
Chapter 2

Expansiveness in
Nonautonomous

Discrete Dynamical
Systems

In this chapter, we define the notion of expansiveness in nonau-
tonomous discrete dynamical systems given by a sequence of maps
and also by a sequence of homeomorphisms on a metric space. We
give examples, study properties and obtain a characterization of
expansiveness in nonautonomous discrete dynamical systems.

2.1 Expansiveness in Nonautonomous Dis-
crete Dynamical Systems

Let (X, d) be a metric space and

{ fn : X→ X : n = 0, 1, 2, . . . }

be a sequence of continuous maps with f0 as the identity map on X.
We call F = { fn}∞n=0 to be a time varying map on X and (X,F) to be a
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nonautonomous discrete dynamical system. We denote

Fn = fn ◦ fn−1 ◦ · · · ◦ f1 ◦ f0, f or all n = 0, 1, 2, . . .

and define

F[i, j] =

 f j ◦ f j−1 ◦ · · · ◦ fi+1 ◦ fi; 0 ≤ i ≤ j
the identity map on X; i > j.

For any k > 0, kth-iterate of F is defined to be a time varying map
Fk = {gn}

∞

n=0 on X, where

gn = fnk ◦ f(n−1)k+k−1 ◦ · · · ◦ f(n−1)k+2 ◦ f(n−1)k+1 f or all n ≥ 0.

Thus Fk = {F[(n−1)k+1,nk]}
∞

n=0.

Following are the definitions of orbit, periodic point and fixed
point in a nonautonomous discrete dynamical system induced by a
sequence of continuous maps.

Definition 2.1.1 [64] Let (X, d) be a metric space and fn : X → X be a
sequence of continuous maps, n = 0, 1, 2, . . . . For a point x0 ∈ X, define a
sequence as follows :

xn+1 = fn+1(xn),
= Fn+1(x0), n = 0, 1, 2, . . . .

Then the sequence O(x0) = {xn}
∞

n=0 is said to be the orbit of x0 under time
varying map F = { fn}∞n=0.

Definition 2.1.2 [64] Let (X, d) be a metric space and fn : X → X be a
sequence of continuous maps, n = 0, 1, 2, . . . . A point x0 ∈ X is said to be
a periodic point of time varying map F = {fn}

∞

n=0 if O(x0) = {xn}
∞

n=0 is
periodic i.e. there exists an integer k > 0 such that

xi+k = xi, f or all i = 0, 1, 2, . . .

Hence xik+ j = x j i.e. Fik+ j(x0) = F j(x0), for every i ≥ 0 and 0 ≤ j < k.
The set of all periodic points of F is denoted by Per(F).
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Definition 2.1.3 [64] Let (X, d) be a metric space and fn : X → X be
a sequence of continuous maps, n = 0, 1, 2, .... A point x ∈ X is said to
be a fixed point of time varying map F = {fn}

∞

n=0 if fn(x) = x, for all
n = 0, 1, 2, . . . .

Now we define expansiveness of a nonautonomous discrete dynam-
ical system induced by a sequence of continuous maps.

Definition 2.1.4 Let (X, d) be a metric space and fn : X→ X be a sequence
of continuous maps, n = 0, 1, 2, .... The time varying map F = { fn}∞n=0 is
said to be expansive if there exists a constant c > 0 (called an expansive
constant) such that for any x, y ∈ X, x , y,

d(Fn(x),Fn(y)) > c f or some n ≥ 0.

Equivalently, if for x, y ∈ X,

d(Fn(x),Fn(y)) ≤ c f or all n ≥ 0 then x = y.

Remark 2.1 If in the above definition fn = f , for all n ≥ 0, where f : X→
X is continuous, then expansiveness of time varying map F = { fn}∞n=0 on
X is equivalent to positive-expansiveness of f on X ([20]), as

Fn = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 = f ◦ f ◦ · · · ◦ f ◦ f = f n.

Remark 2.2 Note that expansiveness of a time varying map F is inde-
pendent of choice of metric if X is compact. For metric space (X, d), let
Nd(x, δ) = {y ∈ X : d(x, y) < δ}. Let d1 and d2 be two equivalent metrics
on a compact metric space X. Suppose F is expansive on (X, d1) with ex-
pansive constant ε > 0. Since d1 is equivalent to d2, there exists an ε1 > 0
such that for any x ∈ X,

Nd2(x, ε1) ⊂ Nd1(x, ε),

where Ndi(z, δ) denotes the open ball centred at z in X of radius δ under
metric di, i = 1, 2. Since X is compact, ε1 depends only on ε and not on x.
Let x , y. Since F is expansive in (X, d1) with expansive constant ε > 0,

Fn(y) < Nd1(Fn(x), ε)
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for some n ≥ 0. Now since

Nd2(Fn(x), ε1) ⊂ Nd1(Fn(x), ε),

we have
Fn(y) < Nd2(Fn(x), ε1).

Thus F is expansive on (X, d2) with expansive constant ε1.

Following is an example of an expansive time varying map.

