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STUDY OF HEAT AND MASS TRANSFER EFFECTS ON UNSTEADY 

FREE CONVECTIVE MHD FLOW IN POROUS MEDIUM  

This chapter deals with heat and mass transfer effects on MHD flow through porous medium. Like 

the heat transfer, mass transfer is also one of the areas of modern science. Heat and mass transfer 

processes appears in several branches of modern technology, particularly, in atomic power 

engineering, space research, power plant, industrial power engineering. chemical engineering, 

construction industry, etc. 

This chapter consists of two section, the first one deals with the study of heat and mass transfer 

characteristics in the unsteady natural convective MHD Casson fluid flow passing through an 

oscillating vertical plate in porous medium whereas in second section, effects of heat and mass 

transfer on MHD flow of Second grade fluid in porous medium with ramped boundary conditions 

is considered. 

 

3.1 SECTION I: HEAT AND MASS TRANSFER IN MHD CASSON FLUID FLOW PAST 

AN OSCILLATING VERTICAL PLATE EMBEDDED IN POROUS MEDIUM WITH 

RAMPED WALL TEMPERATURE 

In this section, detailed discussion of effects of heat and mass transfer on unsteady MHD flow of 

Casson fluid past an oscillating vertical plate embedded in porous medium with ramped wall 

temperature. In order to understand the effects of ramped wall temperature, the said problem is also 

discussed for isothermal temperature. For both thermal plates, the governing system of linear partial 

differential equations with imposed initial boundary conditions are solved analytically using the best 

fitted Laplace transform technique and obtained expression of velocity, temperature and 

concentration profiles. The features of the fluid flow, heat and mass transfer characteristics are 

analyzed by plotting graphs and the physical aspects are discussed in details. Expression for 

Sherwood number, Nusselt number and Skin friction are derived and presented in tabular form 

(Refer Table 3.1.1 to 3.1.5).  

 

3.1.1 Introduction of the problem 

The characteristics of flow in modern engineering are not understandable with the Newtonian fluid 

model. Hence, non-Newtonian fluid theory can be used instead of Newtonian fluid. Non-Newtonian 

fluid exerts non-linear relationships between the shear stress and rate of shear strain. It has an 
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extensive variety of applications in engineering and industry, especially in the extraction of crude 

oil from petroleum products. Lots of other fluids also have the similar types of characteristics but 

Casson fluid is one of the time independent non-Newtonian fluids which classified as the most 

popular non-Newtonian fluid which has several applications in food processing and bio-engineering 

operations. Casson fluid model first introduced by Casson [7] for the prediction of the flow behavior 

of pigment-oil suspensions. Pramanik [31] studied Casson fluid flow past an exponentially porous 

stretching surface.  

In nature, there are many flows exist which are produced not only by the temperature differences 

but also by concentration differences. These mass transfer differences do affect the rate of heat 

transfer. This phenomenon of heat and mass transfer often occurs in the processes of chemical 

industries such as, food processing and polymer production. Recently, Khan et al. [63], Kataria and 

Mittal [96-97] and Khan et al. [122] studied heat and mass transfer effects on unsteady MHD flow 

of nano fluid. On the other hand, flow of porous media has an important application in heat removal 

from nuclear fuel, debris, underground disposal of radioactive waste material and paper production 

etc. Ali et al. [85] studied conjugate effects of heat and mass transfer on MHD free convection flow 

in porous medium. Ahmed et al. [104] obtained numerical solution of MHD radiating heat and mass 

transfer in a Darcian porous regime. Nayak et al. [112] considered heat and mass transfer effects on 

MHD viscoelastic fluid over a stretching sheet through porous medium. In all the previous study, 

the results for fluid flow problems are found by assuming conditions for the fluid temperature at the 

plate as continuous and well defined, but there are numerous physical conditions where the 

temperature at the bounding surface may need non-uniform or arbitrary wall conditions. Lee and 

Yovanovich [140] considered effects of step change in wall temperature on free convection from 

vertical plate. Applications of ramped wall type temperature are also found in materials processing, 

turbine blade heat transfer and electronic circuits operations. Seth et al. [142-147] discussed free 

convective unsteady MHD flow with ramped temperature whereas Nandkeolyar et al. [152] defined 

the solution of free convective MHD dusty fluid flow past an impulsively moving vertical plate with 

ramped wall temperature. Presently many researchers like, Nadeem et al. [46], Akabar et al. [47-48] 

and Nadeem et al. [88] studied unsteady free convective MHD Casson fluid flow with different 

physical conditions. 
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3.1.2 Novelty of the problem 

The study by Khalid et al. [89] highlighted unsteady MHD free convection flow of Casson fluid past 

over an oscillating vertical plate embedded in a porous medium without considering mass transfer 

and ramped boundary conditions effects. So, present study takes mass transfer effects on unsteady 

free convective MHD Casson fluid flow past over an oscillating vertical plate with ramped wall 

temperature and isothermal temperature in consideration. The governing dimensionless equations 

are solved analytically using Laplace transform technique. Also expression for Skin friction, Nusselt 

number and Sherwood number are derived.   

3.1.3 Mathematical formulation of the problem 
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Figure 3.1.1: Physical sketch of the problem. 

In Figure. 3.1.1, the flow being confined to 𝑦′ > 0, where 𝑦′ measured in the normal direction to 

the plate and 𝑥′-axis along the wall in the upward direction. A uniformly transverse magnetic field 

𝐵0 is applied in the 𝑦′ direction. Induced magnetic field produced by the fluid motion is negligible 
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in comparison with the applied one as the magnetic Reynolds number is small enough to neglect the 

effects of applied magnetic field. Initially, at time 𝑡′ = 0, both the fluid and the plate are uniform 

temperature 𝑇′
∞ and the concentration near the plate is assumed to be 𝐶′

∞ respectively. At time 𝑡′ >

0, the plate begins to oscillate in its own plate according to 𝑈0 sin(𝜔1
′𝑡′) 𝑜𝑟 𝑈0 cos (𝜔1

′𝑡′) with 

constant heat flux, 𝑇′
∞ + (𝑇′

𝑤 + 𝑇′
∞) 𝑡′

𝑡0
⁄  when 𝑡′ < 𝑡0 and 𝑇′

𝑤 when 𝑡′ > 𝑡0 respectively and 

Concentration near the plate is raised linearly to 𝐶′
∞ + (𝐶′

𝑤 + 𝐶′
∞) 𝑡′

𝑡0
⁄ which is there after 

maintained constant 𝑇′
𝑤 and 𝐶′

𝑤 respectively.  

Before deriving equation, it is assumed that flow is incompressible and one dimensional. Further it 

is assumed that viscous dissipation term in the energy equation is neglected. Under these 

assumptions, the following partial differential equations is obtained. 

𝜌
𝜕𝑢′

𝜕𝑡′ = 𝜇𝛽 (1 +
1

𝛾
)

𝜕2𝑢′

𝜕𝑦2 − 𝜎𝐵0
2𝑢′ −

𝜇∅

𝑘′ 𝑢′ + 𝜌𝑔𝛽′
𝑇

(𝑇′ − 𝑇′
∞) + 𝜌𝑔𝛽′

𝐶
(𝐶′ − 𝐶′

∞)   (3.1.1) 

𝜕𝑇′

𝜕𝑡′ =
𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2           (3.1.2) 

𝜕𝐶′

𝜕𝑡′ = 𝐷𝑀
𝜕2𝐶′

𝜕𝑦′2            (3.1.3) 

𝑢′ = 0, 𝑇′ = 𝑇′
∞,   𝐶′ =  𝐶′

∞;  𝑎𝑠   𝑦′ ≥ 0 𝑎𝑛𝑑   𝑡′ ≤ 0,    

𝑢′ = 𝑈0 sin(𝜔1
′𝑡′) 𝑜𝑟 𝑈0 cos (𝜔1

′𝑡′),   𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 and  

𝐶′ = 𝐶′
∞ + (𝐶′

𝑤 − 𝐶′
∞) 𝑡′

𝑡0
⁄ 𝑎𝑠  𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0     

𝑢′ → 0, 𝑇′ → 𝑇′
∞,   𝐶′ → 𝐶′

∞;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0       (3.1.4) 

Introducing the following dimensionless quantities:  

𝑦 =
𝑈0 

𝜈 𝑡0
𝑦′, 𝑡 =

𝑈0
2𝑡′

𝜈 𝑡0
, 𝑢 =

√𝑡0

𝑈0
𝑢′, 𝜃 =

(𝑇′−𝑇′
∞)

