polar fluids were 

obtained by using stress tensor given by (1.12) or (1.14) and couple stress (1.13) along with one 

additional equation known as Angular momentum equation, which is given by 

𝜌𝐼
𝐷𝑁

𝐷𝑡
= ∇⃗⃗ . 𝐶𝑖𝑗

⃗⃗⃗⃗  ⃗ + 𝜀𝑖𝑗𝑘𝜏𝑗𝑘          (1.15) 

Where, I - micro-inertia coefficient 

 

1.17 Constitutive equations of Second grade fluid 

The constitutive equation for viscoelastic fluid of Second grade model is given by 

𝜏 = 𝜇 (1 + 𝜆1
𝜕

𝜕𝑡
)

∂u

∂y
           (1.16) 

 Where, 𝑡, 𝜏,
∂u

∂y
 and 𝜆1 is the time, shear stress, rate of strain rate and material constants respectively 

and μ is viscosity. This model reduces to classical Navier Stokes model by substituting 𝜆1 = 0. 
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1.18 Constitutive equations of Casson fluid 

The constitutive equation for the Casson fluid can be written as  

τij = {
2 (μB +

Py

√2π
) eij             π > πc

2 (μB +
Py

√2πc
) eij             π < πc

       (1.17) 

Where π = eijeij and eij is the (i, j)th component of the deformation rate, π is the product of the 

component of deformation rate with itself, πc is a critical value of this product based on the non- 

Newtonian model, μB is plastic dynamic viscosity of the non-Newtonian fluid and Py is yield stress 

of fluid. 

Py =
μB√2π

γ
           (1.18) 

From the definition of viscosity given by Batchelor [158], ratio of sheer stress τ∗ to viscosity  is 

constant in case of Newtonian. 

τ∗ = 
∂u

∂y
            (1.19) 

Some fluids require a gradually increasing shear stress to maintain a constant strain rate, In the case 

of Casson fluid (Non Newtonian) flow where π > πc 

 = μB +
Py

√2π
            (1.20) 

Substituting equation (1.18) in equation (1.20), the Kinematics viscosity can be expressed as 

𝜈 =
μB(1+

1

γ
)

ρ
            (1.21) 

1.19 Laplace Transform Technique (LTT) 

The branches of science and engineering in which Laplace transform technique are used for solving 

linear system of partial differential equations with constant coefficients and ordinary differential 

equations in which the coefficients are the variables or simultaneous ordinary differential equations. 

Laplace transform technique can also be applied in mechanics (dynamics and statics), electrical 

circuits, to analysis the characteristic of beam and several partial differential equations subject to 
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initial and boundary conditions etc. Thus, it can be understood that the Laplace transform has its 

remarkable applications in many branches of pure and applied mathematics.  

The Laplace transform is named after mathematician and astronomer Pierre-Simon Laplace, who 

used a similar transform (now called z transform) in his work on probability theory. The Laplace 

transform of 𝑓(𝑡), 𝑡 ≥ 0  denoted by 𝐹(𝑠)  𝑜𝑟 𝐿 {𝑓(𝑡)},  is an integral transform given by the 

Laplace integral: 

𝐿{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)  𝑑𝑡
∞

0
         (1.22) 

Provided this improper integral exist, i.e. the integral is convergent.  

The Laplace transform is an operation which transformed a function of time domain t, defined on 

[0, ∞), to a function of frequency domain 𝑠.  

 

1.19.1 Advantages of this methods 

Laplace transform technique gives analytical results which is more accurate than numerical results. 

Laplace transform technique can be the best suitable for time dependent problems. Some elementary 

functions, such as a constant, the exponential, the sine, and the cosine functions do not have Fourier 

transforms (one of the most popular analytical methods) because they are not integral on R. The 

easiest (suitable) way to overcome these sever limitations are the use of 1aplace transform technique. 

In particular, one can apply it to deal with problems in which one of the variables is time. 