Example 2.1 Consider the time varying map F = { fn}∞n=0 on the real line
R defined by fn(x) = (n + 1)x, for x ∈ R and n ≥ 0.

Choose c > 0. Then for x, y ∈ R, x , y, there exists n ≥ 0 such that

|Fn(x) − Fn(y)| = (n + 1)!|x − y| > c.

Thus F is expansive with expansive constant c.

Definition 2.1.5 If h : X → Y is a homeomorphism, h is uniformly con-
tinuous on X and h−1 is uniformly continuous on Y, then h is said to be a
uniform homeomorphism.

Now we define uniform conjugacy between two nonautonomous
discrete dynamical systems induced by a sequence of maps.

Definition 2.1.6 Let (X, d1) and (Y, d2) be two metric spaces. Let F =
{ fn}∞n=0 and G = {gn}

∞

n=0 be time varying maps on X and Y respectively. If
there is a homeomorphism h : X→ Y such that

h ◦ fn = gn ◦ h,

for all n = 0, 1, 2, . . . then F and G are said to be conjugate with respect
to the map h or h-conjugate. In particular, if h : X → Y is a uniform
homeomorphism then F and G are said to be uniformly conjugate or
uniformly h-conjugate.
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For example, if F = {xn+1
}
∞

n=0 on [0, 1], G = {2((x+1)/2)n+1
−1}∞n=0 on

[−1, 1] then F is uniformly h-conjugate to G, where h : [0, 1]→ [−1, 1]
is defined by h(x) = 2x − 1.

Next we show that expansiveness is a property in a nonautonomous
discrete dynamical system which is preserved under uniform con-
jugacy.

Theorem 2.1.1 Let (X, d1) and (Y, d2) be metric spaces. Let F = { fn}∞n=0
and G = {gn}

∞

n=0 be time varying maps on X and Y respectively such that
F is uniformly conjugate to G. Then F is expansive on X if and only if G
is expansive on Y.

Proof : Since F is uniformly conjugate to G, there exists a uniform
homeomorphism h : X→ Y such that

h ◦ fn = gn ◦ h,

for all n ≥ 0 i.e.
fn ◦ h−1 = h−1

◦ gn,

for all n ≥ 0 which implies

Fn ◦ h−1 = fn ◦ fn−1 ◦ · · · f2 ◦ f1 ◦ f0 ◦ h−1

= fn ◦ fn−1 ◦ · · · f2 ◦ f1 ◦ h−1
◦ g0

...

= h−1
◦ gn ◦ gn−1 ◦ · · · g2 ◦ g1 ◦ g0

= h−1
◦ Gn,

for all n ≥ 0. Similarly h ◦ fn = gn ◦ h, ∀n ≥ 0 will imply that for all
n ≥ 0,

h ◦ Fn = Gn ◦ h.

Let F be expansive with an expansive constant ε > 0. Now, h being
a uniform homeomorphism, h−1 is uniformly continuous therefore
for ε > 0 there exists a δ > 0 such that for y1, y2 ∈ Y,

d2(y1, y2) < δ implies d1(h−1(y1), h−1(y2)) < ε.
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Let y1, y2 ∈ Y. Suppose that for all n ≥ 0, d2(Gn(y1),Gn(y2)) < δ. Then

d1(h−1(Gn(y1)), h−1(Gn(y2))) < ε,

for all n ≥ 0 i.e.

d1(Fn(h−1(y1)),Fn(h−1(y2))) < ε,

for all n ≥ 0. Since F is expansive with expansive constant ε, we get
h−1(y1) = h−1(y2) which implies y1 = y2. Thus G is expansive with
expansive constant δ.
Conversely, suppose G is expansive with expansive constant ε1 > 0.
Since h is continuous, there exists δ1 > 0 such that for any x1, x2 ∈ X,

d1(x1, x2) < δ1 implies d2(h(x1), h(x2)) < ε1.

For any x1, x2 ∈ X with x1 , x2, h(x1) , h(x2), it follows that there
exists n ∈ Z such that

d2(h(Fn(x1)), h(Fn(x2))) = d2(Gn(h(x1)),Gn(h(x1))) > ε1.

which implies d1(Fn(x1),Fn(x2)) ≥ δ1. Thus F is expansive on X.

Corollary 2.1.1 Let (X, d1) be a compact metric space and (Y, d2) be a
metric space, F = { fn}∞n=0 be a time varying map on X and h : X → Y is a
homeomorphism. If F is expansive on X then G = h ◦ F ◦ h−1 = {gn}

∞

n=0,
where gn = h ◦ fn ◦ h−1; n = 0, 1, 2, . . . is expansive on Y.

Definition 2.1.7 Let (X, d1) and (Y, d2) be metric spaces. A family of
functions { fn : X → Y}∞n=0 is said to be equicontinuous at x0 ∈ X if
for every ε > 0, there exists a δ > 0 (depending on the point x0) such
that d2( fn(x0), fn(x)) < ε for each n = 0, 1, 2, . . . and for each x ∈ X
satisfying d1(x0, x) < δ. The family { fn}∞n=0 is called equicontinuous if it is
equicontinuous at each point x0 ∈ X.

