
Chapter 1

Introduction

1.1 Historical background

Dynamical system is one of the very useful, important and ap-
plicable branches of mathematics devoted to the study of systems
governed by a consistent set of laws over time such as difference and
differential equations. Beginning with the contributions of Poincaŕe
and Lyapunov, theory of dynamical systems has seen significant de-
velopments in the recent years. This theory has gained considerable
interest and has been found to have useful connections with many
different areas of mathematics (such as number theory and topol-
ogy) and science. The modern theory of dynamical systems was
originated at the end of the 19th century while dealing with funda-
mental questions concerning the stability and evolution of the solar
system. Attempts in answering such questions led to the develop-
ment of this rich and powerful field with applications to physics,
biology, meteorology, astronomy, economics, and other areas.

The emphasis of dynamical systems is the understanding of geo-
metrical properties of orbits and their long term behavior. Dynam-
ical systems can model an unbelievable range of behavior such as
the motion of planets in the solar systems, the way diseases spread
in a population, the shape and growth of plants, the interaction of
optical pulses, or the processes that regulate electronic circuits and
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heart beats. For example in the study of the long term dynamics
of planets around the sun, or stars in a galaxies, dynamical systems
theory is useful in finding the mathematical answers to the funda-
mental questions like whether they exhibit regular and predictable
behavior or would their motion eventually become chaotic and un-
predictable or could planets in our solar system be ejected, or collide
with each other etc.

Definition of a dynamical system includes three components: (i)
Phase space, which is a set whose elements present possible states
of the system at any moment of time. (ii) Time, which can be either
discrete, whose set of values is the set of integers, Z, or continuous,
whose set of values is the set of real numbersR (when the integers are
acting, the system is called a discrete dynamical system, and when
the reals are acting, the system is called a continuous dynamical
system). (iii) Law of evolution, which is the rule which allows,
if one knows the state of the system at some moment of time, to
determine the state of the system at any other moment of time.

Most of the natural systems in this world, be it the rhythm of day
and night or the yearly seasons or weather patterns that vary from
one year to another are subjected to time-dependent external forces
and their modeling leads to a mathematical theory of what are called
non-autonomous discrete dynamical systems. An autonomous dis-
crete dynamical system is a dynamical system which has no external
input and always evolves according to the same unchanging law.
The theory of non-autonomous dynamical systems helps character-
izing the behavior of various natural phenomenons which cannot
be modeled by autonomous systems. The mathematical theory of
non-autonomous systems is considerably more involved than the
theory of autonomous systems. Over recent years, the theory of
such systems has developed into a highly active field related to,
yet recognizably distinct from that of classical autonomous dynam-
ical systems. This development was motivated by problems of ap-
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plied mathematics, in particular, in the life sciences where genuinely
nonautonomous systems are in abundance. In general the dynamics
of non-autonomous discrete dynamical system is much richer and
quiet different from the dynamics of autonomous discrete dynamical
systems.

The notion of expansive homeomorphism, or, homeomorphism
for which two orbits cannot remain close to each other, was in-
troduced by Utz [60] in 1950 with the term “Unstable homeomor-
phism”. Since then an extensive literature about these homeomor-
phisms has been developed. One can refer [2] for basic results
on such homeomorphisms. The work mainly concerns the study
of properties of expansive homeomorphisms,their existence / non-
existence on different metric spaces, their extension problems, their
characterizations, their asymptotic properties, and so on. Espe-
cially interesting are expansive homeomorphisms of 0-dimensional
spaces because they can be embedded in shifts, or, in other words,
they are equivalent to subshifts. In 1955, Williams [74] first showed
that there is a l-dimensional continuum admitting expansive home-
omorphism. It has been proved that there are no expansive home-
omorphisms of the compact interval, the circle and the compact
2-disc [30]. The same negative result was obtained independently
by Hiraide [23] and Lewowicz [40] for the 2-sphere. In [43], Mané
proved that a compact metric space exhibiting expansive homeo-
morphisms must be finite dimensional and, further, every minimal
set of such homeomorphisms is zero dimensional. In 1993, Vieitez
obtained that expansive homeomorphisms on closed 3-manifolds
with dense topologically hyperbolic periodic points are both sup-
ported on the 3-torus and topologically conjugated to linear Anosov
isomorphisms. This dynamical property on compact metric spaces
has frequent applications in many fields including stability theory,
symbolic dynamics, continuum theory and ergodic theory. This no-
tion has been generalized to positive expansiveness [20], point-wise
expansiveness [60] , entropy expansiveness [9], continuum-wise ex-
pansiveness [32], measure expansiveness [45] and n-expansiveness
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[46].