 

 

1.19.2 Laplace transforms technique in MHD 

The physical aspects of any fluid flow is expressed in terms of system of partial differential equation 

with initial and boundary condition, in which Laplace transform technique can be used properly; as 

it is the art of substituting the governing equations of fluid flow with numbers and proceeding these 

numbers in space and/ or time into an ordinary differential equation, which can be solved by 

established rules and, then Inverse Laplace transforms techniques are useful to get the required 

results. This method is the perfectly fitted for unsteady free convective MHD problems through 

porous medium. The Laplace transform and inverse Laplace transform of special function and many 

other function which is practically growth in MHD problems using Laplace transform technique 

[167-168]. 
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1.19.3 Solving partial differential equation using Laplace transform technique  

Given a function 𝑢(𝑥, 𝑡) well-defined for all 𝑡 >  0 and supposed to be bounded one can apply the 

Laplace transform in 𝑡 considering 𝑥 as a parameter 

𝐿(𝑢(𝑥, 𝑡)) = ∫ 𝑒−𝑠𝑡𝑢(𝑥, 𝑡) 𝑑𝑡
∞

0
= 𝑈(𝑥, 𝑠)         (1.26) 

For solving PDEs, the Laplace transform of following partial derivative is required. 

𝐿(𝑢𝑡(𝑥, 𝑡)) = ∫ 𝑒−𝑠𝑡𝑢𝑡(𝑥, 𝑡) 𝑑𝑡
∞

0
= [𝑒−𝑠𝑡𝑢(𝑥, 𝑡) ]0

∞ + 𝑠 ∫ 𝑒−𝑠𝑡𝑢(𝑥, 𝑡) 𝑑𝑡
∞

0
= 𝑠𝑈(𝑥, 𝑠) − 𝑢(𝑥, 0)   

            (1.27) 

So, the outcome is  

𝐿(𝑢𝑡(𝑥, 𝑡)) = 𝑠𝑈(𝑥, 𝑠) − 𝑢(𝑥, 0)          (1.28) 

Similarly, it obtained   

𝐿(𝑢𝑡𝑡(𝑥, 𝑡)) = 𝑠2𝑈(𝑥, 𝑠) − 𝑠𝑢(𝑥, 0) − 𝑢𝑡(𝑥, 0)      (1.29) 

It required the Laplace transform of 𝑥 derivative. 

𝐿(𝑢𝑥(𝑥, 𝑡)) = ∫ 𝑒−𝑠𝑡𝑢𝑥(𝑥, 𝑡) 𝑑𝑡
∞

0
= 𝑈𝑥(𝑥, 𝑠)       (1.30) 

𝐿(𝑢𝑥𝑥(𝑥, 𝑡)) = ∫ 𝑒−𝑠𝑡𝑢𝑥𝑥(𝑥, 𝑡) 𝑑𝑡
∞

0
= 𝑈𝑥𝑥(𝑥, 𝑠)       (1.31) 

 

1.20 Review of Relevant Literature 

Analytical methods as well as Numerical methods have been successfully used by many scientists 

to solve several types of problems of magnetic field effects on unsteady free convective flow of 

different types of non-Newtonian fluid like, micro-polar fluid, Second grade fluid and Casson fluid 

with heat and mass transfer through porous medium. Some of them (related to the thesis) are briefly 

reviewed here. 

Recently, the study of micro polar fluid has attracted many scholars as Navier–Stokes equations of 

Newtonian fluids cannot effectively describe the characteristics of fluid with suspended particles. 

Eringen [2] first introduced the theory of micro-polar fluid and this theory is useful in explaining 

the characteristics of certain fluids such as liquid crystals, suspensions and animal blood. 

Consequently, Ariman et al. [15] wrote outstanding reviews on applications of micro-polar fluids. 

Further, El-Hakiem [16] studied natural convection of micro-polar fluid by using perturbation 

technique. Chamkha et al. [17] and Abdulaziz and Hashim [18] investigated the fully developed free 

convection of a micro-polar fluid in vertical channel. Ikbal et al. [19] studied two-layered micro-

polar fluid flow whereas, Xin-yi et al. [20] considered flow of micro-polar fluid through porous 
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channel with expanding or contracting walls. Alloui et al. [21] discussed double-diffusive and Soret-

induced convection of a micro-polar fluid in a vertical channel. Mohamed [22] worked on the 

solution of mixed convection flow of a micro-polar fluid with viscous dissipation. Jena et al. [23] 

considered diffusive convection of micro-polar fluids in a square. Sudhakara et al. [24] studied 

steady heat transfer in a thin film flow of a micro-polar fluid over an inclined permeable bed. Asma 

et al. [25] considered heat and mass in unsteady flow of a micro-polar fluid with wall couple stress. 