Definition 2.1.8 Let (X, d1) and (Y, d2) be metric spaces. A family of
functions { fn : X → Y}∞n=0 is said to be uniformly equicontinuous if
for every ε > 0, there exists a δ > 0 (depending on ε only) such that
d2( fn(x), fn(y)) < ε for each n = 0, 1, 2, . . . and for all x, y ∈ X satisfying
d1(x, y) < δ.
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Now, we show that a time varying map F = { fn}∞n=0, where the
family { fn}∞n=0 is equicontinuous, is expansive if and only if its kth

iterate is expansive, where k is a positive integer.

Theorem 2.1.2 Let (X, d) be a compact metric space, { fn}∞n=0 be an equicon-
tinuous family of self maps on X and k be a positive integer. Then time
varying map F = { fn}∞n=0 is expansive if and only if Fk is expansive.

Proof : Let e > 0 be an expansive constant for F. Since X is compact
and { fn}∞n=0 is equicontinuous family, for any n > 0 and nk + 1 ≤ j ≤
(n + 1)k, F[nk+1, j] is uniformly continuous on X and therefore there
exists a δi > 0 (i = j − (nk + 1) ∈ {0, 1, 2, . . . , k − 1}) such that

d(x, y) < δi ⇒ d(F[nk+1, j](x),F[nk+1, j](y)) < e.

Note that due to equicontinuity of { fn}∞n=0, δ j does not depend on
n. Take δ = min{δi : 0 ≤ i ≤ k − 1}. Then for any n ≥ 0,

d(x, y) < δ⇒ d(F[nk+1, j](x),F[nk+1, j](y)) < e.

Now Fk = {gn}
∞

n=0, where gn = F[(n−1)k+1,nk] and Gn = gn◦ · · ·◦ g1◦ g0.
It is easy to see that Gn = Fnk. Note that for any j ≥ 0, there
exists n ≥ 0 such that nk ≤ j ≤ (n + 1)k. Now for any n ≥ 0 and
nk ≤ j ≤ (n + 1)k,

d(Gn(x),Gn(y)) < δ⇒ d(Fnk(x),Fnk(y)) < δ
⇒ d(F[nk+1, j](Fnk(x)),F[nk+1, j](Fnk(y))) < e
⇒ d(F j(x),F j(y)) < e.

Since e is an expansive constant for F, x = y and hence δ is an
expansive constant for Fk.

Conversely, if Fk is expansive with an expansive constant ε then
for any x, y ∈ X, x , y, there exists n ≥ 0 such that

d(Gn(x),Gn(y)) > ε
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which implies
d(Fnk(x),Fnk(y)) > ε

proving that ε is an expansive constant for F.

The following example shows that ‘equicontinuity’ in the hy-
pothesis of Theorem 2.1.2 is necessary.

Example 2.2 Consider the sequence of maps F = { fn}∞n=0 on the unit circle
S1 defined by

fn(z) =

z
n
2 +1 i f n is even;

z
2

n+1 i f n is odd,

for any z ∈ S1, where z ∈ S1, z
1
m = exp { i

mArg(z)}, in which Arg(z) is the
principle argument of z.

Note that

Fn(z) =

z
n
2 +1 i f n is even;

z i f n is odd,

for any z ∈ S1 and therefore F is expansive. Observe that F2 = {gn}
∞

n=0,
where each gn = F[2n−1,2n] is the identity map, therefore F2 is not ex-
pansive. Note that { fn} is not an equicontinuous family on S1.

Using Theorem 2.1.2, we have the following example of a time
varying map which is not expansive.

Example 2.3 Let N be any positive integer. Consider the time varying
map F = { fn}∞n=0 on the unit circle S1 defined by

fn(z) =


zk+1 0 ≤ n = 2k ≤ 2N;
z

1
k+2 1 ≤ n = 2k + 1 < 2N;

z n > 2N.

for any z ∈ S1.

On nonautonomous discrete dynamical systems Page 25



2. Expansiveness in Nonautonomous Discrete Dynamical Systems

Note that { fn}∞n=0 is equicontinuous family of maps on compact
space S1 and F2 = {gn}

∞

n=0, where each gn = F[2n−1,2n] is the identity
map. Since F2 is not expansive, by Theorem 2.1.2, F is not expansive.

Now we define invariant subset for a time varying map and
show that if a time varying map is expansive on a metric space then
it is also expansive on any invariant subset of it.

Definition 2.1.9 Let (X, d) be a metric space, F = { fn}∞n=0 be a time varying
map on X and Y be a subset of X. Then Y is said to be invariant under F
if

fn(Y) ⊂ Y,

for all n ≥ 0, equivalently Fn(Y) ⊂ Y, for all n ≥ 0.