(𝑇′
𝑤−𝑇′

∞)
, 𝐶 =

(𝐶′−𝐶′
∞)

(𝐶′
𝑤−𝐶′

∞)
, 𝜔1 =

𝜔1
′ 𝜈

𝑈0
2 , 𝑃𝑟 =

𝜌𝜈𝐶𝑝

𝑘4
, 𝜏 =

𝜏

𝜌𝑢2  

 

𝑀2 =  
𝜎𝐵0

2

𝜌𝑈0
2 𝑡0,

1

𝑘
=

𝜈∅2

𝑘′𝑈0
2 , 𝐺𝑟 =

𝜈𝑔𝛽′
𝑇(𝑇′

𝑤−𝑇′
∞)

𝑈0
3  , 𝛾 =

𝜇𝛽√2𝜋𝑐

𝑃𝑦
, 𝑆𝑐 =

𝜈

𝐷𝑀
, 𝐺𝑚 =

𝜈𝑔𝛽′
𝐶(𝐶′

𝑤−𝐶′
∞)

𝑈0
3     

In the equations (3.1.1) to (3.1.4) dropping out the " ′ " notation (for simplicity)  

𝜕𝑢

𝜕𝑡
= (1 +

1

𝛾
)

𝜕2𝑢

𝜕𝑦2 − (𝑀2 +
1

𝑘
) 𝑢 + 𝐺𝑟𝜃 + 𝐺𝑚𝐶       (3.1.5) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2                                           (3.1.6) 
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𝜕𝐶

𝜕𝑡
=

1

𝑠𝑐

𝜕2𝐶

𝜕𝑦2
           (3.1.7) 

with initial and boundary conditions 

𝑢 = 𝜃 =  𝐶 = 0 ,            𝑦 > 0, 𝑡 < 0  

𝑢 = sin(𝜔1𝑡) 𝑜𝑟𝐻(𝑡) cos(𝜔1𝑡) ,    

𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1), 𝐶 = 𝑡 𝑎𝑡  𝑦 = 0, 𝑡 ≥ 0  

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑡  𝑦 → ∞          (3.1.8) 

Where, H (.) is Heaviside unit step function. 

3. 1.4 Solution of the problem 

Using Laplace transform technique, expression for velocity, temperature and concentration are 

obtained from equations (3.1.5) to (3.1.7) with initial and boundary conditions as in equation (3.1.8).  

 

3.1.4.1 Solution for plate with ramped wall temperature 

Taking Laplace transform of equations (3.1.5) and (3.1.7) with initial and boundary condition 

equations (3.1.8)  

𝜃̅ = (1 − 𝑒−𝑠)𝐹8(𝑦, 𝑠)          (3.1.9) 

𝐶̅ = 𝐹11(𝑦, 𝑠)                      (3.1.10) 

𝑢̅𝑠𝑖𝑛(𝑦, 𝑠) =
𝑖

2
𝐹1(𝑦, 𝑠) −

𝑖

2
𝐹2(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐺1(𝑦, 𝑠) − (1 − 𝑒−𝑠)𝐺2(𝑦, 𝑠) + 𝐺3(𝑦, 𝑠) −

                        𝐺4(𝑦, 𝑠)                            (3.1.11) 

𝑢̅𝑐𝑜𝑠(𝑦, 𝑠) =
1

2
𝐹1(𝑦, 𝑠) +

1

2
𝐹2(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐺1(𝑦, 𝑠) − (1 − 𝑒−𝑠)𝐺2(𝑦, 𝑠) + 𝐺3(𝑦, 𝑠) −

                        𝐺4(𝑦, 𝑠)                     (3.1.12) 

𝐺1(𝑦, 𝑠) = 𝑎1𝐹3(𝑦, 𝑠) + 𝑎2𝐹4(𝑦, 𝑠) + 𝑎3𝐹5(𝑦, 𝑠)                 (3.1.13) 

𝐺2(𝑦, 𝑠) = 𝑎1𝐹6(𝑦, 𝑠) + 𝑎2𝐹7(𝑦, 𝑠) + 𝑎3𝐹8(𝑦, 𝑠)                 (3.1.14) 

𝐺3(𝑦, 𝑠) = 𝑎4𝐹4(𝑦, 𝑠) + 𝑎5𝐹5(𝑦, 𝑠) + 𝑎6𝐹9(𝑦, 𝑠)                 (3.1.15) 
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𝐺4(𝑦, 𝑠) = 𝑎4𝐹10(𝑦, 𝑠) + 𝑎5𝐹11(𝑦, 𝑠) + 𝑎6𝐹12(𝑦, 𝑠)                (3.1.16) 

𝐺5(𝑦, 𝑡) = 𝑎3𝐹4(𝑦, 𝑡) − 𝑎3𝐹3(𝑦, 𝑡)                   (3.1.17) 

𝐺6(𝑦, 𝑡) = 𝑎3𝐹7(𝑦, 𝑡) − 𝑎3𝐹6(𝑦, 𝑡)                   (3.1.18) 

𝐹1(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠+𝑖𝜔1
                      (3.1.19) 

𝐹2(𝑦, 𝑠) =  
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠−𝑖𝜔1
                     (3.1.20) 

𝐹3(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠−𝑓
                     (3.1.21) 

𝐹4(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠
                     (3.1.22) 

𝐹5(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠2                      (3.1.23) 

𝐹6(𝑦, 𝑠) =
1

𝑠−𝑓
𝑒−𝑦√𝑝𝑟 𝑠                    (3.1.24) 

𝐹7(𝑦, 𝑠) =
1

𝑠
𝑒−𝑦√𝑝𝑟 𝑠                     (3.1.25) 

𝐹8(𝑦, 𝑠) =
1

𝑠2 𝑒−𝑦√𝑝𝑟 𝑠                    (3.1.26) 

𝐹9(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠−𝑔
                     (3.1.27) 

𝐹10(𝑦, 𝑠) =
1

𝑠
𝑒−𝑦√𝑠𝑐 𝑠                    (3.1.28) 

𝐹11(𝑦, 𝑠) =
1

𝑠2 𝑒−𝑦√𝑠𝑐 𝑠                    (3.1.29) 

𝐹12(𝑦, 𝑠) =
1

𝑠−𝑔
𝑒−𝑦√𝑠𝑐 𝑠                    (3.1.30) 

 Inverse Laplace transform of equations (3.1.9) to (3.1.30),  

𝜃(𝑦, 𝑡) = 𝑓8(𝑦, 𝑡) − 𝑓8(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)                  (3.1.31) 
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𝐶(𝑦, 𝑡) = 𝑓11(𝑦, 𝑡)                      (3.1.32) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) + 𝑔1(𝑦, 𝑡) − 𝑔1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑔2(𝑦, 𝑡) +  

                       𝑔2(𝑦, 𝑡 − 1)  𝐻(𝑡 − 1) + 𝑔3(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)                  (3.1.33) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
𝑓1(𝑦, 𝑡) −

1

2
𝑓2(𝑦, 𝑡) + 𝑔1(𝑦, 𝑡) − 𝑔1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑔2(𝑦, 𝑡) +  

                       𝑔2(𝑦, 𝑡 − 1)  𝐻(𝑡 − 1) + 𝑔3(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)                  (3.1.34) 

 

3.1.4.2 Solutions for Plate with Isothermal Temperature 

In this case, the initial and boundary conditions are the same excluding Eq. (3.1.8) that becomes 𝜃 =

1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0. So, expression of velocity 𝑢(𝑦, 𝑡) and temperature 𝜃(𝑦, 𝑡) are obtained using 

Laplace transform technique for isothermal plates which is given below.  