Another important dynamical property is the pseudo-orbit trac-
ing property (or shadowing property) which is closely related to
stability and chaos of systems. The notion of pseudo-orbit goes
back at least to Birkhoff [7], and plays a very significant role in the
investigation of properties of discrete dynamical systems. In the
study of dynamical systems, people often make computer simula-
tions in which there are always no real trajectories of dynamical
systems. Bowen [10] and Conley have independently discovered
that pseudo-orbit could be used as a conceptual tool for discussing
the relationship between the computer output and the underlying
dynamics of the dynamical systems. It is important to find out in
which cases a numerically obtained pseudo-orbit can be shadowed
(traced) by a real trajectory. This problem has been well studied in
the last several decades, for example, the shadowing near a hyper-
bolic set of a homeomorphism [65] and the shadowing in structurally
stable systems [57]. One can refer [58] for detailed study of maps
with this property. In recent years theory of shadowing has become
a significant part of qualitative theory of dynamical systems con-
taining a lot of interesting and deep results. It plays an important
role in the investigation of the stability theory. Shadowing property
has also been used to give global error estimates for numerically
computed orbits of dynamical systems and to rigorously prove the
existence of periodic orbits and chaotic behavior. Several problems
including properties of maps possessing shadowing property and
its relation with other dynamical properties have been studied in
detail. Moreover, one of the basic problems studied in the theory
of shadowing is finding class of maps possessing or not possessing
shadowing property [14]. Various kinds of shadowing also have
been defined and their equivalences have been studied in [39, 58].

In [72], Walters has introduced the concept of topological stability
and proved that Anosov diffiomorphisms are topologically stable.
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Expansiveness and shadowing play an important role in the study of
topological stability of maps on a compact metric space [73]. In [51],
Nitecki has shown that topological stability is a necessary condition
to get axiom A together with strong transversality. Morse-Smale
flows are topologically stable is proved by Robinson in [60]. In
[28, 26, 27], Hurley has obtained necessary conditions for topological
stability. Moriyasu [47] has proved that the C1-interior of the set
of all topologically stable diffiomorphisms is characterized as the
set of all C1-structurally stable diffiomorphisms. In [48], authors
have proved that, if Xt is a flow in the C1-interior of the set of
topologically stable flows, then Xt satisfies the Axiom A and the
strong transversality condition. In [5], authors have proved similar
result for the class of incompressible flows and also for volume-
preserving diffiomorphisms. In [8, 5], authors have generalized
results of [48, 6] for symplectomorphisms. Recently in [18], authors
have studied expansiveness, shadowing, topological stability and
decomposition theorems for homeomorphisms on non-compact and
non-metrizable spaces.

In the study of dynamics of a map f from a compact metric space
X to itself, central role is played by the various recursive properties
of points of X. One of important such properties is nonwander-
ingness. Nonwandering points play an important role in study of
autonomous and nonautonomous discrete dynamical systems. For
study of nonwandering points for autonomous discrete dynamical
system, one can refer [2]. In [36], authors have studied nonwander-
ing set from the view-point of topological entropy.

The notion of chain recurrence, introduced by Conley [16], is
a way of getting at the recurrence properties of an autonomous
system. Chain recurrent sets play an important role in the study
of qualitative behaviors of dynamical systems. Conley discovered
fundamental connection between the chain recurrent set and the
collection of attractors for a deterministic dynamical system on a
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compact metric space: the complement of the chain recurrent set in
the whole state space X is the union of the complements of attractors
A in their own basins of attraction. This result is called the Conley’s
theorem which approaches the Fundamental Theorem of dynamical
systems [52] and the Fundamental Theorem can be applied to such
as the bifurcation theorem [31]. In [22], author has studied chain
recurrence and asymptotic shadowing in autonomous dynamical
system. For more results on chain recurrent sets in autonomous
dynamical systems one can refer [2, 21, 35, 54, 53, 56]. In [29], author
has studied non-compact chain recurrence and attraction in discrete
dynamical systems.

