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The thesis entitled “A UNIFICATION OF GENERALIZED MITTAG - LEFFLER
FUNCTIONS, FAMILY OF BESSEL FUNCTION AND THEIR ¢-ANALOGUES?” carries

out generalization of Mittag-Leffler function as defined below.

Definition 1. For a,f,v,A € C, R(e, B,7,A) > 0, 6,0 >0, r € {-1,0UN, s €
NU {0}, R(a) +rp—s6+1>0

O N (€)1 )
7591 = 2 a4 ) (Wl ol |
and derive certain properties of it.

The objective of constructing this function is to

(i) include certain existing generalizations of Mittag-Leffler function,

(i) also include the functions such as Bessel Maitland function, Dotsenko function, Bessel
function, generalized Bessel Maitland function, Lommel function etc. especially by means
of parameters r,~y, A (Table-1, 2 below)

(iii) obtain inverse inequality relations and some other inequalities by means of the integer
's’.

Chapter 1 introduces the subject matter and lists certain definitions, notations, for-
mulae and results together with certain Fractional Calculus formulae.

Chapter 2 begins with absolute convergence test of series of the function (1). The
subsequent properties include (i) order and its type, (ii) asymptotic estimate, (iii) differ-
ential equation, (iv) Eigen function property and (v) Mellin-Barnes contour integral rep-
resentation. Certian mixed recurrence type relations are derived; and the results involv-
ing integral transforms namely, Euler-Beta transform, Mellin-Barnes transform, Laplace
transform and Whittaker transform are recorded. The special cases such as the general-
ized hypergeometric function, generalized Laguerre polynomial, Fox H-function etc. are
also illustrated. It is noteworthy that the function in (1), besides containing the Shukla
and Prajapati’s function [13]

B3 = X e, @)

where «, 3,7 € C; R(a, 8, v) >0 and g € (0,1) UN, also includes some other functions
namely,
(i) Bessel-Maitland function [5, Eq.(1.7.8), p.19] :

e e} (_1)71 Zn
JH ) =S5\~
v(2) nz:‘{)l“(v—i-n,u—kl) n!’
(ii) Dotsenko function [5, Eq.(1.8.9), p.24] :
ING) i I'(a+n) D(b+n) 2"
I'(a) T'(b) =, [(c+n%) n!’

oR1(a, b;c,w;v;2) =



(iii) A particular form (m = 2) of extension of Mittag-Leffler function due to Saxena and

Nishimoto [12] given by

E, kl(aj, Biig; 2] = nz::o I'(agn + B1) T(agn + (o) n!’

where 2,7, ;, 8; € C,R(o + az) > R(K) — 1, R(K) > 0.
(iv) The Elliptic function [7, Eq.(1), p.211] :

T 112
K(l{?)ZQQFl(i 2 )

All these functions are tabulated below as particular cases of (1).

Table-1
Function r | s| « B YO | AN]| p
Mittag-Leffler 01 « 1 111 - -
Wiman 01 « o] 111 - -
Prabhakar 01| « 6] vyl 1] - -
Shukla and 01 « I6; vyl q| - -
Prajapati
Bessel-Maitland | O | O | w |v+1]| - | - | - -
Dotsenko 11| w/y c a|l|b|ww
Saxena- 1 11| oy o5 v | K| By | s
Nishimoto
Elliptic 1011 1 [+ )41

Some of the main results are stated below.

Theorem 1. Let R(c, B,7,\) >0, R(a) +rpu—s6+1>0,0,u>0,re{-1,0}UN, s¢€
1

NuU{0}. Then Eg:g%#(z; s,1) s an entire function of order o = d

= o)
e = \ @)y ™ ) -

In the notations

d (a,b;m) al b +] " (a,b;m) a-l b+] mn

a 0

R(a) +rp—s0+1 a

(@bm) b+j " 1 5= ) (1 AiT) A (@,B51) %
®j ™ = H —0+ - ]_ 9 Q("‘LT = P_ D @,'(,n;y’_S)Tku7 ’ T] 77 9 P —

=0 a a® pr
the following differential equation is obtained.
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Theorem 2. Let o, i, 0 € N then y = E;/:g,/w(Z; s,T) satisfies the equation
685