θ(y, t) = 𝑓7(𝑦, 𝑡)                     (3.1.35) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) + 𝑔5(𝑦, 𝑡) + 𝑔3(𝑦, 𝑡) − 𝑔6(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)            (3.1.36) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
𝑓1(𝑦, 𝑡) +

1

2
𝑓2(𝑦, 𝑡) + 𝑔5(𝑦, 𝑡) + 𝑔3(𝑦, 𝑡) − 𝑔6(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)              (3.1.37) 

where 

𝑓1(𝑦, 𝑡) =
𝑒−𝑖𝜔1𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏−𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

1

√𝑎

2√𝑡
− √(𝑏 − 𝑖𝜔1)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏−𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

1

√𝑎

2√𝑡
+

                   √(𝑏 − 𝑖𝜔1)𝑡)]                     (3.1.38) 

𝑓2(𝑦, 𝑡) =
𝑒𝑖𝜔1𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏+𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

1

√𝑎

2√𝑡
− √(𝑏 + 𝑖𝜔1)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏+𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

1

√𝑎

2√𝑡
+

                   √(𝑏 + 𝑖𝜔1)𝑡)]                     (3.1.39) 

𝑔1(𝑦, 𝑡) = 𝑎1𝑓3(𝑦, 𝑡) + 𝑎2𝑓4(𝑦, 𝑡) + 𝑎3𝑓5(𝑦, 𝑡)                   (3.1.40) 

𝑔2(𝑦, 𝑡) = 𝑎1𝑓6(𝑦, 𝑡) + 𝑎2𝑓7(𝑦, 𝑡) + 𝑎3𝑓8(𝑦, 𝑡)                  (3.1.41) 

𝑔3(𝑦, 𝑡) = 𝑎4𝑓4(𝑦, 𝑡) + 𝑎5𝑓5(𝑦, 𝑡) + 𝑎6𝑓9(𝑦, 𝑡)                 (3.1.42) 
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𝑔4(𝑦, 𝑡) = 𝑎4𝑓10(𝑦, 𝑡) + 𝑎5𝑓11(𝑦, 𝑡) + 𝑎6𝑓12(𝑦, 𝑡)                 (3.1.43) 

𝑔5(𝑦, 𝑡) = 𝑎3𝑓4(𝑦, 𝑡) − 𝑎3𝑓3(𝑦, 𝑡)                   (3.1.44) 

𝑔6(𝑦, 𝑡) = 𝑎3𝑓7(𝑦, 𝑡) − 𝑎3𝑓6(𝑦, 𝑡)                   (3.1.45) 

𝑓3(𝑦, 𝑡) =
𝑒𝑓𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏+𝑓)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √(𝑏 + 𝑓)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏+𝑓)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √(𝑏 + 𝑓)𝑡)]  

                                 (3.1.46) 

𝑓4(𝑦, 𝑡) =
1

2
[𝑒

−𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √𝑏𝑡) + 𝑒

𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √𝑏𝑡)]              (3.1.47) 

𝑓5(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦

2√𝑎𝑏
) 𝑒

−𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √𝑏𝑡) + (𝑡 +

𝑦

2√𝑎𝑏
) 𝑒

𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √𝑏𝑡)]  

                                            (3.1.48) 

𝑓6(𝑦, 𝑡) =
𝑒𝑓𝑡

2
[𝑒−𝑦√𝑃𝑟𝑓 𝑒𝑟𝑓𝑐 (

𝑦 √𝑃𝑟

2√𝑡
− √𝑓𝑡) + 𝑒𝑦√𝑃𝑟𝑓 𝑒𝑟𝑓𝑐 (

𝑦 √𝑃𝑟

2√𝑡
+ √𝑓𝑡)]              (3.1.49) 

𝑓7(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
𝑦√𝑃𝑟

2√𝑡
)                   (3.1.50) 

𝑓8(𝑦, 𝑡) = (
𝑦2𝑃𝑟

2
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
) −

𝑦√Pr 𝑡

2√𝜋
𝑒−

𝑦2𝑃𝑟

4𝑡                  (3.1.51) 

𝑓9(𝑦, 𝑡) =
𝑒𝑔𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏+𝑔)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √(𝑏 + 𝑔)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏+𝑔)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √(𝑏 + 𝑔)𝑡)] 

                      (3.1.52) 

𝑓10(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
𝑦√𝑆𝑐

2√𝑡
)                   (3.1.53) 

𝑓11(𝑦, 𝑡) = (
𝑦2𝑆𝑐

2
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
) −

𝑦√Sc 𝑡

2√𝜋
𝑒−

𝑦2𝑆𝑐

4𝑡                  (3.1.54) 

𝑓12(𝑦, 𝑡) =
𝑒𝑔𝑡

2
[𝑒−𝑦√𝑆𝑐 𝑔 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √𝑔𝑡) + 𝑒𝑦√𝑆𝑐𝑔 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+ √𝑔𝑡)]              (3.1.55) 

Where 𝑢𝑠𝑖𝑛(𝑦, 𝑡) 𝑎𝑛𝑑 𝑢𝑐𝑜𝑠(𝑦, 𝑡) are the velocity profiles for sin and cosine oscillations for the 

ramped and isothermal temperatures respectively. 
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3.1.4.3 Nusselt number 

 The Nusselt number Nu can be written as 

 𝑁𝑢 = − (
𝜕𝜃

𝜕𝑦
)

𝑦=0
                    (3.1.56) 

Using the equation (3.1.31), it is obtained the Nusselt number for Ramped wall temperature is 

𝑁𝑢 = −[ℎ12(𝑡) − ℎ12(𝑡 − 1)𝐻(𝑡 − 1)]                 (3.1.57) 

Using the equation (3.1.35), it is obtained the Nusselt number for Isothermal temperature is 

𝑁𝑢 = −[ℎ11(𝑡)]                     (3.1.58) 

 

3.1.4.4 Sherwood number 

Sherwood number is defined and denoted by the formula  

𝑠ℎ = − (
𝜕𝐶

𝜕𝑦
)

𝑦=0
                     (3.1.59) 

Using the equation (3.1.32), it is obtained the Sherwood number is 

𝑠ℎ = −[ℎ15(𝑡)]                     (3.1.60) 

 

3.1.4.5 Skin friction 

Expressions of skin-friction for both cases are calculated from Equations (3.1.33), (3.1.34) and 

equations (3.1.36), (3.1.37) using the relations 

𝜏∗(𝑦, 𝑡) = − 𝜇𝐵 (1 +
1

𝛾
) 𝜏                    (3.1.61) 

Where   𝜏 =
𝜕𝑢

𝜕𝑦
|

𝑦=0
                      (3.1.62) 

For ramped wall temperature 

𝜏𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) + ℎ3(𝑡) − ℎ3(𝑡 − 1)𝐻(𝑡 − 1) − ℎ4(𝑡) + ℎ4(𝑡 − 1)𝐻(𝑡 − 1) +

                       ℎ5(𝑡) − ℎ6(𝑡)                    (3.1.63) 

𝜏𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
ℎ1(𝑡) +

1

2
ℎ2(𝑡) + ℎ3(𝑡) − ℎ3(𝑡 − 1)𝐻(𝑡 − 1) − ℎ4(𝑡) + ℎ4(𝑡 − 1)𝐻(𝑡 − 1) +

                        ℎ5(𝑡) − ℎ6(𝑡)                     (3.1.64) 
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For isothermal temperature 

𝜏𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) + ℎ17(𝑡) + ℎ5(𝑡) − ℎ18(𝑡) − ℎ6(𝑡)               (3.1.65) 

𝜏𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
ℎ1(𝑡) +

1

2
ℎ2(𝑡) + ℎ17(𝑡) + ℎ5(𝑡) − ℎ18(𝑡) − ℎ6(𝑡)               (3.1.66) 

Where  

ℎ1(𝑡) = 𝑒−𝑖𝜔1𝑡√
𝑏−𝑖𝜔1

𝑎
 erf(√(𝑏 − 𝑖𝜔1)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
                  (3.1.67) 

ℎ2(𝑡) = 𝑒𝑖𝜔1𝑡√
𝑏+𝑖𝜔1

𝑎
 erf(√(𝑏 + 𝑖𝜔1)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
                 (3.1.68) 

 ℎ3(𝑡) = 𝑎1ℎ7(𝑡) + 𝑎2ℎ8(𝑡) + 𝑎3ℎ9(𝑡)                  (3.1.69) 

ℎ4(𝑡) = 𝑎1ℎ10(𝑡) + 𝑎2ℎ11(𝑡) + 𝑎3ℎ12(𝑡)                  (3.1.70) 

ℎ5(𝑡) = 𝑎4ℎ8(𝑡) + 𝑎5ℎ9(𝑡) + 𝑎6ℎ13(𝑡)                  (3.1.71) 

ℎ6(𝑡) = 𝑎4ℎ14(𝑡) + 𝑎5ℎ15(𝑡) + 𝑎6ℎ16(𝑡)                  (3.1.72) 

ℎ7(𝑡) = 𝑒𝑓𝑡√
𝑏+𝑓

𝑎
 erf(√(𝑏 + 𝑓)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
                   (3.1.73) 