Lemma 2.1.1 Let (X, d) be a metric space, F = { fn}∞n=0 be a time varying
map which is expansive on X and Y be an invariant subset of X, then
restriction of F to Y, defined by F|Y = { fn|Y} is expansive.

Proof: Let ε > 0 be an expansive constant for F on X. Let x ,
y, x, y ∈ Y then x, y ∈ X also, therefore there exists n ≥ 0 such that

d(Fn(x),Fn(y)) > ε.

Since Y is invariant under F, Fn(x),Fn(y) ∈ Y. Hence F|Y is also ex-
pansive with expansive constant ε.

Now we show that every finite direct product of expansive time
varying maps is expansive.

Theorem 2.1.3 Let (X, d1) and (Y, d2) be metric spaces and F = { fn}∞n=0, G =
{gn}

∞

n=0 be time varying maps on X and Y respectively. Define a metric d
on X × Y by

d((x1, y1), (x2, y2)) = max{d1(x1, x2), d2(y1, y2)}; (x1, y1), (x2, y2) ∈ X×Y.

Also for any f : X→ X and g : Y→ Y define f × g : X × Y→ X × Y by

( f × g)(x, y) = ( f (x), g(y)), (x, y) ∈ X × Y.
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Then time varying map F ×G = { fn × gn}
∞

n=0 is expansive on X × Y if and
only if F and G are expansive on X and Y respectively.

Proof : Let F × G is expansive on X × Y with expansive constant
ε > 0. For x1, x2 ∈ X and y1, y2 ∈ Y, we have (x1, y1), (x2, y2) ∈ X × Y.
Suppose for any n > 0, d1(Fn(x1), fn(x2)) < ε and d2(Gn(y1),Gn(y2)) < ε
then for any n > 0,

d((F × G)n(x1, y1), (F × G)n(x2, y2))
= max{d1(Fn(x1), fn(x2)), d2(Gn(y1),Gn(y2))}
< ε.

Since F×G is expansive with expansive constant ε, we have (x1, y1) =
(x2, y2) i.e. x1 = x2 and y1 = y2 which implies that F and G both are
expansive with expansive constant ε. Conversely suppose F and G
are expansive on X and Y respectively. Note that for any n ≥ 0,

(F × G)n(x, y) = (Fn(x),Gn(y)), (x, y) ∈ X × Y.

Let ε1 > 0 and ε2 > 0 be expansive constants for F and G respec-
tively. Let ε = min{ε1, ε2} and (x1, y1), (x2, y2) ∈ X × Y.

If for all n ≥ 0,

d((F × G)n(x1, y1), (F × G)n(x2, y2)) < ε

then
d((Fn(x1),Gn(y1)), (Fn(x2),Gn(y2))) < ε

which implies

max{d1(Fn(x1),Fn(x2)), d2(Gn(y1),Gn(y2))} < ε.

Hence
d2(Fn(x1),Fn(x2)) < ε ≤ ε1

and
d1(Gn(y1),Gn(y2)) < ε ≤ ε2

which by expansiveness of F and G implies x1 = x2 and y1 = y2
i.e. (x1, y1) = (x2, y2). Hence F × G is expansive with expansive
constant ε.
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2.2 Invertible Nonautonomous Discrete Dy-
namical Systems and Expansiveness

Let (X, d) to be a metric space and fn : X → X to be a sequence
of homeomorphisms, n = 0, 1, 2, . . . , where we always consider f0 to
be the identity map on X. We call F = { fn}∞n=0 to be a time varying
homeomorphism on X and (X,F), an invertible nonautonomous
discrete dynamical system. We denote

Fn =

 fn ◦ fn−1 ◦ · · · ◦ f1 ◦ f0, f or n ≥ 0
f−1
−n ◦ f−1

−(n−1) ◦ · · · ◦ f−1
1 ◦ f−1

0 , f or n ≤ −1.

For any 0 ≤ i ≤ j, we define

F[i, j] =

 f j ◦ f j−1 ◦ · · · ◦ fi+1 ◦ fi, 0 ≤ i ≤ j
the identity map on X, i > j.

For time varying homeomorphism F = { fn}∞n=0 on X, its inverse map
is given by F−1 = { f−1

n }
∞

n=0. Thus

F−1
[i, j] =

 f−1
j ◦ f−1

j−1 ◦ · · · ◦ f−1
i+1 ◦ f−1

i , 0 ≤ i ≤ j
the identity map on X, i > j.

For any k > 0, we define a time varying homeomorphism (kth-iterate
of F) Fk = {gn}

∞

n=0 on X, where

gn = fnk ◦ f(n−1)k+k−1 ◦ · · · ◦ f(n−1)k+2 ◦ f(n−1)k+1 f or all n ≥ 0.

Thus Fk = {F[(n−1)k+1,nk]}
∞

n=0, for k > 0 and for k = −m < 0, Fk = (F−1)m.
Also, for k = 0, Fk = { fn}∞n=0, where each fn is the identity map on X.
Thus Fk = {gn}

∞

n=0, where

gn =


F[(n−1)k+1,nk] i f k > 0;
F−1

[(n−1)k+1,nk] i f k < 0;
the identity map on X i f k = 0.
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Let us define orbit, periodic point and fixed point for a time vary-
ing homeomorphism.