Due to increasing significance, application of non-Newtonian fluids is required in engineering. It is 

due to many applications in their several areas, such as the plastic manufacture, performance of 

lubricants, food processing, or movement of biological fluids. Second grade fluids can model many 

fluids such as dilute polymer solutions, slurry flows and industrial oils. Tan and Masuoka [26] 

examined the Stokes’ first problem for a Second grade fluid and Rashidi et al. [27] investigated 

unsteady squeezing flow of a second-grade fluid, whereas Hayat et al. [28] considered with unsteady 

stagnation point flow of Second grade fluid with variable free stream. Hameed et al. [29] obtained 

the solution of magnetic and heat transfer on fractional Second grade fluid in a vertical tube. 

Samiulhaq et al. [30] defined exact solutions for unsteady free convection flow of a Second grade 

fluid past a vertical flat plate. 

In modern engineering, many characteristics of flow are not understandable with the Newtonian 

fluid model. Hence non-Newtonian fluids theory has become useful. Non-Newtonian fluid exerts 

non-linear relationships between the shear stress and rate of shear strain. It has an extensive variety 

of applications in engineering and industry, especially in the extraction of crude oil from petroleum 

products. Casson fluid is one of such fluids. Casson fluid is classified as the most popular non-

Newtonian fluid which has several applications in food processing, metallurgy, drilling operations 

and bio-engineering operations. Casson fluid model was introduced by Casson [7] for the prediction 

of the flow behavior of pigment-oil suspensions. Pramanik [31] solved the problem based on Casson 

fluid flow past an exponentially porous stretching surface in presence of thermal radiation as well 

as Mahanta and shaw [32] discussed the 3D Casson fluid flow past linearly stretching sheet. Dash 

et al. [33] considered Casson fluid flow in a pipe filled with a homogeneous porous medium. Akbar 

and Butt [34] studied physiological transportation of Casson Fluid in a Plumb Duct whereas, 

Bhattacharyya et al. [35] and Abbas et al. [36] obtained solution of Casson fluid flow over permeable 

shrinking sheet with thermal radiation. Recently, Sandeep et al. [37] considered 3D-Casson fluid 
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flow within boundary layer formed on a surface at absolute zero and Sulochana et al. [38] discussed 

heat source or sink effect on 3D-Casson fluid in the presence of Soret and thermal radiation.  

Magnetohydrodynamics is the study of the motion of the fluid in the presence of magnetic field. 

The study of MHD flows has great importance, as these flows are quite prevalent in nature. The 

application of MHD to natural events received delayed motivation when astrophysicists came to 

realize that how it is established throughout the universe conducting, ionized gases and significantly 

strong magnetic fields. First introduced theory of laminar flow of an electrically conductive liquid 

in a homogenous magnetic field by Hartman [8]. Huang et al. [10] discussed on MHD waves and 

instabilities in the heat-conducting solar wind plasma. Lee [39] deals with two and three dimensional 

MHD simulations whereas, Kumar et al. [40] studied coronal heating by MHD waves. 

There are many applications for the parabolic motion such as solar cookers, solar concentrators and 

parabolic through solar collector. Murty et al. [41] deals with evaluation of thermal performance of 

heat exchanger unit for parabolic solar cooker and Raja et al. [42] considered design and 

manufacturing of parabolic through solar collector system. Muthucumaraswamy and Geetha [43] 

discussed effects of parabolic motion on isothermal vertical plate with constant mass flux. Singh 

and Singh [44] studied MHD free convective flow past a semi-infinite vertical permeable wall. 