ℎ8(𝑡) = −√
𝑏

𝑎
 erf(√𝑏𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
                    (3.1.74) 

ℎ9(𝑡) = −
1

√4𝑎𝑏
 erf(√𝑏𝑡) − 𝑡√

𝑏

𝑎
erf(√𝑏𝑡) + √

𝑡

𝜋𝑎
𝑒−𝑏𝑡                 (3.1.75) 

ℎ10(𝑡) = −𝑒𝑓𝑡√𝑃𝑟𝑓 erf(√𝑓𝑡) + √
𝑃𝑟

𝜋𝑡
                   (3.1.76) 

ℎ11(𝑡) = √
𝑃𝑟

𝜋𝑡
                       (3.1.77) 

ℎ12(𝑡) =
1

2
√

𝑡𝑃𝑟

𝜋
                      (3.1.78) 

ℎ13(𝑡) = 𝑒𝑔𝑡√
𝑏+𝑔

𝑎
 erf(√(𝑏 + 𝑔)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
                  (3.1.79) 
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ℎ14(𝑡) = √
𝑆𝑐

𝜋𝑡
                       (3.1.80) 

ℎ15(𝑡) =
1

2
√

𝑡𝑆𝑐

𝜋
                      (3.1.81) 

ℎ16(𝑡) = −𝑒𝑔𝑡√𝑆𝑐𝑔 erf(√𝑔𝑡) + √
𝑆𝑐

𝜋𝑡
                  (3.1.82) 

 

3.1.5 Results and Discussion 

The non-dimensional fluid velocity, temperature and concentration profiles for several values of 

Prandtl number 𝑃𝑟, thermal Grashof number 𝐺𝑟, mass Grashof  number 𝐺𝑚, Casson fluid parameter

 , magnetic parameter 𝑀, permeability of porous medium 𝑘, phase angle ω1 and time t are 

presented in Figures (3.1.2) to Figures (3.1.13). Figure 3.1.2 shows  velocity decreased with increase 

in 𝛾 for 𝜔1 =
𝜋

2
  whereas, velocity increased with increase in 𝛾 for ω1 = 0. It is also seen that, when 

the Casson parameter 𝛾 is large enough, the non-Newtonian behaviours disappear and the fluid 

purely behaves like a Newtonian fluid. Thus, the velocity boundary layer thickness for Casson fluid 

is larger than the Newtonian fluid. It occurs because of plasticity of Casson fluid.  

 

Figure 3.1.2: Velocity profile 𝑢 for different values of 𝑦 and γ at 𝑀 = 0.5, 𝑆𝑐 = 1, 𝐺𝑚 = 2,  

                            𝐺𝑟 = 3, 𝑘 = 0.2, 𝑡 = 0.4 and 𝑃𝑟 = 0.7.  
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Figure 3.1.3: Velocity profile 𝑢 for different values of 𝑦 and 𝑀, at 𝑃𝑟 = 0.7, 𝑆𝑐 = 1, 𝐺𝑚 = 2, 

                            𝐺𝑟 = 3, 𝑘 = 0.2, 𝑡 = 0.4 and 𝛾 = 0.6.  

 

Figure 3.1.4: Velocity profile 𝑢 for different values of 𝑦 and 𝑘 at 𝑃𝑟 = 7, 𝑆𝑐 = 1, 𝐺𝑚 = 2, 𝐺𝑟 = 3, 

                             𝑡 = 0.4 and 𝛾 = 0.2.  
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Figure 3.1.5: Velocity profile 𝑢 for different values of 𝑦 and 𝐺𝑚 at 𝑃𝑟 = 0.7, 𝑆𝑐 = 1, 𝐺𝑟 = 3,  

                            𝑘 = 0.2, 𝑡 = 0.4, 𝑀 = 0.5 and 𝛾 = 0.2.  

 

Figure 3.1.6: Velocity profile 𝑢 for different values of 𝑦 and 𝐺𝑟 at 𝑃𝑟 = 0.7, 𝑆𝑐 = 1, 𝐺𝑟 = 3, 

                            𝑘 = 0.2, 𝑡 = 0.4 and 𝛾 = 0.2.  
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Figure 3.1.7: Velocity profile 𝑢 for different values of 𝑦 and 𝑃𝑟 at 𝑀 = 0.5, 𝑆𝑐 = 1, 𝐺𝑚 = 2, 

                            𝐺𝑟 = 3, 𝑘 = 0.2, 𝑡 = 0.4 and 𝛾 = 0.6.  

 

Figure 3.1.8: Temperature profile 𝜃 for different values of 𝑦 and 𝑃𝑟 at  𝑡 =  0.4 
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Figure 3.1.9: Velocity profile 𝑢 for different values of 𝑦 and 𝑆𝑐 at 𝑃𝑟 = 0.7, 𝐺𝑚 = 2, 𝐺𝑟 = 3, 

                            𝑘 = 0.2, 𝑡 = 0.4, 𝑀 = 0.5 and 𝛾 = 0.6.  

 

Figure 3.1.10: Concentration profile 𝐶 for different values of 𝑦 and 𝑆𝑐 at 𝑡 =  0.4 
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Figure 3.1.11: Velocity profile 𝑢 for different values of 𝑦 and 𝑡 at 𝑀 = 0.5, 𝑃𝑟 = 0.7, 𝑆𝑐 = 1,  

                              𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑘 = 0.2, 𝑡 = 0.4 and 𝛾 = 0.2.  

 

 

Figure 3.1.12: Temperature profile θ for different values of y and t at Pr =  0.7 
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Figure 3.1.13: Concentration profile 𝐶 for different values of 𝑦 and 𝑡 at 𝑆𝑐 = 1 

 

 

Figure 3.1.14: Skin friction τ for different values of 𝑡 and 𝑃𝑟 at 𝑘 =  1, 𝛾 = 1, 𝑀 =  5, 

                              𝑆𝑐 =  6.2, 𝐺𝑟 =  2 𝑎𝑛𝑑 𝐺𝑚 =  5 
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Figure 3.1.15: Nusselt number 𝑁𝑢 for different values of 𝑡 and 𝑃𝑟. 

 

 

Figure 3.1.16: Skin friction τ for different values of 𝑡 and 𝑀 at 𝑘 =  1, 𝛾 = 1, 𝑃𝑟 =  7, 

                              𝑆𝑐 =  6.2, 𝐺𝑟 =  2 𝑎𝑛𝑑 𝐺𝑚 =  5. 
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Figure 3.1.17: Skin friction τ for different values of 𝑡 and 𝑆𝑐 at 𝑘 =  1, 𝛾 = 1, 𝑃𝑟 =  7, 𝑀 =  5, 

                              𝐺𝑟 =  2 𝑎𝑛𝑑 𝐺𝑚 =  5. 

 

 

Figure 3.1.18: Sherwood number 𝑆ℎ for different values of 𝑡 and 𝑆𝑐. 
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Table 3.1.1: Skin friction variation for air (𝑃𝑟 =  0.71 and 𝑆𝑖𝑛 𝜔1𝑡 = 0) 

𝑡 γ 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝑀 𝑘 Skin friction τ for 

Ramped  Temperature 

Skin friction τ for 

Isothermal Temperature 

0.4 1 0.6 2 4 2 1 -2.5439 -3.5534 

0.4 1.1 0.6 2 4 2 1 -2.4115 -3.4060 

0.4 1.2 0.6 2 4 2 1 -2.3037 -3.2843 

0.4 1 0.7 2 4 2 1 -2.7201 -3.7297 

0.4 1 0.8 2 4 2 1 -2.9049 -3.9144 

0.4 1 0.6 2.5 4 2 1 -2.7720 -4.0340 

0.4 1 0.6 3.0 4 2 1 -3.0002 -4.5146 

0.4 1 0.6 2 4.5 2 1 -2.7478 -3.7573 

0.4 1 0.6 2 5.0 2 1 -2.9516 -3.9612 

0.4 1 0.6 2 4 2.2 1 -2.2335 -3.1650 

0.4 1 0.6 2 4 2.5 1 -1.8788 -2.7088 

0.4 1 0.6 2 4 2 1.1 -2.4967 -3.4950 

0.4 1 0.6 2 4 2 1.2 -2.4406 -3.4252 

0.5 1 0.6 2 4 2 1 -2.9537 -3.7489 

0.6 1 0.6 2 4 2 1 -3.3619 -3.9658 

 