The Smale’s spectral decomposition theorem was first proved for
Anosov diffiomorphism of compact manifolds [62]. The topological
version of Smale’s decomposition theorem in classical autonomous
dynamical system was first proved by Conley [16, 2]. In [76], Yang
extended this result to noncompact metric spaces with the additional
strong requirement that the chain recurrent set be compact. In [54], P.
Oprocha proved this theorem for multidimensional discrete dynam-
ical system. In [35], authors have studied spectral decomposition
theorem of k-type nonwandering sets for Z2-actions. In [18], T. Das
et al. have proved this result for non-compact and non-metrizable
spaces. In [15], authors have studied Conley’s state space decom-
position theorem for nonautonomous dynamical systems.

In discrete dynamical system (X, f ), where X is a metric space and
f : X→ X is a continuous map, we consider the iterates of points of
X under the action of f with discrete ticks of time. Let us consider
the case when the function f is changing with the ticks of time i.e.
we consider the action of sequence of functions { fn}∞n=0, with f0 to be
the identity map. The action by F = { fn}∞n=0 is called a time varying
map and (X,F) is said to be nonautonomous discrete dynamical sys-
tem. For example, any moving picture on a television screen is an
example of nonautonomous discrete dynamical system. In fact tele-
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vision screen is divided into pixels each of a single color red,blue or
green. Also if (X, σ) is a shift-space and {tn} is a sequence of integers
then {σtn} is a time varying map on X. The notion of nonautonomous
discrete dynamical system was introduced by Kolyada and Snoha
in [36]. Since then lots of study has been done regarding dynamical
properties in nonautonomous discrete dynamical systems. In [36],
authors have defined and studied the notion of topological entropy,
in [37], authors have discussed minimality, in [33, 11], authors have
studied ω-limit sets, in [38], author has discussed stability and con-
trollability, in [24, 25], authors have studied topological pressure and
pre-image entropy, in [4, 13, 12, 19, 55, 61, 63, 64, 75], authors have
studied chaos in non-autonomous discrete dynamical systems.

In [41], authors have studied ω-limit sets and attraction, in [4, 49],
authors have studied weak mixing and chaos, in [77], author has
studied recurrence properties of a class of nonautonomous discrete
dynamical systems, in [12, 77], authors have studied structures of
nonwandering sets in nonautonomous discrete dynamical systems.
Similar kind of study related to random perturbations of dynamical
systems has been done by Araújo in [3]. In [17], author has studied
G-chaos of a sequence of maps in a metric G-space. For more recent
results in nonautonomous discrete dynamical systems one can refer
to [42, 44].

1.2 Preliminaries

By a discrete dynamical system we mean a pair (X, f ), where X
is a compact metric space and f is a continuous a self map (or a
self homeomorphism) of X. For x in X, the orbit of x is the set
{ f n(x) : n ≥ 0} (and in case of homeomorphism { f n(x) : n ∈ Z}.)

we recall following definitions :

Definition 1.2.1 Let (X, d) be a metric space and f : X→ X be a contin-
uous function. A point x ∈ X is said to be a periodic point if its orbit is
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finite i.e. for some m > 0, f m(x) = x. A point x ∈ X is said to be a fixed
point if f (x) = x. The set of all periodic points for f is denoted by Per( f )
and set of all fixed points for f is denoted by Fix( f ).

Following is the definition of expansiveness for a homeomorphism
in a discrete dynamical system.

Definition 1.2.2 Let (X, d) be a metric space and f : X→ X be a homeo-
morphism. Then f is said to be expansive if there exists a constant c > 0
(called an expansive constant) such that for any x, y ∈ X, x , y, there
exists an n ∈ Z (depending on the pair (x, y)) satisfying

d( f n(x), f n(y)) > c.

Conjugacy or Uniform conjugacy between two continuous maps is
given below :

Definition 1.2.3 Let (X, d1) and (Y, d2) be two metric spaces, f and g be
continuous self maps on X and Y respectively. If there is a homeomorphism
h : X→ Y such that

h ◦ f = g ◦ h

then f and g are said to be conjugate with respect to the map h or h-
conjugate. In particular, if h : X→ Y is a uniform homeomorphism then
f and g are said to be uniformly conjugate with respect to the map
h or uniformly h-conjugate. (Note that a homeomorphism h : X →
Y such that h and h−1 are uniformly continuous, is called a uniform
homeomorphism. If X is compact then conjugacy and uniform conjugacy
are same.)