Many researchers like, Eldabe and Salwa [45], Nadeem et al. [46], Akbar and Khan [47], Akbar 

[48] discussed influence of magnetic field on unsteady free convective flow of Casson fluid whereas, 

Nadeem et al. [49-50] considered magnetic field effects on unsteady free convective flow of Casson 

nano fluid. Akbar et al. [51-52] studied MHD stagnation point flow of Carreau fluid/ Powell fluid 

toward a permeable shrinking sheet. The work based on induced magnetic field effects on unsteady 

free convective flow, which is done by [53-55]. Furthermore, some other work on MHD flow of 

different types of nanofluid are available in Sheikholeslami et al. [56], Hatami et al. [57], 

Sheikholeslami and Ellahi [58], Freidoonimehr et al. [59], Shehzad et al. [60], Abbasi et al. [61], 

Hayat et al. [62] and Khan et al. [63]. Borrelli et al. [64] discussed MHD flow of micro-polar fluid in 

a vertical channel.  

Heat transfer which is defined as the transmission of thermal energy and heat transfer between 

physical systems. The transfer of heat is usually from a region of higher temperature to lower 

temperature zone. In heat transfer problems, temperature represents the amount of thermal energy 

available while heat flow represents the movement of thermal energy from one point to another. 

Thus, the study of heat transfer has a principal role in numerous commercial and engineering 

http://www.sciencedirect.com/science/article/pii/0032063388900839
http://www.sciencedirect.com/science/article/pii/0032063388900839
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applications aircraft engineering, water heaters, lubrication of bearings, cooling compressors of 

engine cylinders and nuclear technology. New growth concerning laminar and turbulent flows along 

with the boundary layer theory has managed to the study of heat transfer progression to a huge 

amount in consideration of above research developments. Heat transfer characteristics of unsteady 

free convective MHD flow are described by several researchers like, Abbas et al. [65], Ahmed et al. 

[66] and Sheikholeslami et al. [67]. Mahmoud and Waheed [68] discussed heat transfer effects on 

MHD micro-polar fluid flow over a stretching surface with heat generation. Recently, Kataria et al. 

[69] studied heat transfer effects on MHD micro-polar fluid flow between two vertical walls. 

Research work on heat transfer effects on MHD flow of nanofluid presented by Sheikholeslami et 

al. [70], Sheikholeslami and Chamkha [71], Sheikholeslami and Bhatti [72], Ibrahim [73], 

Sheikholeslami et al. [74], Hatami and Safari [75] and Hatami et al. [76]. Abbasi and Shehzad [77] 

studied heat transfer effects on three-dimensional flow of Maxwell fluid with temperature dependent 

thermal conductivity.  

The convective heat transfer phenomena in nature are often attended by mass transfer. Convective 

mass transfer process creates the support of various procedures in the chemical engineering. This 

appears like sufficient purpose to contain mass transfer in heat convection as well. An analogy 

happens between convective mass transfer and convective heat transfer. This analogy is 

educationally actual significant because it provides a chance to organize the understanding of heat 

transfer and to learn mass transfer with the least memorization. Muthucumaraswamy et al. [78] 

considered mass transfer effects on exponentially accelerated isothermal vertical plate. Haque et al. 

[79] studied MHD micro-polar fluid flow with constant heat and mass fluxes whereas, Das et al. 

[80] discussed heat and mass transfer of a Second grade MHD fluid over a convectively heated 

stretching sheet. Nadeem and Akbar [81] considered  MHD on the peristaltic flow in an annulus 

with heat and mass transfer. Concurrently, unsteady free convective MHD flow with heat and mass 

transfers from numerous geometries in porous media has several engineering and geophysical 

applications such as-underground energy transport drying of porous solids, thermal insulation and 

geothermal reservoirs. Hayat et al. [82] studied MHD Second grade fluid flow in porous channel. 

Rassoulinejad-Mousavi et al. [83-84] discussed forced convection in a circular tube filled with a 

Darcy–Brinkman–Forchheimer porous medium. Ali et al. [85-86] studied MHD flow with heat and 

mass transfer past a vertical plate embedded in porous medium. Hussnan et al. [87] defined the 

solution of unsteady MHD free convection flow in a porous medium with constant mass diffusion. 

http://www.sciencedirect.com/science/article/pii/S1876107009001539
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Nadeem et al. [88] and Khalid et al. [89] discussed unsteady free convective MHD Casson fluid 

flow with heat and mass transfer through porous medium. Das et al. [90] studied Magneto-nanofluid 

flow past an impulsively started porous plate.  