Definition 2.2.1 Let (X, d) be a metric space and fn : X→ X be a sequence
of homeomorphism, n = 0, 1, 2, . . . . For a point x0 ∈ X, let

xn =

 fn(xn−1) n ≥ 1;
f−1
−n (xn+1) n ≤ −1

then the sequence {xn}
∞
n=−∞, denoted by O(x0), is said to be the orbit of x0

under time varying homeomorphism F = {fn}
∞

n=0.

Definition 2.2.2 Let (X, d) be a metric space and fn : X → X be a
sequence of homeomorphisms, n = 0, 1, 2, . . . . A point x0 ∈ X is said to
be a periodic point of F = { fn}∞n=0 if orbit of x0 (O(x0) = {xn}

∞
n=−∞) is

periodic i.e. there exists an integer k > 0 such that

xn+k = xn,

for all n ∈ Z, where

xn =

 fn(xn−1) i f n ≥ 0;
f−1
−n (xn+1) i f n < 0.

The set of all periodic points of F is denoted by Per(F).

Definition 2.2.3 Let (X, d) be a metric space and fn : X→ X be a sequence
of homeomorphisms, n = 0, 1, 2, . . . . A point x ∈ X is said to be a fixed
point of time varying homeomorphism F = { fn}∞n=0 if

fn(x) = x

for all n = 0, 1, 2, . . . .

Note 2.1 If fn(x) = x then fn being homeomorphism f−1
n (x) = x. Hence

orbit of fixed point x is {x}.
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Now we define expansiveness of a time varying homeomor-
phism i.e. expansiveness of an invertible nonautonomous discrete
dynamical system and study them in detail.

Definition 2.2.4 Let (X, d) be a metric space and fn : X→ X be a sequence
of homeomorphisms, n = 0, 1, 2, . . . . The time varying homeomorphism
F = { fn}∞n=0 is said to be expansive if there exists a constant e > 0 (called
an expansive constant) such that for any x, y ∈ X, x , y,

d(Fn(x),Fn(y)) > e

for some n ∈ Z. Equivalently, if for x, y ∈ X,

d(Fn(x),Fn(y)) ≤ e f or all n ∈ Z then x = y.

Remark 2.3 If in the above definition fn = f for all n ≥ 0, where f : X→
X is homeomorphism, then expansiveness of time varying homeomorphism
F = { fn}∞n=0 on X is equivalent to expansiveness of f on X ([2]).

Remark 2.4 Note that expansiveness of a time varying homeomorphism
F is independent of the choice of metric for X if X is compact.

Let us define conjugacy between two time varying homeomor-
phisms.

Definition 2.2.5 Let (X, d1) and (Y, d2) be two metric spaces. Let F =
{ fn}∞n=0 and G = {gn}

∞

n=0 be time varying homeomorphisms on X and Y
respectively. If there exists a homeomorphism h : X→ Y such that

h ◦ fn = gn ◦ h,

for all n = 0, 1, 2, . . . then F and G are said to be conjugate with respect
to the map h or h-conjugate.

In particular, if h : X→ Y is a uniform homeomorphism then F and G
are said to be uniformly conjugate or uniformly h-conjugate.
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The following theorem shows that expansiveness of a time vary-
ing homeomorphism is a property which is preserved under uni-
form conjugacy.

Theorem 2.2.1 Let (X, d1) and (Y, d2) be metric spaces. Let F = { fn}∞n=0
and G = {gn}

∞

n=0 be time varying homeomorphisms on X and Y respectively
such that F is uniformly conjugate to G. Then F is expansive on X if and
only if G is expansive on Y.

Proof : Since F is uniformly conjugate to G therefore there exists a
uniform homeomorphism h : X→ Y such that

h ◦ fn = gn ◦ h,

for all n ≥ 0, which implies

fn ◦ h−1 = h−1
◦ gn,

for all n ≥ 0 and
f−1
n ◦ h−1 = h−1

◦ g−1
n ,

for all n ≥ 0. Now for all n ≥ 0,

Fn ◦ h−1 = fn ◦ fn−1 ◦ · · · f2 ◦ f1 ◦ f0 ◦ h−1

= fn ◦ fn−1 ◦ · · · f2 ◦ f1 ◦ h−1
◦ g0

...

= h−1
◦ gn ◦ gn−1 ◦ · · · g2 ◦ g1 ◦ g0

= h−1
◦ Gn

and similarly for all n ≤ 0, we also have

Fn ◦ h−1 = f−1
−n ◦ f−1

−n+1 ◦ · · · f−1
2 ◦ f−1

1 ◦ f−1
0 ◦ h−1

= f−1
−n ◦ f−1

−n+1 ◦ · · · f−1
2 ◦ f−1

1 ◦ h−1
◦ g−1

0
...