A dynamical property of a continuous map is that property which
is invariant under topological conjugacy.

Theorem 1.2.1 Let X be a compact metric space and let f be an expansive
homeomorphism on X. If f is topologically conjugate to g on a metric space
Y then g is also expansive.

On nonautonomous discrete dynamical systems Page 9



1. Introduction

The composition of two expansive homeomorphisms need not be
expansive even if the underlying space is a compact metric space.
However, the following result for compact metric spaces concern-
ing the composition of an expansive homeomorphism with itself is
proved by Utz in [71].

Theorem 1.2.2 Let X be a compact metric space and let f be an expansive
homeomorphism on X. Then for each integer m , 0, f m is expansive on X.

Concerning the restrictions and product of expansive homeomor-
phisms, it is easy to see that the restriction of an expansive homeo-
morphism h on a metric space X to a subspace Y of X is expansive if
h(Y) = Y; and, if h and g are expansive homeomorphisms on metric
spaces X and Y respectively then so is the homeomorphism h × g
on the product space X ×Y. The later property extends to any finite
product but not to infinite product [2].

If X is a compact metric space then the set of all expansive con-
stants for an expansive homeomorphism h on X is a bounded subset
of real numbers and hence has a least upper bound. The question
whether this least upper bound is an expansive constant for h was
answered in negation by Bryant in [8]. His result follows.

Theorem 1.2.3 If X is a compact metric space and θ is the least upper
bound of the expansive constants for an expansive homeomorphism h on X
then θ is not an expansive constant for h.

As a consequence of the facts that the real line R does carry
expansive homeomorphisms but there does not exist an expansive
homeomorphism on the open unit interval (0, 1), one observes that
possessing an expansive homeomorphism is not a topological prop-
erty for metric spaces. In this connection, Bryant [8] proves the
following theorem giving sufficiency condition for preserving ex-
pansiveness under a homeomorphism.
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Theorem 1.2.4 Let f be an expansive homeomorphism on a metric space
X and let g be a homeomorphism from X onto a metric space Y. If g−1 is
uniformly continuous, then g f g−1 is an expansive homeomorphism on Y.

One can also see from the same facts that an expansive homeo-
morphism on a metric space need not remain expansive under an
equivalent metric; however, for a compact metric space expansive-
ness of a homeomorphism is independent of the choice of a metric
as far as metric generates the same topology.

A characterization of expansive homeomorphisms on a compact
metric space is obtained by Keynes and Robertson [34] in terms
of topological analogue of generators of measure preserving trans-
formations - the concept defined by them in the same paper. The
definition of this concept of topological generators is as follows.

Definition 1.2.4 Given a compact Hausdorff space X and a homeomor-
phism h on X, a finite open cover α of X is called a generator (respectively
weak generator)for (X, f ) if for each bisequence {Ai}

∞

i=−∞ of members of α,⋂
∞

i=−∞ h−iĀi ( respectively
⋂
∞

i=−∞ h−iAi) contains at most one point.

The Keynes-Robertson characterization of expansive homeomor-
phism on a compact metric space is as follows.

Theorem 1.2.5 Let f be a homeomorphism on a compact metric spaceX.
Then f is expansive if and only if (X, f ) has a generator if and only if (X, f )
has a weak generator.

Following is the definition of shadowing or pseudo orbit tracing
property (P.O.T.P.) for a continuous self map on a metric space:

Definition 1.2.5 Let (X, d) be a metric space and f be a continuous self
map of X. For δ > 0, the sequence {xn}

∞

n=0 in X is said to be a δ-pseudo
orbit of f if

d( f n+1(xn), xn+1) < δ,
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for all n = 0, 1, 2, . . . . For given ε > 0, a δ-pseudo orbit {xn}
∞

n=0 is said to
be ε-traced by y ∈ X if

d( f n(y), xn) < ε,

for all n = 0, 1, 2, . . . .

The map f is said to have shadowing property or pseudo orbit
tracing property (P.O.T.P) if for every ε > 0, there exists a δ > 0 such
that every δ-pseudo orbit is ε- traced by some point of X.

If X is a compact metric space then the shadowing property of
f : X → X is independent of the choice of metric d compatible with
the topology of X.