AT a,B;1 iS5
[T,(f brlesl g P AL >] y = 0. (3)

And the eigen function property is given as

Theorem 3. If a,u,0 € N then Eg:g,,w(z; s,1) is an eigen function with respect to the

operator Qeo.y. That is,

Q@§T (EZ:Z7>\,M(CZ; S, T‘)) - C Ezv/:g,)\,;ACZ; S, T)' (4>
Mixed Relation:
Theorem 4. For«, 3, v, A € C, k€ N, R(a,5,7,A) > 0,0, >0, we get

) . ,0 .
E;/,B—l—k,)\,u(’z’ S, T) - Eg,ﬁ-l—k—&-l,)\,u('z’ S5, T)

.y ' .y .
= a2z2 Eg,6+k+2,)\,y(z7 S, T) +az {Oé + 2(5 + k)] Eg,ﬁ+k+2,)\”u(27 S, T)

(B + 28k + k* — 1) EL Yo u(238,7), (5)
where,
Eo . _ i 7,8 . (7,0 . _ iz 7,0 .
aﬁ’A’#(z,s,r) = dzEaﬁ,/\,u(Z7s’T)’ EQ7BA,#(Z,S,7‘) = szEa’B’)"“(Z’S’T)'
Double series representation:
*Ev’g’p/\u(z;s,r) = i , ! , (._1_>Z *E%g’p/\ﬁﬂ(z;s,r). (6)
B =0 i +7), i j! LPsot
Relationship with Wright function:
Eg:g7/\7u(z;s,r) = M sVt (0,001 . :
[L'(7)] (B,a), (A )]

(A piece of the content of this work has been published in the journal - “Advances in Pure
Mathematics, 2013, 3, 127-137,” in “Palestine Journal of Mathematics, 2014, 3(1), 94-98
7 and accepted in “The Mathematics Student”.)

MR f# 3109941

Bessel Function Family

In (1) replacing z by —% and multiplying the series by (%)E, one gets

AN A U <Z>§ x [(V)sn]® 2\
(2) B nn ( 4 7s,r> - \2 nz:‘; C(an + B) [(A) ] n! 4 )7 )
in which o, 5,7, A € C, R(a, B,7v,A) >0, &0, u>0,7,s € NU{0}.

For suitable choices of &, this gives the Bessel function of first kind J,(z), the gen-
eralized Bessel-Maitland function J7, (z), Lommel function S, ,(z) and Struve function
H,(2).

All these functions are tabulated below as particular cases of (7).



Table-2

Function r|ls|a B Y| A u 3
Bessel 0(0] 1 v+1 - - - - v
Generalized 1100 |v4+n+1|-|-| n+1 1| v+2n
Bessel-Maitland
Lommel L1 1| 2= || 8 gt
Struve 111 3/2 1|1]32+v|1]| v+1

The function (7) turns out to be entire function and satisfies Theorem 1 with the type
1 §s0 0
7T <4 {ma»mw) '

Here considering the following operators in their indicated notations:

D= (Z, 0= zD, ng(z) = Z£/2f(21/2) 0 (Z—E/Zf(21/2)> ’

a—1 . m
Zﬁf(z) _ Zg/2-if(z1/2) Di (Z—§/2f(21/2)> : ngb;m) _ H Kef I b—;—] . 1)1 ’
j=0

] a—1 b-'-j m . a—1 b+j m
a,b;m a,b;m
AG =11 [(QEJF&)] el = 1] [(‘9—§+a—1
J=0

=0
and

;—S r [e 7YX 556
Ofg = —4P71 © 07 YA YN p = 8)

ym a’ MT}A ’

the differential equation is obtained which is stated below.
5N thenye = (2) B0, (2 isfies th :
Theorem 5. Let o, 1,0 € N then ye = 3 B (_Z’ s,r) satisfies the equation

22

(A7) An(@,B31)

4,7;8
P AL >] ye = 0. (9)
And the eigen function property is given by

3
z
Theorem 6. Let o, i, 0 € N then (2> Eg:g)\,# (—%;s,r) is an eigen function with

respect to the operator Qg@ as defined by (8).
That 1is,

2\ ¢ 22 2\ ¢ 22
Qe ((2) Bl (—C4ss7r)> = (2) EX5 <—C4;8,r>. (10)

In Chapter 3, g-extension of the results of Chapter 2 are provided. In view of two

g-exponential functions, the two g-analogues of the function (1) are defined.
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Definition 2. If o, 5,7, A € C with R(a, 8,7, A) >0, ,u >0, r € {—1,0} UN, s €
N U {0} then

%S _1)pn qpn(n—l)/Z [F (,y_|_5n>]s
B 28,7 = ( : 2", 1
o2l 714) nz:% Ly(B+an) LA+ pn)]" (¢;9)n .

where p = a? + rp? — 62 + 1 with R(p) > 0.