= h−1
◦ g−1

n ◦ g−1
−n+1 ◦ · · · g

−1
2 ◦ g−1

1 ◦ g−1
0

= h−1
◦ Gn.
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So, we get Fn ◦ h−1 = h−1
◦ Gn, for all n ∈ Z. Similarly,

h ◦ Fn = Gn ◦ h,

for all n ∈ Z. Suppose F is expansive on X with expansive constant
ε > 0. Since h−1 is uniformly continuous therefore there exists a
δ > 0 such that for any y1, y2 ∈ Y with d2(y1, y2) < δ,

d1(h−1(y1), h−1(y2)) < ε.

Let y1, y2 ∈ Y such that y1 , y2 then h−1(y1) , h−1(y2) therefore F
being expansive on X, there exists n ∈ Z such that

d1(h−1(Gn(y1)), h−1(Gn(y2))) = d1(Fn(h−1(y1)),Fn(h−1(y2))) > ε

which implies
d2(Gn(y1),Gn(y2)) ≥ δ.

Hence G is expansive on Y.
Conversely, suppose G is expansive on Y with expansive constant
ε > 0. Since h is uniformly continuous, there exists δ > 0 such that
for any x1, x2 ∈ X with d1(x1, x2) < δ,

d2(h(x1), h(x2)) < ε.

For any x1, x2 ∈ X with x1 , x2, observing that h(x1) , h(x2), it follows
that there exists n ∈ Z such that

d2(h(Fn(x1)), h(Fn(x2))) = d2(Gn(h(x1)),Gn(h(x1))) > ε

which implies d1(Fn(x1),Fn(x2)) ≥ δ. Thus F is expansive on X.

Corollary 2.2.1 Let (X, d1) be a compact metric space, (Y, d2) be a metric
space, F = { fn}∞n=0 be a time varying homeomorphism on X and h : X→ Y
is a homeomorphism. If F is expansive on X then G = h◦F◦h−1 = {gn}

∞

n=0,
where gn = h ◦ fn ◦ h−1; n = 0, 1, 2, . . . is expansive on Y.

The following theorem shows that a time varying homeomor-
phism is expansive if and only if its inverse is expansive.
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Theorem 2.2.2 Let (X, d) be a compact metric space, { fn}∞n=0 be a family
of self homeomorphisms on X. Then time varying homeomorphism F =
{ fn}∞n=0 is expansive if and only if F−1 is expansive.

Proof : Let F be expansive with an expansive constant e > 0. It is
easy to verify that

F(−n) = (F−1)n,

for all n ∈ Z. Equivalently (F−1)(−n) = Fn, for all n ∈ Z. Let x ,
y, x, y ∈ X then there is some n ∈ Z such that

d(Fn(x),Fn(y)) > e

i.e.
d((F−1)(−n)(x), (F−1)(−n)(y)) > e

for some (−n) ∈ Z, which implies F−1 is also expansive. Conse-
quently, F−1 expansive implies (F−1)−1 = F is expansive.

By above result and analogous to the Theorem 2.1.2, we have the
following result.

Theorem 2.2.3 Let (X, d) be a compact metric space, { fn}∞n=0 be an equicon-
tinuous family of self maps on X and k be an integer. Then time varying
homeomorphism F = { fn}∞n=0 is expansive if and only if Fk is expansive for
any k ∈ Z − {0}.

Now we define invariant set under time varying homeomor-
phism and show that if a time varying homeomorphism is expan-
sive on a metric space then the restricted map to an invariant subset
is also expansive.

Definition 2.2.6 Let (X, d) be a metric space, F = { fn}∞n=0 be a time varying
homeomorphism on X and Y be a subset of X. Then Y is said to be invariant
under F if fn(Y) = Y, (and therefore f−1

n (Y) = Y) for all n ≥ 0, equivalently
Fn(Y) = Y, for all n ∈ Z.

Analogous to Theorem 2.1.1, one can prove the following result.
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Theorem 2.2.4 Let (X, d) be a metric space, F = { fn}∞n=0 be a time varying
homeomorphism which is expansive on X and Y be an invariant subset of
X, then restriction of F to Y, defined by F|Y = { fn|Y} is expansive.

Analogous to Theorem 2.1.3, one can prove the following result.

Theorem 2.2.5 Let (X, d1) and (Y, d2) be metric spaces and F = { fn}∞n=0, G =
{gn}

∞

n=0 be time varying homeomorphisms on X and Y respectively. Con-
sider the metric d on X × Y defined by

d((x1, y1), (x2, y2)) = max{d1(x1, x2), d2(y1, y2)}; (x1, y1), (x2, y2) ∈ X×Y.

Then the time varying homeomorphism F×G = { fn×gn}
∞

n=0 is expansive on
X×Y if and only if F and G are expansive on X and Y respectively. Hence
every finite direct product of expansive time varying homeomorphisms is
expansive.

We have following result for time varying homeomorphism similar
to that for an expansive homeomorphism on a compact metric space
([6]).