Table 3.1.2: Skin friction variation for water (𝑃𝑟 =  7 and 𝑆𝑖𝑛𝜔1𝑡 =  0) 

t γ 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝑀 𝑘 Skin friction 𝜏 for 

Ramped  temperature 

Skin friction τ for 

isothermal temperature 

0.4 1 0.6 2 4 2 1 -13.4431 -5.7863 

0.4 1.1 0.6 2 4 2 1 -12.3686 -5.5290 

0.4 1.2 0.6 2 4 2 1 -11.5080 -5.3159 

0.4 1 0.7 2 4 2 1 -13.6194 -5.9625 

0.4 1 0.8 2 4 2 1 -13.8041 -6.1473 

0.4 1 0.6 2.5 4 2 1 -16.3961 -6.8250 

0.4 1 0.6 3.0 4 2 1 -19.3491 -7.8638 

0.4 1 0.6 2 4.5 2 1 -13.6470 -5.9901 

0.4 1 0.6 2 5.0 2 1 -13.8509 -6.1940 

0.4 1 0.6 2 4 2.2 1 -10.3567 -5.0447 

0.4 1 0.6 2 4 2.5 1 -7.2917 -4.1850 

0.4 1 0.6 2 4 2 1.1 -12.9505 -5.6742 
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Table 3.1.3: Nusselt number variation for air (𝑃𝑟 =  0.71) 

𝑡 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 for isothermal 

Temperature 

0.4 -0.1503 -0.7517 

0.5 -0.1681 -0.6723 

0.6 -0.1841 -0.6137 

0.7 -0.1989 -0.5682 

 

Table 3.1.4: Nusselt number variation for water (𝑃𝑟 =  7) 

𝑡 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 for isothermal 

Temperature 

0.4 -0.4720 -2.3602 

0.5 -0.5278 -2.1110 

0.6 -0.5781 -1.9271 

0.7 -0.6244 -1.7841 

 

Table 3.1.5: Sherwood number variation 

𝑡 𝑆𝑐 Sherwood number 𝑆ℎ 

0.4 0.6 -0.1382 

0.5 0.6 -0.1545 

0.6 0.6 -0.1693 

0.4 0.7 -0.1493 

0.4 0.8 -0.1596 

 

Figure 3.1.3 displays the effect of magnetic parameter 𝑀 on the velocity profiles. It is observed that 

the fluid velocity as well as the boundary layer thickness decreases when 𝑀 is increased. Physically, 

the drag force increases which leads to the slowing of the flow. Figure 3.1.4 illustrates velocity 

profile for various values of permeability parameter 𝑘 by keeping other parameters fixed. It is seen 

that for increasing values of 𝑘, the resistance of the porous medium is lowered which increases the 

momentum development of the flow regime. The thermal Grashof number 𝐺𝑟 indicates the ratio of 

thermal buoyancy force to viscous hydrodynamic force and mass Grashof number 𝐺𝑚 point out the 

ratio of mass buoyancy force to viscous hydrodynamic force. It is seen that, thermal and mass 

0.4 1 0.6 2 4 2 1.2 -12.3762 -5.5408 

0.5 1 0.6 2 4 2 1 -12.9441 -5.6975 

0.6 1 0.6 2 4 2 1 -12.6967 -5.7063 
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Grashof number tends to improved motion of the flow field throughout the boundary layer in Figure 

3.1.5 and Figure 3.1.6 respectively. This implies that motion of fluid accelerated due to improvement 

in either temperature buoyancy force or mass buoyancy force. Figure 3.1.7 and Figure 3.1.8 exhibits 

the velocity and temperature profiles for different values of Prandtl number 𝑃𝑟.  It is observed that 

momentum and heat transfer process decreases with increase in Prandtl number 𝑃𝑟. It is justified 

due to the fact that thermal conductivity of the fluid decrease with increase in Prandtl number 𝑃𝑟 and 

hence decrease the thermal boundary layer thickness. The graphical results for 𝑆𝑐 is shown in Figure 

3.1.9 and Figure 3.1.10. It is depict that the fluid velocity and concentration decreases with increase 

in 𝑆𝑐. Figure 3.1.11 to Figure 3.1.13 shows the influence of dimensionless time 𝑡 on the velocity, 

temperature and concentration profiles. It is found that the velocity, temperature and concentration 

profiles increases with time 𝑡. Figure 3.1.14 and Figure 3.1.15 shows effect of 𝑃𝑟 on Skin friction 

and Nusselt number. For both thermal plates, Prandtl Number 𝑃𝑟 tends to reduced Skin friction and 

Nusselt number variation. Physically, when fluid attains a higher Prandtl number, its thermal 

conductivity is decreased and so its heat conduction capacity diminishes. Thus the thermal boundary 

layer thickness is reduced. As a results, the heat transfer rate at the plate is reduced as Prandtl number 

increases. Figure 3.1.16 shows effect of magnetic field 𝑀 on Skin friction. It is evident that Skin 

friction increase with increase in M. Figure 3.1.17 and Figure 3.1.18 illustrate that effect of Schdmit 

Number 𝑆𝑐 on Skin friction and Sherwood number. From these figures it is concluded that Skin 

friction and Sherwood number variation decreases with increases in 𝑆𝑐.  

The variation of the Skin friction and Nusselt number for air (𝑃𝑟 = 0.71) and water (𝑃𝑟 = 7) are 

shown in Tables (3.1.1) to Tables (3.1.4) for various values of the governing parameters. The 

increased shear stress is generally a disadvantage in applications. The negative value of Skin friction 

means that the plate exerts a drag force on the fluid (and vice versa). For both thermal cases, Skin 

friction increases with increase in 𝛾 and 𝑀, while Skin friction decreases with increase in 

𝑆𝑐, 𝐺𝑟, 𝐺𝑚, 𝑘 and 𝑡. Since the positive buoyancy force acts like a favourable pressure gradient, the 

fluid in the boundary layer is accelerated. Accordingly, the hot fluid near the plate surface is carried 

away more quickly as Grashof number 𝐺𝑟 increases. Therefore, the shear stress at the plate reduces. 

From Table (3.1.3) and Table (3.1.4), it is observed that, for ramped wall temperature time variable 

𝑡 tends to reduced Nusselt number, while for isothermal plate time variable 𝑡 tends to reverse effect 

on it. From Table (3.1.5), it is conclude that Sherwood number decrease with increase in 𝑡 and 𝑆𝑐. 

For all governing parameter for air, magnitude of Skin friction is more for isothermal temperature 
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compared to ramped wall temperature but in water, magnitude of Skin friction is more for ramped 

temperature compared to isothermal temperature. In both physical quantities air and water, 

Magnitude of Nusselt number is more for ramped wall temperature compared to isothermal 

temperature. 

 

3.1.6 Concluding Remark  

The most significant concluding explanations can be brief as follows: 

 Velocity of the fluid decreased with increase in magnetic field M, Prandtl number 𝑃𝑟 and 

Schmidt number 𝑆𝑐 throughout the flow field. 

 Velocity decreased with increasing values of Casson parameter 𝛾 for 𝜔1 =
𝜋

2
 whereas 

increased with increasing value of 𝛾  for 𝜔1 = 0 . 

 Permeability parameter 𝑘, Grashof number 𝐺𝑚 and 𝐺𝑟 and time variable t tends to improve 

motion in flow field region.  

 Prandtl number 𝑃𝑟 tends reduced heat transfer process, while time variable 𝑡 tends to reverse 

effect on it.  

 Concentration increased with increase in 𝑡, whereas decreased with increase in 𝑆𝑐. 

 Skin friction increased with increase in 𝛾 and 𝑀, decreased with increase in 

𝑆𝑐, 𝐺𝑟, 𝐺𝑚, 𝑘 and 𝑡. 

 Nusselt number is decreased with 𝑃𝑟 and 𝑡. 

 Sherwood number is decreased with 𝑆𝑐 and 𝑡. 
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3.2 SECTION II: HEAT AND MASS TRANSFER EFFECTS ON MHD 

SECOND GRADE FLUID FLOW WITH RAMPED WALL TEMPERATURE 

IN POROUS MEDIUM 

In this section, the unsteady MHD Second grade fluid flow past an infinite vertical plate in porous 

medium with ramped temperature is considered. Using some dimensionless quantities, the 

governing non-dimensionalized equations are converted in system of linear partial differential 

equation with imposed initial and boundary conditions. To analyze effect of ramped boundary 

condition, it is considered isothermal plate for said problem. So, for both thermal plate, expression 

of velocity, temperature and concentration profiles is obtained using Laplace transform technique 

and expression for Skin friction, Nusselt number and Sherwood number are derived. It is obtained 

numerical values of velocity, temperature and concentration profiles and clarified with the help of 

graphical illustrations.  