Definition 3. If a, 5,7, A, z € C with R(«, 5,7,A) >0, o,u >0, r€ {-1,0} UN, s €
NU {0}, |z| < ’(1 — q)s‘s_o‘_”“l‘ and o® + ru? + 1 = s6° then
= [Ty(y + on)]°

750 . — n
R 2 e T N P P

The following table enlists particular cases of (11) and (12).

Table-3
g-Function of | r |s| « B |v|0|A| p |Particular case of
Mittag-Leffler |0 |1| « I |11 -] - (11)
Wiman 01 « g 11| -| - (11)
Prabhakar |0 1| « | B |v|1]-| - (11)
Shuklaand |0 (1| a | B |v|q|-| - (11)
Prajapati
Bessel-Maitland | 0 (O] g (v +1|-|-|-| - (11)
Dotsenko 1 1|lw/v| ¢ |a|l|b|w/v (12)
Saxena- 11 a1 | B1 |v|K|P2| as (11)
Nishimoto
Elliptic 111 151 (12)

The function in (11) turns out to be an entire function of order zero under the conditions

mentioned in following theorem.

Theorem 7. Let R(a, 3,7, ) > 0, R(a?*+ru?—s6>+1) > 0,6, u >0, r € {—1,0}UN, s €
NU{0} and 0 < g < 1. Then E&%A#(z; s,r|q) is an entire function of z of oder zero.

On the other hand, the function defined by (12) is analytic function as the series

converges absolutely for |z| < ‘(1 — q)s‘s‘a‘“‘_l‘.

Next, assume the following notations for the indicated oprator expressions.

Agf(2) = f(z) = fzq™"), Of(x) = f(z) - f(zq),

D, f(x)=(1—q) Dyf(z) :=(1—gq) f(z) = f(zq) _ f(z) — f(xQ),

T — xq x




{al_[l anl[@ + C_u 1—(b+v)/a _ 1]m}

u=0 v=0 — Hlab,em)
a—1a—1 o
IT 11 [C ug b—H))/a]m
u=0 v=0
a—1a—1
{ 1 11 [@ +c b+v)/a _ 1]m}
u=0 v=0 — plabem)
{'mm [c-"q—<b+v>/a]m} |
u=0 v=0
a—1 a—1
H H [(A +c uql (b4+v)/a __ 1)]m
u=0 v=0 — an;}b7c;m)7
a—1 a—1 ’
{ 1 11 [C ug b+U)/a]m}
u=0 v=0

and

h,m

A, =D, inmc;—S) (I)gtkzkm;r) Pplaboil)

6747 s) @(“7 7777) q)(a’B)Uﬂ)

hom are not commutative with the operator

Here the operators €2;
D,.
It is shown that both the functions (11) and (12) satisfy the difference equations of the

following forms.

Theorem 8. Let a, 1,0 € N, then Ewﬁ/\u(z s,r|q) satisfies the difference equation

AT a,B,051 ;
@ @t O] B (= s rla)

— (=1 2 W ELY L (2755, mlg) = 0 (13)

th

in which  is 8" root of unity, n is pu'" root of unity, o is o' root of unity.

Theorem 9. Let a,p,6 € N then Y = eaB a2 8,7|q) satisfies the equation
@M @t @ — 2 iy =, (14)

oot of unity.

where ¢ is 0™ root of unity, n is ut" root of unity, o is a
The eigen function property is given as

Theorem 10. Let o, i, 6 € N then eaﬁ/\u(z; s,r|q) is an eigen function with respect to
the operator A,. That is,

?6 .
A, 627 5. /\M(cz s,rlq) =c¢ eCY 5, u(cz,s,r|q). (15)

The function E%B au(758,7|q) defined by (11) does not possess this property.