The Stefan-Boltzmann rule states that, “the emissive power of a black body is directly proportional 

to fourth power of its absolute temperature”. If surface experiences different temperature, then the 

heat flux is equivalent to the net radiation flow. Rosseland [91] point out radiative heat in fluid flow. 

Hayat et al. [92] considered thermal radiation effects on MHD Second grade fluid flow whereas, 

Prakash and Muthtamilselvan [93] studied effect of radiation on MHD flow of micro-polar fluid 

between porous vertical channels. Makanda et al. [94] discussed radiation effects on MHD Casson 

fluid flow from in non-Darcy porous medium with viscous dissipation. Several researchers like, 

Rashidi et al. [95], Kataria and Mittal [96-97], Akbar et al. [98] and Sheikholeslami [99-100] 

considered thermal radiation effects on unsteady free convective MHD nanofluid flow. Rashidi et 

al. [101] and Narayana [102] studied mixed convective MHD fluid flow with thermal radiation. 

Rashidi et al. [103] and Ahmed et al. [104] discussed free convective heat and mass transfer MHD 

fluid flow in the presence of the radiation through porous medium. Ahmed et al. [105] considered 

MHD double diffusive convection in the stagnation region of an in the presence of thermal radiation 

effect. Sheikholeslami and Shehzad [106] studied thermal radiation of ferrofluid in existence of 

Lorentz forces.  

The study of MHD flow with heat and mass transfer in presence of chemical reaction has many 

applications in hydrometallurgical and chemical industries. Chemical reaction can be classified into 

heterogeneous and homogeneous processes. Animasaun [107] and Makanda et al. [108] studied 

chemical reaction and magnetic field effects on unsteady free convective flow of Casson fluid. 

Research work of thermal radiation and chemical reaction effects on MHD flow is important in 

engineering and technology which is done by, Seth et al. [109], Kataria and patel [110], Reddy 

[111], Nayak et al. [112], Narayana and Babu [113].  

Heat generation/absorption played important role in MHD flow with heat and mass transfer. 

Recently, Hayat et al. [114] and Shehzad et al. [115-116] studied heat generation effects on unsteady 

three-dimensional MHD flow with different fluid. Fetecau et al. [117] considered slip effects on the 

unsteady radiative MHD free convection flow over a moving plate with heat source whereas, Abbasi 

et al. [118] discussed mixed convection flow of Maxwell nanofluid with heat generation/absorption. 

http://www.sciencedirect.com/science/article/pii/S0304885315308611
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Raju et al. [119] obtained analytical and numerical solution of MHD flow over an exponentially 

moving vertical plate with Heat Absorption.  

The diffusion of material is irregularly heated which is by the temperature gradient in the system. 

The effect is named after the Swiss Scientist Soret [13], who was the first to study thermos-diffusion. 

Nadeem et al. [120], Sengupta and Ahmed [121] studied thermo-diffusion effects on MHD oblique 

stagnation-point flow of a viscoelastic fluid whereas, Khan et al. [122] considered thermo-diffusion 

effects on MHD stagnation point flow towards a stretching sheet in a nanofluid. Hayat et al. [123-

125] and Anantha et al. [126] discussed soret and dufour effects on unsteady free convective MHD 

flow with heat and mass transfer. Kataria and Patel [127] obtained analytic solution of MHD Casson 

fluid flow with soret and heat generation. Olanrewaju and Abbas [128] discussed hydromagnetic 

flow of a Second grade fluid in the presence of thermal radiation and thermal diffusion. Kumaran 

and Sandeep [129] obtained thermophoresis and Brownian moment effects on parabolic flow of 

MHD Casson and Williamson fluids with cross diffusion.  