 

3.2.1 Introduction of the problem 

The Second grade fluids can model many fluids such as dilute polymer solutions, slurry flows and 

industrial oils. Tan and Masuoka [26] deliberated on stokes’ first problem for a Second grade fluid 

while Hayat et al. [28] studied stagnation point flow of Second grade fluid.  

The problems of magneto hydrodynamic natural convective unsteady flow in a porous medium have 

drawn considerable attentions of several researchers in various scientific and technological 

applications. Recently, Hayat et al. [82] solved MHD flow of a Second grade fluid in a porous 

channel. Olanrewaju and Abbas [128] studied heat and mass transfer effects on Second grade fluid 

with thermal radiation and diffusion. However, in all the surveys carried out by investigators 

considering ramped profiles, it is to be noted that interval for ramped profile varies from material to 

material depending upon the specific heat capacity of the material. Khan et al. [153] defined exact 

solution of MHD Second grade flow of inclined vertical plate with ramped wall temperature.  

 

3.2.2 Novelty of the problem 

In previous, unsteady MHD flow of a Second grade fluid in a porous medium is studied in absence 

of concentration and ramped boundary condition. Therefore, study can be considered as extension 

of Samiulhaq et al. [155]. So, Novelty of this investigation to analyze the important role of 
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concentration and ramped boundary condition in MHD flow of a Second grade fluid near infinite 

vertical flat plate through porous medium. Finally, an analytic solution of these problem using 

Laplace transform technique is obtained which are shown in subsequent study.  

 

3.2.3 Mathematical Formulation of the Problem: 

 

 

 

 

 

 

 

 

 

 

 

𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                            𝑖𝑓     𝑡′ ≥ 𝑡0

 & 𝐶′ = 𝐶′
∞ + (𝐶′

𝑤 − 𝐶′
∞) 𝑡′

𝑡0
⁄ 𝑎𝑠  𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0     

Figure 3.2.1: Physical sketch of the problem. 

In Figure 3.2.1, coordinate system is chosen such that 𝑥′ − 𝑎𝑥𝑖𝑠 taken along the wall in the upward 

direction and 𝑦′ − 𝑎𝑥𝑖𝑠   is taken normal to it. A uniformly distributed transverse magnetic field of 

strength 𝐵0 is applied in the 𝑦′ − 𝑎𝑥𝑖𝑠 direction. Initially, at time t′ ≤ 0 , both the fluid and the plate 

are at constant temperature T′
∞. The surface concentration near the plate is assumed to be C′

∞ . At 

the time t′ > 0 , temperature of the wall is raised or lowered to T′
∞ + (T′

w + T′
∞)  t′

 t0
⁄  when 

 t′ ≤   t0 and T′
w when t′ > t0  respectively which is there after maintained constant T′

w. The 

concentration at the surface is raised linearly to 𝐶′
∞ + (𝐶′

𝑤 − 𝐶′
∞) which is there after kept 

constant C′
w. 

Thermal boundary 

layer 

 Hydrodynamic boundary 
layer, Concentration boundary 

layer 

𝑥′ 

𝑦′ 

𝑩𝟎 

Porous Medium 

V
el

o
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𝒖
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=
𝟎

 

𝒖′ → 𝟎, 𝑻′ → 𝑻′
∞  &   𝑪′ →  𝑪′

∞ as 

𝒚′ → ∞ 

Second grade Fluid 
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It is assumed that the effects of induce magnetic field, electrical field and viscous dissipation in 

energy equation are neglected. It is assumed that flow is incompressible, laminar, uni-direction, one 

dimensional. Moreover, the plate being considered infinite in the 𝑥′-direction, all physical variables 

is independent of 𝑥′. Hence, the physical variables are functions of 𝑦′ and 𝑡′ only. One of the body 

force terms corresponding to MHD flow is the Lorentz force 𝐽 × 𝐵 = 𝜎𝐵0
2𝑢  as mentioned by Hayat 

et al. [82], where B is the total magnetic field, J is the current density,  𝜎 is electrical conductivity 

of the fluid and  𝑢 is the velocity vector field. Under above assumptions and taking into account the 

Boussinesq’s approximation, governing equations are given below. 

𝜕𝑢′

𝜕𝑡′
= (𝜈 +

𝛼1

𝜌

𝜕

𝜕𝑡′
)

𝜕2𝑢′

𝜕𝑦′2 + 𝑔𝛽′
𝑇

(𝑇′ − 𝑇′
∞) −

𝜎𝐵0
2

𝜌
𝑢′ −

∅

𝑘′
(𝜈 +

𝛼1

𝜌

𝜕

𝜕𝑡′
) 𝑢′ + 𝑔𝛽′

𝐶
(𝐶′ − 𝐶′

∞)   

(3.2.1) 

𝜕𝑇′

𝜕𝑡′ =
𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2           (3.2.2) 

𝜕𝐶′

𝜕𝑡′ = 𝐷𝑀
𝜕2𝐶′

𝜕𝑦′2            (3.2.3) 

with following initial and boundary conditions 

𝑢′ = 0,     𝑇′ = 𝑇′
∞,   𝐶′ =  𝐶′

∞;  𝑎𝑠   𝑦′ ≥ 0 𝑎𝑛𝑑   𝑡′ ≤ 0  

𝑢′ = 0 ,   ,   𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ ≤ 𝑡0

𝑇′
𝑤                           𝑖𝑓     𝑡′ > 𝑡0

  ,    𝐶′ = 𝐶′
∞ + (𝐶′

𝑤 −

𝐶′
∞);   𝑎𝑠  𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0   

𝑢′ → 0, 𝑇′ → 𝑇′
∞,   𝐶′ → 𝐶′

∞;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0     (3.2.4) 

Introducing the following dimensionless quantities:  

𝑦 =
𝑦′

𝑈0𝑡0
, 𝑢 =

𝑢′

𝑈0
, 𝑡 =

𝑡′

𝑡0
, 𝜃 =

(𝑇′−𝑇′
∞)

(𝑇′
𝑤−𝑇′

∞)
, 𝐶 =

(𝐶′−𝐶′
∞)

(𝐶′
𝑤−𝐶′

∞)
, 𝐺𝑟 =

𝜈𝑔𝛽′
𝑇(𝑇′

𝑤−𝑇′
∞)

𝑈0
3   

𝐺𝑚 =
𝜈𝑔𝛽′

𝐶(𝐶′
𝑤−𝐶′

∞)

𝑈0
3 , 𝑀 =

𝜎𝐵0
2𝜈

𝜌𝑈0
2 , 𝑃𝑟 =

𝜌𝜈𝐶𝑝

𝑘4
, 𝑆𝑐 =

𝜈

𝐷𝑀
, 𝛼 =

𝛼1

𝜌
 , 𝑐 = 1 +

𝛼

𝑘′, 𝑏 = 𝑀2 +
1

𝑘′   

In the equations (3.1.1 to 3.1.4) dropping out the " ′ " notation (for simplicity), 

𝜕2𝑢

𝜕𝑦2 + 𝛼
𝜕3𝑢

𝜕𝑦2𝜕𝑡
− 𝑐

𝜕𝑢

𝜕𝑡
− 𝑏𝑢 + 𝐺𝑟𝜃 + 𝐺𝑚 𝐶 = 0        (3.2.5) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
           (3.2.6) 



Chapter 3: 

69 
 

𝜕𝐶

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2
            (3.2.7) 

with initial and boundary conditions 

𝑢 = 𝜃 =  𝐶 = 0 ,            𝑦 ≥ 0, 𝑡 = 0  

𝑢 = 0 , 𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1), 𝐶 = 𝑡,     𝑦 = 0,       𝑡 > 0  

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑠  𝑦 → ∞, 𝑡 > 0         (3.2.8) 

Where, H (.) is Heaviside unit step function. 