The following theorem states the Mellin-Barnes contour integral formula for (11).
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Theorem 11. Let o € Ry; 3, v, A € C with R(5,v,A) > 0 and §, p > 0. Then the

function Eg:gﬂw(z; s,r|q) is expressible as the Mellin - Barnes q-integral given by

d,S, (16)

1 (=179 g PSESDR2 D (S)[Dy(y — 65)) (—2)~°
E2327A7H(Z;S,T|q)= /( ) q (9T (v )] (=2)

2mi J Ty(B —a8) [T(A = pS))r

where |argz| < w. The contour L of integration begins from —ioco and proceeds towards
+i00, and is indented to keep the poles of integrand at S = —n to the left; and the poles
at S = (y+mn)/o to the right of the path for alln € NU{0}.

Further,

Theorem 12. The mized relation for k € N with k > 2, is given by

0 o, . — ,0 a,
Dy(PE) % n w(2%5,ml0) = (1= ") Dy(2PE % 1 5 u(2%5,710))
+¢" (1= q) D (2" EL (2% 5, 70a)). (17)

g-Bessel Function Family

Definition 4. If a, 3,7, A, z € C with R(«, 5,7,A) >0, 0,4 >0, r,s € NU{0} then

2\ & 5 22 o (—1)pthn gpn(n=1)/2 [T,(y 4 0n))* .
() Ey g <_4;S’r|q> = > e T T.(\ ST 2 (18)
2 n=0 2 q(ﬁ + O./TL) [ q( + lun>] (qa q)n

where p = a® + ru? — 50% + 1 with RN(p) > 0.

The g-analogues of those functions listed above in Chapter 2 in Table-2 are all yielded
by the function (18).
They are tabulated below together with the indicated substitutions.

Table-4
g-Function of | r | s | « B Y| 0 A u I3
Bessel 0/0]1 v+1 -] - - - v
Generalized 110l |v+n+1|-|-| n+1 |1 |v+2n
Bessel-Maitland
Lommel Lj1| 1| =8 1] 228 1| p+1
Struve 10101 3/2 |1[1/324v|1| v+1

The function in (18) turns out to be an entire function of order zero under the condi-
tions mentioned in Theorem 7. Next, assuming the following notations for the indicated

operator expressions:

0uf (@) = f(2q'?), Of(x) = f(x) = f(zq), (©+¢/%5,—1) =0,



a—1a—1
{ 1 11 [@ + C—u 1— (b+v)/aq§/25q _ 1]m} .
u=0 v=0 — (I)éavbzcvm)
a—1la—1 U,V )
{ H H [C ug b—H})/a]m}
u=0v=0

and

a—1la—1
{1—[ 1—[ [®+C q(b+v)/aq§/25 o 1] }

u=0 v=0 _ (a,b,c;m)
a—1 a—1 - \D&;u,v ’
{ H H [C—uq—(b-‘rv)/a]m}
u=0 v=0

one finds the difference equation as follows.

Theorem 13. Let o, pu,0 € N then w = (%)E Eg:g,ku ( 58, r|q) satisfies the equation
¢ 2
s A7) a,B,031) z ,0 < s,
¢ o Han q)ghm ‘1)5 (2> EZ,@,,\,” <—4q ,577’|Q>

_1)p gD L2 o [\ 2
+( ) q z \I,(cS’YC ) (Z> Eg:g)\’”< z qp+7'+2 s T|q> — 0’ (19)

4 &35t 2 4

th

in which C is 8" root of unity, n is pu'™ root of unity, o is o' root of unity.

The following theorem states the Mellin-Barnes contour integral formula for (18).

Theorem 14. Let o € Ry; 3, v, A € C with R(5,v,A) > 0 and §, p > 0. Then the
function (%) Eg?“u ( %; s,r]q) is expressible as the Mellin - Barnes q-integral given
by

3
13 2 z _1\(p+1)S ,—pS(—S-1)/2 _ s ,—28
(2) Ertns (- 5le) - ) ey Ly(8) [0y = 88)) =7,

2 R W 2mi 7 (B = aS) [Lg(A — pS))

where |argz| < w. The contour L of integration begins from —ioco and proceeds towards
+i00, and is indented to keep the poles of integrand at S = —n to the left; and the poles
at S = (y+n)/d to the right of the path for alln € NU {0}.