Theorem 2.2.6 Let (X, d) be a compact metric space, F = { fn}∞n=0 be a
time varying homeomorphism such that for any given pair of integers r
and s, there is an integer t such that Fr(Fs(x)) = Ft(x), for all x ∈ X. If F
is expansive on X and θ is the least upper bound of the set of expansive
constants for F then θ is not an expansive constant for F.

Proof: Let e be an expansive constant for F, θ be the least upper
bound of the set of expansive constants for F and εi = 1

i for i =
1, 2, 3, · · · . Since θ + εi is not an expansive constant for F therefore
for each i there exist x′i , y′i such that

d(Fn(x′i),Fn(y′i)) ≤ θ + εi (2.1)

for each integer n. Also, for each i, there exists an integer ki such that

d(Fki(x
′

i),Fki(y′i)) > e.
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(Since e is an expansive constant for F and x′i , y′i , for each i. )

Let xi = Fki(x
′

i) and yi = Fki(y′i). Since X is a compact metric space
therefore passing to a subsequence if necessary, without loss of gen-
erality, we can assume that there exist x, y ∈ X such that x j → x and
y j → y. Note that x , y. (As for each i, d(xi, yi) > e.)

Let m be an arbitrary integer and α be an arbitrary positive real
number. Choose p, q and η with the following properties:

(a) εp < α
3 ,

(Such p exists as εi = 1
i converges to zero.)

(b) d(u, v) < η implies d(Fm(u),Fm(v)) < α
3 ,

(Such η exists as X being compact, Fm is uniformly continuous
on X.)

(c) n > p implies d(x, xn) < η and n > q implies d(y, yn) < η.
(As the sequences {xi}

∞

i=0 and {yi}
∞

i=0 converge to x and y respec-
tively.)

Let i > max{p, q}, then

d(Fm(x),Fm(y)) ≤ d(Fm(x),Fm(xi)) + d(Fm(xi),Fm(yi)) + d(Fm(yi),Fm(y))

<
α
3

+
(
θ +

α
3

)
+
α
3

= α + θ

(Since i > p therefore from (c), d(x, xi) < η and hence form (b),

d(Fm(x),Fm(xi)) <
α
3
.

Similarly i > q implies

d(Fm(yi),Fm(y)) <
α
3
.
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Further since i > p therefore using (a), εi < εp < α
3 and

d(Fm(xi),Fm(yi)) = d(Fm(Fki(x
′

i)),Fm(Fki(y′i)))
= d(Ft(x′i),Ft(y′i)) f or some integer t
≤ θ + εi ( f rom equation (2.1))

< θ +
α
3
. )

Thus d(Fm(x),Fm(y)) ≤ θ implying θ is not an expansive constant
for F.

Definition 2.2.7 Let (X, d) be a metric space, F = { fn}∞n=0 be a time varying
homeomorphism on X and A ⊆ X. Then F is said to be expansive on A
with expansive constant e > 0 if for any x, y ∈ A, x , y, there exists an
integer n ≥ 0 (depending upon pair (x, y)) such that d(Fn(x),Fn(y)) > e or
equivalently if for x, y ∈ A

d(Fn(x),Fn(y)) ≤ e, f or all n ≥ 0 then x = y.

Now we show that a if a time varying homeomorphism is expansive
on a subset whose complement is finite then it is expansive on the
entire metric space.

Theorem 2.2.7 Let (X, d) be a metric space, F = { fn}∞n=0 be a time varying
homeomorphism on X and A ⊆ X such that X−A is finite. If F is expansive
on A then it is expansive on X.

Proof : Let F be expansive on A with expansive constant e. Since
X − A is finite, it is sufficient to show that F is expansive on A ∪ {x},
where x ∈ X−A. Then one can show expansiveness of F on X using
induction for finitely many steps. Note that there is at most one
point p ∈ A such that

d(Fn(x),Fn(p)) ≤
e
2
, ∀n ∈ Z.
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If p and q are two such points in A, then

d(Fn(p),Fn(q)) ≤ d(Fn(p),Fn(x)) + d(Fn(x),Fn(q))

≤
e
2

+
e
2

≤ e,

for all n ∈ Z, which contradicts the expansiveness of F on A. If a
point p as described above exists, let 0 < c < d(x, p); otherwise let
c = e

2 . Now for any a, b ∈ A∪{x}, a , b, if a, b ∈ A then expansiveness
of F on A implies that there exist m ∈ Z such that

d(Fm(a),Fm(b)) > e > c.

If a = x and b ∈ A with b , p then there exists m ∈ Z such that

d(Fm(a),Fm(b)) = d(Fm(x),Fm(b))

>
e
2
≥ c.

If a = x and b ∈ A with b = p then for m = 0 we have

d(Fm(a),Fm(b)) = d(Fm(x),Fm(p))
= d(x, p) (as m = 0)
> c.

Thus in any case there exists m ∈ Z such that

d(Fm(a),Fm(b)) > c.

Thus F is expansive on A ∪ {x}with expansive constant c.