 

3.2.4 Solution of the Model 

Taking Laplace transform of equations (3.2.5) to (3.2.7) with initial and boundary conditions (3.2.8)  

𝜃̅ =
1−𝑒−𝑠

𝑠2  𝑒−𝑦√𝑃𝑟 𝑠           (3.2.9) 

𝐶̅ =
𝑒−𝑦 √𝑆𝑐 𝑠

𝑠2              (3.2.10) 

𝑢̅(𝑦, 𝑠) = 𝐺𝑟(1 − 𝑒−𝑠 )𝐹(𝑠) + 𝐺𝑚 𝐺(𝑠)         (3.2.11) 

where, 

𝐹(𝑦, 𝑠) = 𝐹1(𝑦)𝐹2(𝑦, 𝑠)          (3.2.12) 

𝐺(𝑦, 𝑠) = 𝐺1(𝑦, 𝑠)𝐺2(𝑦, 𝑠)          (3.2.13) 

𝐹1(𝑠) =
1

𝛼 𝑃𝑟 𝑚2

1

𝑠

 𝑚2

 (𝑠+𝑚1)2−𝑚2
2 ,        (3.2.14) 

𝐹2(𝑦, 𝑠) = 𝐹3(𝑦, 𝑠) − 𝐹4(𝑦, 𝑠)            (3.2.15) 

𝐹3(𝑦, 𝑠) =
1

𝑠
𝑒

−𝑦√
𝑐𝑠+𝑏

𝛼𝑠+1           (3.2.16) 

 𝐹4(𝑦, 𝑠) =
𝑒−𝑦√𝑃𝑟 𝑠

𝑠
           (3.2.17) 

𝐺1(𝑠) =
1

𝛼 𝑆𝑐 𝑚4

1

𝑠

 𝑚4

 (𝑠+𝑚3)2−𝑚4
2
         (3.2.18) 

𝐺2(𝑦, 𝑠) = 𝐹3(𝑦, 𝑠) − 𝐺3(𝑦, 𝑠)        (3.2.19) 

𝐺3(𝑦, 𝑠) =
𝑒−𝑦√𝑆𝑐 𝑠

𝑠
           (3.2.20) 
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𝑚1 =
𝑃𝑟−𝑐

2𝛼 𝑃𝑟
             (3.2.21) 

 𝑚2 =
√(𝑃𝑟−𝑐)2+4 𝛼 𝑏 𝑃𝑟

2 𝛼 𝑃𝑟
           (3.2.22) 

𝑚3 =
𝑆𝑐−𝑐

2𝛼 𝑆𝑐
            (3.2.23) 

  𝑚4 =
√(𝑆𝑐−𝑐)2+4 𝛼 𝑏 𝑆𝑐

2𝛼 𝑆𝑐
            (3.2.24) 

3.2.4.1 Solutions for plate with ramped wall temperature 

Taking Inverse Laplace transform of equations (3.2.9) and (3.2.10) 

𝜃(𝑦, 𝑡) = 𝜃1(𝑦, 𝑡) − 𝜃1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)        (3.2.25) 

𝐶(𝑦, 𝑡) = (
𝑦2𝑆𝑐

2
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦

2

√𝑆𝑐

√𝑡
) −

𝑦

2

√𝑆𝑐 𝑡

√𝜋
𝑒− 

𝑦2𝑆𝑐

4𝑡        (3.2.26) 

𝑢 = 𝐺𝑟 𝑓(𝑦, 𝑡)𝐻(𝑦, 𝑡) − 𝑓(𝑦, 𝑡)𝐻(𝑡 − 1) + 𝐺𝑚 𝑔(𝑦, 𝑡)      (3.2.27) 

 

where, 

𝜃1(𝑦, 𝑡) = (
𝑦2𝑃𝑟

2
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦

2

√𝑃𝑟

√𝑡
) −

𝑦

2

√𝑃𝑟 𝑡

√𝜋
𝑒− 

𝑦2𝑃𝑟

4𝑡       (3.2.28) 

Inverse Laplace transform of equations (3.2.14) and (3.2.18) is 𝑓1(𝑡) and 𝑔1(𝑡)  

𝑓1(𝑡) =
1

𝑏𝑚2
[𝑚1 sinh(𝑚2𝑡) + 𝑚2 cosh(𝑚2𝑡)]𝑒−𝑚1𝑡 −

1

𝑏
      (3.2.29) 

𝑔1(𝑡) =
1

𝑏𝑚4
[𝑚3 sinh(𝑚4𝑡) + 𝑚4 cosh(𝑚4𝑡)]𝑒−𝑚3𝑡 −

1

𝑏
      (3.2.30) 

Inverse Laplace transform of equation (3.2.16), (3.2.17) and (3.2.20) is 𝑓3(𝑦, 𝑡), 𝑓4(𝑦, 𝑡) and 𝑔3(𝑦, 𝑡) 

𝑓3(𝑦, 𝑡) =
𝑐

𝛼
𝑒−𝑡

𝛼⁄ ∫ 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑧
)

∞

0
𝑒−𝑐

𝛼 ⁄ 𝑧𝐼0 (
2

𝛼
√(𝑐 − 𝛼𝑏)𝑧𝑡) 𝑑𝑧 +

                    
𝑏

𝛼
∫ ∫ 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑧
) 𝑒−

𝑐𝑧+𝑠

𝛼
𝑡

0

∞

0
𝐼0 (

2

𝛼
√(𝑐 − 𝛼𝑏)𝑧𝑠)  𝑑𝑠 𝑑𝑧                  (3.2.31) 

where, 

 𝐼0 is modified Bessel function of the first kind of order zero. 

 erfc (g) is complementary error function.  



Chapter 3: 

71 
 

𝑓4(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
1

2
 √

𝑃𝑟

𝑡
 𝑦)          (3.2.32) 

𝑔3(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
1

2
 √

𝑆𝑐

𝑡
 𝑦)          (3.2.33) 

𝑓2(𝑦, 𝑡) = 𝑓3(𝑦, 𝑡) − 𝑓4(𝑦, 𝑡)          (3.2.34) 

𝑔2(𝑦, 𝑡) = 𝑓3(𝑦, 𝑡) − 𝑔3(𝑦, 𝑡)         (3.2.35) 

𝑓(𝑦, 𝑡) = 𝑓1(𝑡) ∗ 𝑓2(𝑦, 𝑡) = ∫ 𝑓1(𝑡 − 𝑠) 𝑓2(𝑦, 𝑠)𝑑𝑠
𝑡

0
       (3.2.36) 

𝑔(𝑦, 𝑡) = 𝑔1(𝑡) ∗ 𝑔2(𝑦, 𝑡) = ∫ 𝑔1(𝑡 − 𝑠) 𝑔2(𝑦, 𝑠)𝑑𝑠
𝑡

0
      (3.2.37) 

 

3.2.4.2 Solutions for plate with isothermal temperature 

In this case, the initial and boundary conditions are the same excluding Eq. (3.2.8) that becomes 𝜃 =

1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0. Thus expression for velocity and temperature profiles are obtained with 

isothermal conditions which is given as below. 

θ(y, t) = erfc (
1

2
√

𝑃𝑟

t
y)          (3.2.38) 

𝑢 = 𝑓5(𝑦, 𝑡)𝐻(𝑡) + 𝐺𝑚 𝑔(𝑦, 𝑡)        (3.2.39) 

Where 

 𝐹5(𝑦, 𝑠) = 𝐹6(𝑠). 𝐹2(𝑦, 𝑠)          (3.2.40) 

𝐹6(𝑠) =
1

𝛼 𝑃𝑟 𝑚2

 𝑚2

 (𝑠+𝑚1)2−𝑚2
2
          (3.2.41) 

Inverse Laplace transform of equation (3.2.41) is       

𝑓6(𝑡) =
1

𝑃𝑟 𝛼 𝑚2
sinh(𝑚2𝑡) 𝑒−𝑚1𝑡         (3.2.42) 

Inverse Laplace transform of equation (3.2.40) is  

 𝑓5(𝑦, 𝑡) = 𝑓6(𝑡) ∗ 𝑓2(𝑦, 𝑡) = ∫ 𝑓8(𝑡 − 𝑠) 𝑓2(𝑦, 𝑠)𝑑𝑠
𝑡

0
      (3.2.43) 
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From velocity, temperature and concentration fields, the expressions for Nusselt number, Skin 

friction and Sherwood number can be easily determined. They are measures of the heat transfer rate 

and shear stress at the boundary. 