In Chapter 4, the Mittag-Leffler (M-L) type operator in the space L(a,b) of Lebesgue

measurable (real or complex) functions is introduced as follows.

T

(€2 o d) @) = [ =07 B (wle = 05 s,7) 1) dt, (20)

a

where, o, 8,7, \,w € C; R(a, 5,7, A) > 0; 0,0 > 0, and = > a.

For this operator the following result is obtained.

Theorem 15. Let the function ¢ be in the space L(a,b) of Lebesgue measurable functions

on a finite interval |a,b] of the real line R given by



b
La.b) = {7 |fli = J 1f(®)] dt < oo}.

Then the integral operator 837’27)\7 jw 0, 08 bounded on L(a,b) and

(AN PR 4 [ P (21)
where the constant M (0 < M < oo) given by

= IT(ak + B)] (R(ak + B))
w (b— )
Tl (22)

Transforms of proposed operator (20) are also obtained; the following are illustrations

amongst them.

Theorem 16. Mellin transform of the operator (57:%7/\7u7w;0+f>(x)

o

Let o, 8,7, \,w € C, R(cv, 5,7,A) >0; o, u >0, R(1 -5 =) >0 then

s I L))"
M{(Ea,ﬁ, A,M»W§0+f)<$)’8} ~ 27 [D(9))s T(1 = S)
(1=, &), (0,1)

(071)7 (1_5_6705)7 [(1_>‘7:UJ)]T’ (071) ]

Theorem 17. Laplace transform of the operator (5&:27A,u,w;0+f) (x) given by

£{<sz;§,x,u,w;o+f><x>;zﬂ}

L] s (v, @), (L1); w/P*
L)l P2 (Gl (1,1);

F(P)?

where (R(a) > 0,R(B) > 0,R(7) > 0); R(p) > |w|™) and F(P) is the Laplace transform
of f(t), defined by

[e.o]

LUf(W): P}y = F(P) = [ e f(t) at

0

where R(P) > 0 and the integral is convergent.

With the aid of Riemann-Liouville fractional integral operator, the Kober fractional
integral operator and fractional differential operator of arbitrary order, some properties

are derived. One of them is

Theorem 18. Let a € R, = [0,00),,5,v,\,n € C, R(er, B,7,\,n) > 0; 5, p > 0 for

x > a, then

— 0 «. — 0 a.
(f;u(t C QB (- a)% s, r>) (£) = (& — )T BT, (wle — a)% s,7),



and
(Dzu(t—a)ﬁ L ( <c<t—a>>a;s,r>><x> (- @)PVED L (wle— ) s,

The following thorem states the integro-differential equation.

Theorem 19. If 0 <n< 1, 0<v <1, w,§ € C, R(a) > maz{0,R(5) — 1}
and min{R(B,~v,\, )} > 0 then

(Dzzr y) () = ¢ (sﬁ) (@) + f(a) (23)
with the initial condition

(Iéi”)“”) y) (0+) = C.

has solution in the space L(0,00) given by

pn—v(i=n—-1

==

1 x
P
HE B (wr) £ o [ =0T 0 de (20
0

where C' is arbitrary constant.

(A piece of the content of this work has been published in the journal: “Ukrainian
Mathematical Journal, Vol. 66, No. 8, January, 2015, 1267-1280")
MR 1 3334434

The g-analogues of the results of Chapter 4 are incorporated in Chapter 5.

The following operators are defined.