In case of a homeomorphism, we have the following:

Theorem 1.2.6 Let X be a compact metric space. If f : X→ X is a home-
omorphism with the shadowing property then f−1 also has the shadowing
property.

Following theorem gives the condition under which the shadowing
property is preserved under the conjugacy.

Theorem 1.2.7 Let X,Y be compact metric spaces, f : X→ X be a contin-
uous map and if g : Y→ Y is conjugate to f then g also has the shadowing
property.

The following result shows that the shadowing property is pre-
served by product of two maps having shadowing property and
vice versa.

Theorem 1.2.8 Let (X, d1) and (Y, d2) be metric spaces and X × Y be the
product space with metric d((x, y), (x′, y′)) = max{d1(x, x′), d2(y, y′)}. Let
f : X → X and g : Y → Y be continuous maps and let f × g be the map
defined by

( f × g)(x, y) = ( f (x), g(y)), (x, y) ∈ X × Y.

Then f × g has the shadowing property if and only if both f and g have the
shadowing property.
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Topological stability in (autonomous)discrete dynamical system
is defined as follows :

Definition 1.2.6 Let X be a compact metric space with metric d. A
homeomorphism f : X → X is said to be topologically stable in the
class of homeomorphisms if for each ε > 0, there exists δ > 0 such that
for a homeomorphism g with d( f (x), g(x)) < δ for all x in X, there exists a
continuous map h : X → X such that h ◦ g = f ◦ h and d(h(x), x) < ε for
all x in X.

Nonwandering point in an autonomous discrete dynamical system
is defined as follows :

Definition 1.2.7 Let (X, d) be a metric space and f be a self homeomor-
phism on X. A point x ∈ X is said to be a nonwandering point for f if
for any neighborhood U of x there is an n ∈ Z such that

f n(U) ∩U , ∅.

The set of all nonwandering points for f is called nonwandering set of
f and is denoted by Ω( f ).

Following is the definition of transitivity for a continuous self map
on a space X.

Definition 1.2.8 Let X be a topological space. A continuous self map f
on X is said to be transitive on X if for any two nonempty open sets U
and V of X there exists n ≥ 0 such that f n(U) ∩ V , ∅.

Note 1.1 If f is transitive on X then every point of X is a nonwandering
point for f .

Definition 1.2.9 Let (X, d) be a metric space and f be a self homeomor-
phism on X. A finite δ-pseudo orbit from x to x is called a δ-chain for
x. A point x is said to be chain recurrent if for every δ > 0, there is a
δ-chain for x.
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Let f : X → X be a homeomorphism where (X, ρ) be a compact
metric space. Consider the set Ω( f ) of all nonwandering points, the
set Per( f ) of all periodic points, the set CR( f ) of all chain recurrent
point. We recall following results proved in [2].

1. Ω( f ) is closed and invariant set.

2. Per( f ) ⊆ Ω( f ).

3. If f is transitive then Ω( f ) = X.

4. CR( f ) is closed and invariant.

5. Per( f ) ⊆ CR( f ).

6. CR( f |CR( f )) = CR( f ).

7. If f is expansive and f |CR( f ) has P.O.T.P. then CR( f ) is isolated.

One of the fundamental results in the theory of dynamical sys-
tems is decomposition theorem proved by S. Smale in [62]. The
Topological version of Smale’s Spectral decomposition theorem is
as follows:

Theorem 1.2.9 Let f be a self homeomorphism of a compact metric space
X such that f |CR( f ) is expansive and has P.O.T.P. then CR( f ) contains a
finite sequence Bi(1 ≤ i ≤ l) of closed invariant sets such that CR( f ) is a
disjoint union of B1,B2, ...,Bl and f |Bi is topologically transitive.

1.3 Overview of the work done in the thesis

Let (X, d) be a metric space and

{ fn : X→ X : n = 0, 1, 2, . . . }

be a sequence of maps. If each fn is continuous (respectively a
homeomorphism), we call F = { fn}∞n=0 to be a time varying map
(respectively a time varying homeomorphism) on X and (X,F) a
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nonautonomous discrete dynamical system (respectively invert-
ible nonautonomous discrete dynamical system). If each fn = f ,
where f is a self homeomorphism of X, then (X,F) is equivalent to
autonomous discrete dynamical system (X, f ).

There are six chapters in this thesis. The present chapter gives
historical background, preliminaries and overview of the work done
in the thesis.