 

3.2.4.3 Nusselt number: 

 The Nusselt number Nu can be written as 

 𝑁𝑢 = − (
𝜕𝜃

𝜕𝑦
)

𝑦=0
          (3.2.44) 

Using the equation (3.2.17), It is obtained the Nusselt number for Ramped wall temperature  

𝑁𝑢 = [
1

2
√

𝑡𝑃𝑟

𝜋
𝐻(𝑡) −  

1

2
√

(𝑡−1)𝑃𝑟

𝜋
𝐻(𝑡 − 1)]           (3.2.45) 

Using the equation (3.2.38), It is obtained the Nusselt number for isothermal temperature  

𝑁𝑢 = √
𝑃𝑟

𝜋𝑡
            (3.2.46) 

 

3.2.4.4 Sherwood number: 

Sherwood number is defined and denoted by the formula  

𝑠ℎ = − (
𝜕𝐶

𝜕𝑦
)

𝑦=0
           (3.2.47) 

Using the equation (3.2.18), It is obtained the Sherwood number for Ramped wall temperature  

𝑠ℎ = [
1

2
√

𝑡𝑆𝑐

𝜋
]             (3.2.48) 

 

3.2.4.5 Skin friction: 

Skin friction, in dimensionless form, is 

𝜏𝑤(𝑡) = 𝜏(𝑦, 𝑡) 𝑎𝑡 𝑦 = 0          (3.2.49) 

Where the shear stress 𝜏(𝑦, 𝑡)  can be written as 

𝜏(𝑦, 𝑡) = (1 + 𝛼
𝜕

𝜕𝑡
)

𝜕𝑢

𝜕𝑦
          (3.2.50) 
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Using the equation (3.2.37), expression for Skin friction of ramped temperature can be written as, 

𝜏(𝑦, 𝑡) = 𝐺𝑟 𝐹6(𝑦, 𝑡)𝐻(𝑡) − 𝐹6(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝐺𝑚 𝐺4(𝑦, 𝑡)     (3.2.51) 

Where 

𝐹6(𝑦, 𝑡) = ∫ 𝐼1(𝑡 − 𝑠)
𝑡

0

𝑑𝑓6

𝑑𝑦
|

𝑦=0
𝑑𝑡         (3.2.52) 

𝐺4(𝑦, 𝑡) = ∫ 𝐼2(𝑡 − 𝑠)
𝑡

0

𝑑𝑔4

𝑑𝑦
|

𝑦=0
𝑑𝑡         (3.2.53) 

𝐼1(𝑡) = 𝑓1(𝑡) +
1

𝑃𝑟 𝑚2
sinh(𝑚2𝑡) 𝑒−𝑚1𝑡        (3.2.54) 

𝐼2(𝑡) = 𝑔1(𝑡) +
1

𝑆𝑐 𝑚4
sinh(𝑚4𝑡) 𝑒−𝑚3𝑡        (3.2.55) 

 

3.2.5 Results and Discussion of the Problem 

Effects of several involved physical parameters are described in Figures (3.2.2) to (3.2.12) on 

velocity, temperature and concentration profiles discussed. Figure 3.2.2 shows effect of Second 

grade fluid parameter 𝛼 on velocity profiles for different values of 𝑦 for both thermal conditions. In 

both thermal boundary condition, it is seen that velocity decrease with increase in 𝛼 throughout the 

flow field. Figure 3.2.3 shows the effect of the magnetic field on the motion of the fluid. For both 

heating cases, velocity decreased with increase in magnetic parameter 𝑀. Physically, presence of 

magnetic parameter generates electric field in the flow, this implies that magnetic field has retarding 

effect on velocity profiles. This is due to point that the application of a magnetic field to electric 

conducting fluid gives increase to a resistive-type force (Lorentz force) on the fluid in the boundary 

layer, which slow down the motion of the fluid. This result has a significant role in large number of 

industrial applications, particularly in favor to solidification processes such as casting and 

semiconductor single crystal growth applications. The influence of the thermal Grashof number 

𝐺𝑟 and mass Grashof number 𝐺𝑚 is shown in Figure 3.2.4 and Figure 3.2.5. It is observed that 

velocity increases with increase in 𝐺𝑟 and 𝐺𝑚 for both thermal cases. As predictable, the motion of 

the fluid rises and the top value is more distinctive due to growth in the thermal and mass buoyancy 

force. 
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Figure 3.2.2: Velocity profile 𝑢 for different values of 𝑦 and α at 𝑀 =  5, 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 

                             𝑘 =  0.8, 𝐺𝑟 = 7, 𝐺𝑚 = 5 and  𝑡 =  0.4. 

 
Figure 3.2.3: Velocity profile 𝑢 for different values of 𝑦 and 𝑀 at 𝛼 =  0.6, 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 

                             𝑘 =  0.8, 𝐺𝑟 = 7, 𝐺𝑚 = 5 and  𝑡 =  0.4 
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Figure 3.2.4: Velocity profile 𝑢 for different values of 𝑦 and 𝐺𝑟 at 𝑀 =  5, 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 

                            𝑘 =  0.8, 𝐺𝑚 = 5, 𝛼 = 0.6 and  𝑡 =  0.4 

 

Figure 3.2.5: Velocity profile 𝑢 for different values of 𝑦 and 𝐺𝑚 at 𝑀 =  5, 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 

                             𝑘 =  0.8, 𝐺𝑟 = 7, 𝛼 = 0.6 and  𝑡 =  0.4 
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Figure 3.2.6: Velocity profile 𝑢 for different values of 𝑦 and Pr at 𝑀 =  5, 𝛼 = 0.6, 𝑆𝑐 = 6.2,  

                             𝑘 =  0.8, 𝐺𝑟 = 7, 𝐺𝑚 = 5 and  𝑡 =  0.4 

 

Figure 3.2.7: Temperature profile 𝑢 for different values of 𝑦 and 𝑃𝑟 at 𝑡 = 0.4. 
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Figure 3.2.8: Velocity profile 𝑢 for different values of 𝑦 and 𝑆𝑐 at  𝑀 =  5, 𝑃𝑟 = 10, 

                           𝛼 = 0.6, 𝑘 =  0.8, 𝐺𝑟 = 7, 𝐺𝑚 = 5 and  𝑡 =  0.4 

 
Figure 3.2.9: Concentration profile 𝑢 for different values of 𝑦 and 𝑆𝑐 at 𝑡 = 0.4 
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Figure 3.2.10: Velocity profile 𝑢 for different values of 𝑦 and 𝑡, at 𝑀 =  5, 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 

                              𝑘 =  0.8, 𝐺𝑟 = 7, 𝐺𝑚 = 5 and  𝛼 =  0.6 

 

Figure 3.2.11: Temperature profile 𝑢 for different values of 𝑦 and 𝑡 at  𝑃𝑟 = 10 
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Figure 3.2.12: Concentration profile 𝒖 for different values of 𝒚 and 𝒕 at 𝑺𝒄 =  𝟔. 𝟐. 

 

Figure 3.2.6 and Figure 3.2.7 show the effect of Prandtl number 𝑷𝒓 on velocity and temperature 

profiles for different values of 𝒚. In both heating cases, it is identified that momentum and heat 

transfer of fluid decrease tendency with Prandtl Number. In Figure 3.2.8 and Figure 3.2.9, velocity 

and concentration profiles are displayed with the variations in Schmidt number. It is observed that 

momentum and mass transfer decreases with increase in Schmidt number in both thermal cases. 

Physically, increase in 𝑺𝒄 results in increased kinematic viscosity which in turn reduces molecular 

diffusion, there for fluid velocity decrease. Physically, it is justified because for large 𝑺𝒄, the fluid 

becomes denser. The concentration of the boundary layer decreases till it achieves the least value 

i.e. zero at the end of the boundary layer. Figure 3.2.10 to Figure 3.2.12 shows the effect of time on 

velocity, temperature and concentration for the both thermal cases respectively. It is seen that, 

velocity, temperature and concentration profile increase with increase in time.  
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3.2.6 Concluding Remark 
The most important concluding remarks can be summarized as follows: 

 The velocity, temperature and concentration distributions attains a maximum value in the 

neighborhood of the plate and then decreased properly to approach the free stream value. 

 For both thermal plates, Second grade fluid parameter 𝛼, magnetic field parameter 𝑀 tends 

to reduce fluid motion throughout the flow field. 

 For both thermal cases, velocity of fluid decreased with increase in 𝑃𝑟 and 𝑆𝑐 throughout 

the flow field. 

 Prandtl number tends to reduce Heat transfer process, whereas Schmidt number reduced 

mass transfer process.  

 Flow, heat and mass transfer increased with time 𝑡. 

 

 

 

 

 

  