T

(€2 ) (@) = [(@ = )1 B (e — ta")as s 7l0) F(0) dgt, (25)
where o, 3,7, N\, 0, €N, o? +rp? —s5>+1>0, we Cand z > a,
and

T

( qel’,%,k,u,w;a—i—f) (l‘) = / (l’ - |tq>ﬂ—1 el:%,k,,u,(w(x - tqﬁ>a; S, r’Q) f(t> dqt7 (26>

a

where, o, 3,7, A, 0,u € N, [(1 — q)o‘””_s“l‘ <1, we Cand z > a.
The function f(t) is chosen suitably so as to ensure the existence of these operators. Then

with the aid of g-analogue of Riemann-Liouville fractional integral operator, gq-analogue
of the Kober fractional integral operator and fractional g-differential operator of arbitrary

order, some properties are studied. One such result is stated as

10



Theorem 20. Let a € [0,00) and o, 3,7, \, 6, n € N, n € Ryg then for x > a

76 - .
(41208~ o B2 (el o aisrla) ) )
76 - .
= [ —lalgrn-1 Bl frpan(w [r = lag™ as s, 70q), (27)
and
76 - .
(WDl = laaes Bl ~ a* ossorl) ) 0
= [o = lalsp-1 EX5-yan @l = [ag”"a; s,7]q). (28)
The g-integro-differential equations are also derived. The one is stated below.

Theorem 21. If0<n< 1, 0<v <1, w,£ €C, a>mazx{0,0 — 1} then

( DI y)< ) = s( B) @) + f(2) (20)
with the initial condition
<qﬂy+“”“m y>(0+) = C, (30)

has solution
q(n*l/(lfn))(77*1/(1*77)*1)/2

- C _ g\intv—nv n—v(l-n)— B+n
(=) Ly(n—v(1—n)) S ) Hee
X (1= q) g B (@ (g s, 1)
(1—g)l —ng b2

) /f (@ = |tq)n-1 dqt, (31)

in the space L(0,00) wherein C is arbitrary constant.

In Chapter 6, the well known Konhauser Polynomial [6]

C(km+ p + i m zkn
ZF (k) = R(p) > —1 32
is extended with the aid of the function (1) by taking v = —m, a negative integer,

replacing 3 by § 4+ 1 and z by real variable x. This leads one to a generalized structure

of Konhauser polynomial in the form:

(B0 1) ~ Tlam+p+1) s [(=m)sn)® 2"
B Mt = S e @

in which o, 8, A >0, m, 9, u, k, s € N, r € NU{0}, and m* = [*¥] denotes the integral

part of .

This polynomial is referred to as Generalized Konhauser polynomial, briefly GKP.
For this polynomial, several properties involving inequalities are obtained which yield as
particular cases, the generating function relations and finite summation formulae. The

differential equation obtained is stated here as

11



Theorem 22. If a, B, X\, m, d, u, k, s € N, r € NU{0} and the operator © is defined
by Of(x) = x%f(x) then U = Bﬁ’ﬂ’)"“) (2%;s,7) satisfies the equation

(ot ) L (o) o

0k . [H(1s —m+1\
Tae {H<k@+ 0 >}

=0

U=0. (34)

The presence of parameter s yields an unusual inverse series relations involving the
polynomial (33). In fact for s = 1, the usual inverse series relation occurs whereas for
other values of s, the series relations involve the inequality.

If the real valued functions f(z,n;s) and g(z,n;s), s € N\ {1} are such that f(z,n;s) <
BB (k- g r) and g(x,n; s) > B (4 5 1), then one finds the following inequal-

ity relations.

Theorem 23. Let f(x,n;s) and g(x,n;s) be real valued functions, «,B, A > 0, and
w,k € N, re NU{0}. If s is odd positive integer and m, (n—a non negative integer) are
even positive integers, then

f(z,n;s) < B, (@8, M1) (2% s,7) (35)
implies
i Dlan+ 5+ 1) [Nl 0! & [(=mn),]* )
T > (mn')s - ]EO F(Cl/] T B T 1) ]‘ f(l’,], 3)7 (36)
and
implies
g(x,n;s) > Bgf’ﬁ”\’“)(xk; S,T). (38)

Towards the converse of these inequality relations, the following are obtained.

Theorem 24. Let f(x,n;s) and g(x,n;s) be real valued functions, «,B, A > 0, and
w, k€ N, re NU{0}. If either s is an even positive integer or s, m, (n—a non negative

integer) are all odd positive integers, then

o Llon+B8+1) [(Aun] n! & [(=mn);]° ’

(39)
implies
. 0< ﬂ M) (k. .
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and
gla,n;8) > BPM (ak: s ) (41)

implies

wn  Llan+ 5 +1) [()‘)un]r n! &8 [(_mn)j]s .
rs (mnl)s 2 Tlaj 1 g+ 1)1 1@ 7o) (42)

For s = 1, one obtains the following inverse series relations for the polynomial (33).