In the second chapter, we extend the notion of expansiveness in
nonautonomous discrete dynamical systems. In the first section, we
define expansiveness of a time varying map and in the second sec-
tion, we define expansiveness of a time varying homeomorphism
on a metric space. For both the cases, we give examples and study
results related to their conjugacy invariance, composition, product
and other related properties. In the third section, we define notions
of generator and weak generator for a time varying homeomor-
phism on a compact metric space and obtain a characterization of
expansiveness in terms of generator and weak generator. Results of
this chapter are published in [67] and [68].

In the third chapter, we define and study shadowing property and
topological stability in nonautonomous discrete dynamical systems.
In the first section, we define shadowing property for a time varying
map and in the second section for a time varying homeomorphism
on a metric space. We prove that on a compact metric space shad-
owing property is independent of the choice of metric (for both the
cases). We have shown that shadowing property is a property which
is preserved under uniform conjugacy. We have also obtained re-
sults regarding product, composition etc. In the third section, we
study topological stability in nonautonomous discrete dynamical
systems given by sequence of maps as well as given by a sequence
of homeomorphisms. We have proved that on a compact metric
space a time varying map(respectively homeomorphism) which is

On nonautonomous discrete dynamical systems Page 15



1. Introduction

expansive and has shadowing property is topologically stable in
the class of continuous self maps (respectively homeomorphisms).
Results of this chapter are published in [67] and [68].

In the fourth chapter, we define and study nonwandering set,
α-limit set of a point, ω-limit set of a point and recurrent set for
an invertible nonautonomous discrete dynamical system. Our def-
inition of nonwandering point is different from those given in [36]
and [77]. In the first section, we study properties of nonwandering
sets. We prove that the set of all nonwandering points for an in-
vertible nonautonomous discrete dynamical system is a nonempty,
closed set containing the set of all periodic points. In the second
section, we study transitivity and strong transitivity in invertible
nonautonomous discrete dynamical systems. We prove that strong
transitivity implies transitivity and justify that converse is not true
by providing an example. We also prove that for a transitive system,
the nonwandering set is the whole space. In the third section, we
define α-limit set, ω-limit set of a point x ∈ X and recurrent point
in an invertible nonautonomous system. We prove that for a time
varying homeomorphism F on a compact metric space X, the set of
α-limit points of x and the set of ω-limit points of x are contained in
the set of nonwandering points of F. We give an example justifying
that the set of all periodic points may be a proper subset of the set of
recurrent points of F. Results of this chapter are published in [66].

In the fifth chapter, we define, give examples and study chain
recurrent set in an invertible nonautonomous discrete dynamical
system. In the first section, we prove that for an invertible nonau-
tonomous discrete dynamical system on a compact metric space
under certain conditions, the set of all chain recurrent points is a
closed set containing the set of all nonwandering points. We give
an example justifying that the set of nowandering points may be
a proper subset of the set of all chain recurrent points of F. In the
second section, we deal with the problem of reverse containment.
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We prove that for a time varying homeomorphism F, having shad-
owing property, the set of all chain recurrent points is contained in
the set of all nonwandering points of F. In the third section, we
define and study the notion of a weak isolated set for an invertible
nonautonomous discrete dynamical system. We obtain sufficient
condition under which the set of all chain recurrent points of F is a
weak isolated set. Results of this chapter are published in [69].

In the sixth chapter, we prove a decomposition theorem similar
to Smale’s spectral decomposition theorem in an equicontinuous in-
vertible nonautonomous discrete dynamical system F. In the first
section, we define weak chain recurrence and study properties of
weak chain recurrent sets. We prove that the set of all chain recur-
rent points is contained in the set of all weak chain recurrent points of
F. In the second section, we define the weak pseudo orbit extending
property and show that for an invertible nonautonomous discrete
dynamical system having this property, the set of all chain recurrent
points coincides with the set of all weak chain recurrent points. We
define an equivalence relation on the set of all weak chain recurrent
points and show that if X is compact and F is equicontinuous then
each equivalence class is a clopen set. Finally in the third section, we
prove a decomposition theorem similar to Smale’s spectral decom-
position theorem in an equicontinuous invertible nonautonomous
discrete dynamical system. Results of above three sections are pub-
lished in [70]. In the fourth section, we discuss some open problems
which give us a scope of further research in this area.
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