Hall effect was discovered by Hall [14]. It has a dynamic role in defining flow structures of fluid 

flow problems. Hall effects is likely to be significant in MHD power generation, nuclear power 

reactors, underground energy storage system, Hall current accelerator, magnetometers, Hall effect 

sensors, spacecraft propulsion etc. and in several areas of astrophysics and geophysics. Narayana et 

al. [130], Oahimire and Olajuwon [131] and Olajuwon et al. [132] studied effects of Hall current 

and radiation on MHD micro-polar fluid flow with heat and mass transfer. Seth et al. [133-134] and 

Hussain et al. [135] discussed Hall current effect on unsteady free convective MHD flow with heat 

and mass transfer past a moving vertical plate in rotating system. Raptis and Singh [136] studied 

rotation effects on MHD free-convection flow past an accelerated vertical plate. Rashidi et al. [137] 

investigated of entropy generation in MHD and slip flow over a rotating porous disk whereas, 

Rashidi and Erfani [138] defined the analytical solution for steady MHD flow rotating disk with 

viscous dissipation and ohmic Heating. Nadeem and Saleem [139] obtained exact solution of 

unsteady mixed convection MHD flow on a rotating cone in a rotating frame. However, in all the 

investigations carried out by researchers considered ramped temperature profiles, it is to be noted 

that interval for ramped profile varies from material to material depending upon the specific heat 

capacity of the material. Variable ramped temperature profiles appear in real world situation in 

building air-conditioning systems, fabrication of thin-film photovoltaic devices, and phase transition 

in processing of materials, turbine blade heat transfer, heat exchangers etc. Lee and Yovanovich 

http://link.springer.com/search?facet-creator=%22T.+Hayat%22


 Chapter 1:  
 

20 
 

[140] discussed laminar natural convection from a vertical plate with a step change in wall 

temperature. Seth et al. [141-150], Nandkeolyar et al. [151-152] and Khan et al. [153] considered 

unsteady free convective MHD flow with ramped wall temperature. Khalid et al. [154] obtained 

exact solutions of Nano fluids with ramped wall temperature, whereas Samiulhaq et al. [155], 

Kataria and Patel [156] considered unsteady MHD Second grade fluid flow with ramped wall 

temperature in a Porous Medium. Recently, Kataria and Patel [157] studied effects of thermo-

diffusion and parabolic motion on unsteady free convective MHD Second grade fluid flow with 

ramped wall temperature and ramped surface concentration. 

 

1.21 Dimensionless Parameters 

Dimensionless parameters help us to understand the physical importance of a particular 

phenomenon attendant with the problem. The basic equations are made dimensionless using certain 

dependent and independent characteristic values. Some of the dimensionless parameters used in 

thesis are clarified below 

(i) Thermal Grashof number (Gr)  

The ratio of the buoyancy to viscous force acting on a fluid. It often arises in the study of 

situations involving free convection  

 𝐺𝑟 =
𝑔𝛽𝑇𝐿3(𝑇𝑤−𝑇∞)

𝜈2   

(ii) Mass Grashof number (Gm) 

The ratio of the mass buoyancy force to hydrodynamics viscous force acting on a fluid. It often 

arises in the study of situations involving free convection  

 𝐺𝑚 =
𝑔𝛽𝐶𝐿3(𝐶𝑤−𝐶∞)

𝜈2   

(iii)Prandtl number (Pr)  

It is defined as ratio of momentum and thermal diffusivity.  

𝑃𝑟 =
𝜈

𝛼
=

𝜇𝐶𝑝

𝑘
  

(iv) Schmidt number (SC)  

It is defined as ratio of momentum and mass diffusivity.  

𝑆𝑐 =
𝜈

𝐷
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(v) Hartmann number (𝑴𝟐) 

It is defined as the ratio of electromagnetic force to the viscous force. It is a dimensionless number 

which gives a measure of the relative importance of drag forces resulting from magnetic induction 

and viscous forces in flow, and determines the velocity profile for such flow.  

  𝑀2 =
𝜎𝐵0

2𝐿2

𝜈 𝜌
 

(vi) Soret Number (Sr) 

It is noticed that, mass fluxes can also be created by temperature gradients and this embodies the 

thermal-diffusion (Soret) effect. Soret number corresponds to concentration equation. Soret 

number is represented by 

𝑆𝑟 =
𝐷𝑇

𝐷𝑚
  

(vii) Nusselt Number 

Nusselt number represents the dimensionless temperature gradient at the surface. 

𝑁𝑢 =
ℎ 𝐿

𝑘
  

(viii) Sherwood Number 

Sherwood number represents dimensionless concentration gradient at the surface. 

𝑆ℎ =
ℎ𝑚𝐿

𝐷
  

 

 