Theorem 25. For o, 5, A > 0,m,u, k€ N, r € NU {0},

T(an+ 3+ 1) W (—=1)pj 2
B,(ﬁ”g’)"“) ajk; 1,r) = - = T 43
(a1 TR PR vy r Fuy oy I
if and only if
zhn T(an + B+ 1) [(A)m] 22 mn); (B2
. _ TL BS‘7 ’ 7/"') k. 1 44
n! (mn) z:: Oé]+5+1) ’ E5h) .
and forn #ml, | € N,
- —B(?ﬁ“’“) F1,r) =0. 45
Z:: NCTEEE (x%;1,7r) (45)

Also, one of the series inequalities involving the polynomial (33) with positive terms

is obtained as.

Theorem 26. If o, 5,\,0,x >0, §,u,m, k,s € N, r e NU{0}, 0 <t <1, andp= §=0

o prh

as before, then the following series inequalities hold.

i B(QB’\m)(x s,1) jms
= B+ Dam
zk _ 1\s0
S ets OFOH-TH B o ( t) ’ (46)
Ala; B41), A( A,
o (04*5/\11)(1. s 7") tms
mz—o 5“’ 1)am m
. s. k( =t 50
< (1—=1)7% ssFatry ;o) b <H) ; (47)
Ala; B41), A A
and
= )8 (a.B,Mu1) 1, K
B0 : tms
P e Ll

<(1—t)"*E>

—t s6
o, B+1, A\, (xk (1—t> %877“> : (48)

13



The generating function relation follows at once when s = 1. One more finite series

) <o

inequality involving GKP is given in

gl
gl

=18

Theorem 27. If ,A > 0, 8, u, k,m, s,w € N, r € NU{0}, —1 < w ((g)
then

- (@)

e ()50

x B 3 s s.m). (49)

The g-extension of (33) is defined in Chapter 7. Throughout this work, («; ¢), will be
abbreviated as [a],. In parallel to the two g-exponential functions, there are two g-forms

of (33) are defined.

Definition 5. For o, 5,A >0, m,0,u,k,s € N, r € NU{0}, m* = [*}], the integral part
of %, define

(q,B—i-l;q)am m* qsk5n(m+(6nk—1)/2) qén(oa(,@—i-l)—l—ru)\)

By (@ s,rlq) =

(%" )ml* 7= (@ @an (0% @unl”
—mk. k s .kn
(4% ¢*)n
Definition 6. For o, 3, >0, m,0,u,k,s € N, r € NU{0}, m* =[], the integral part
of %, define
mk. k s .kn
b(aﬁ)\,u) 2*: s, rlq _ (q am [(q ) )5n] X . 51
(Wharlo) = g Z @ e (@5 Ol i D
Henceforth the polynomials in (50) and (51) will be referred to as ¢-GKP.
By taking m — oo in (50), one gets
Jim B ks rlg) = BPM (s rlg). (52)
This is taken up in
Theorem 28. Let
B(a;&)\’u)(xk.s T|q) _ [qﬁJrl mZ ¢ s(kén(kén—1)/2+kénm) q5n(a(5+1)+r,u/\)
[(¢%: ¢ )ml* = [¢° o [[@*]un]"
[( —mk k) n]s SL’
A (53

Then BL%PM 2k s, r|q) approaches as limit m — oo in any bounded domain to the entire

function
B+1 oo (__1\son ,s(kdn(kén—1)/24+kén(én—1)/2
B(O"B’)"“)(xk;s,r’q) _ [q ]Oo ( 1) q( ( )/ ( )/2)
[(¢%; 4¥)c)* 720 [¢%an [[g*]un]
on(a(B+1)+ruX) .kn
T (54)
(7% ¢")n
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Theorem 29. Let o, B, A\, m,d, p, k,s € N, r € NU{0}, m* = [%§] thenB @5\ ’“)(:L’k; s,7|q)

satisfies the equation

[q)(m)\nr) q)(a B+1,031) @} B(a B, M)(x s T|q)
_ skodm ok,—mk,x;s a, B, s
ok ¢ s(kd(k6—1)/2)+sks ‘sz X;$) Bfn*ﬂ u)( kq (k8)2 :5,7|q) = 0, (55)

th

where x is (0k)™" root of unity, n is u'™ root of unity, o is o' root of unity.