2.3 Generator and Weak Generator in Nonau-
tonomous Discrete Dynamical Systems

The topological analogue of generator was defined and studied
by Keynes and Robertson [34]. We define and study this notion
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for an invertible non-autonomous discrete dynamical system and
obtain a characterization of expansiveness in terms of generator and
weak generator.

Definition 2.3.1 Let (X, d) be a compact metric space and F = { fn}∞n=0 be
a time varying homeomorphism on X. A finite open cover α of X is said to
be a generator for F if for every bisequence {An} of members of α,

∞⋂
n=−∞

(Fn)−1(An)

is at most one point, where An denotes the closure of set An.

Definition 2.3.2 Let (X, d) be a compact metric space and F = { fn}∞n=0 be
a time varying homeomorphism on X. A finite open cover α of X is said to
be a weak generator for F if for every bisequence {An} of members of α,

∞⋂
n=−∞

(Fn)−1(An)

is at most one point .

The following result gives a characterization of expansiveness. We
show that a time varying homeomorphism on a compact metric
space is expansive if and only if it has a generator or a weak gener-
ator.

Theorem 2.3.1 Let (X, d) be a compact metric space and F = { fn}∞n=0 be a
time varying homeomorphism on X. Then following are equivalent :
(1) F is expansive,
(2) F has a generator,
(3) F has a weak generator.

Proof : We first show that (2)⇒ (3).
(2) ⇒ (3) : Let α be a finite open cover of X and {An} be bisequence
of members of α. Since An ⊆ An, we have

∞⋂
n=−∞

(Fn)−1(An) ⊆
∞⋂

n=−∞

(Fn)−1(An).
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If α is generator for F then
∞⋂

n=−∞

(Fn)−1(An)

contains at most one point and therefore
∞⋂

n=−∞

(Fn)−1(An)

also contains at most one point. Hence α is also a weak generator
for F.

(3) ⇒ (2) : Let β = {B1,B2, . . . ,Bn} be a weak generator for F and
δ > 0 be a Lebesgue number for β. Let α be a finite open cover by
sets Ai with diam(Ai) ≤ δ. If {Ain} is a bisequence of members of α
then for every n, there is jn such that Ain ⊂ B jn, and so

∞⋂
n=−∞

(Fn)−1(Ain) ⊆
∞⋂

n=−∞

(Fn)−1(B jn).

Since
∞⋂

n=−∞

(Fn)−1(B jn)

contains almost one point therefore
∞⋂

n=−∞

(Fn)−1(Ain)

also contains at most one point and hence α is a generator.

Next we prove that (1)⇒ (2) : Let δ > 0 be an expansive constant
for F and α be a finite open cover of X by open balls of radius δ

2 .
Suppose

x, y ∈
∞⋂

n=−∞

(Fn)−1(Ain),
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where Ain ∈ α then d(Fn(x),Fn(y)) ≤ δ for every n, and since F is
expansive with expansive constant δ, we have x = y.

(3)⇒ (1) : Supposeα is a weak generator. Let δ > 0 be a Lebesgue
number for α. If d(Fn(x),Fn(y)) < δ, for all n ∈ Z then for every n,
there is An ∈ α such that Fn(x),Fn(y) ∈ An and so

x, y ∈
∞⋂
−∞

(Fn)−1(An)

which is at most one point implying x = y.

We use the above result in the following example.

Example 2.4 Let F = { fn}∞n=0, where fn : [0, 1] → [0, 1] is defined by
fn(x) = xn+1 for n=0,1,2... and x ∈ [0, 1], be a time varying homeomor-
phism on [0, 1]. Now note that

Fn(x) = xn! and F−n = x
1
n! ,

for all n ≥ 0. Let α be a finite open cover of [0, 1] with Lebesgue number
0 < δ < 1

2 . Note that

lim
n→∞

Fn = 0 and lim
n→∞

F−n = 1

uniformly on [δ, 1 − δ]. So there exists N > 0 such that n > N implies
Fn(x) ∈ [0, δ) and F−n(x) ∈ (1 − δ, 1], for any x ∈ [δ, 1 − δ]. Since δ
is Lebesgue number of α, there are A0 and A1 in α such that [0, δ) ⊆
A0 and (1 − δ, 1] ⊆ A1. Now since {F−N,F−N+1, · · · ,FN} is uniformly
equicontinuous family, there exists ε > 0 such that d(x, y) < ε implies
d(Fn(x),Fn(y)) < δ, for any |n| ≤ N. Let x, y ∈ [δ, 1 − δ], x , y such
that d(x, y) < ε. Then for any n, |n| ≤ N there exists An ∈ α such that
Fn(x),Fn(y) ∈ An. Thus x, y ∈ (Fn)−1(An), |n| ≤ N. Now put

An =

A0, n ≥ N + 1;
A1, n ≤ −(N + 1).
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Now note that

x, y ∈
∞⋂

n=−∞

(Fn)−1(An).

Thusα can not be a weak generator for F. Therefore F has no weak generator
and hence by above result F is a time-varying homeomorphism which is
not-expansive.
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