Theorem 30. Let o, 3,\,m,0,u,k,s € N, r € NU {0}, m* =[] then the difference
equation satisfied by W = bgﬁiﬁ’k’“) (2F;s,7|q) is

[@@“ Amir) (D(a BHLeil) g _ \Ilg.i.k’_mk’x;s)} W =0, (56)

th

where x is (6k)™ root of unity, n is ut™ root of unity, o is '™ root of unity.

If the real valued functions F(z,n;s|q), G(x,n;s|q), f(x,n;s|q), g(x,n;s|q), where
s € N\ {1} are such that

F(z,n;s|q) < Bﬁ’ﬂ”\’“)(mk;s,ﬂq), G(z,n; s|q) > B,(ﬁ’ﬁ’/\’“)(xk;s,r|q),
f,msslq) < b2 (2% s,7lg), g, slg) > bS5, rlg)
then there hold the following inequality relations.

Theorem 31. Let F(x,n;s|q) and G(x,n;s|q) be real valued functions, o, 3, A > 0, and
w,k € N, r € NU{0}. If s is odd positive integer and m, (n—a non negative integer) are

even positive integers, then
F(z,n;slq) < B2 (a%s,7]q) (57)
implies
qun(oz(ﬁJrl)Jrr,u)\) qfskmn(kmnfl)/Q (qﬁJrl;q)Om [(q)\7q)un]r (qk’qk)n
[(@%; ¢%)mn]®
mn qskj [<q7kmn

X;) (qﬂﬂ;q);cz )j]sF(I,j;S\Q); (58)

>

and

—mn(a(B+1)+ruX) q—skmn(k’mn—l)/2 (q,B-i—l;q)an [(q/\7Q);Ln]T (qk’qk)n
[(¢%; ¢%)mn]”
mn qsk] [(q—k’mn

<% g ) (59)

xk"<q

implies
G(z,n;s|lq) > B,(ﬁ’ﬁ’k’”)(:ck;s,'r’\q). (60)
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Towards the converse of these inequality relations, one can obtain the following theo-

rem.

Theorem 32. Let F(x,n;s|q) and G(z,n;s|q) be real valued functions, a, B, \ > 0, and

w,k € N, re NU{0}. If either s is an even positive integer or s, m, (n—a non negative

integer) are all odd positive integers, then

xkn N qun(oz(fBJrl)JrT,u)\) qfskmn(kmnfl)/Z (q,BJrl;q)an [(qA7q>Mn]r <qk’qk)n
[(@*; 4% )mn]”
mn _skj —kmn. kY s
¢ (g™ 4");] .
X F(z,j;slq)
jz::‘) (@715 q)ay
implies
F(z,n;slq) < BEPM (2% 5,7]q);
and
G(z,n;slg) > B (akss, rig)m
implies
xkn - q—mn(a(ﬁ—l-l)—i—’/‘p)\) q—skmn(kmn—l)/Q (qﬂ-l—l;q)om [(qk,q)un]r (qk,qk)n
[(¢"%; 4% )mn]”
mn _skj —kmn. kY s
q q q .
SN G i gm.

j=0 (qBJrl; Q)aj
For s = 1, the polynomial (50) yields the following inverse series relation.

Theorem 33. For a,,A >0, m,u,k € N, r € NU {0},

B+1. o) L] h(mi(mi—1)/24mgm) mi(a(8+1)4run)
Bty — e S P
(q 1 q ) j=0 (q 7Q)aj [(q aq)ﬂj]
(¢*: %),
if and only if
xkn _ q—mn(a(ﬁ+1)+ru>\) q—kmn(kmn—l)/2 (qﬁ+1;q)an [(qk7q)un]r
(q%;¢%)n (q"; 4% )imn
mn _kj —kmn. kY
x Z q (q 1 q )j B(oa,,B,)\,u)(xk;; ]_,’I"|q),

j=0 (q6+1; q)aj 7

and forn #ml, | € N,

n kj kY .

q (q ’q )] (Q,B,)\,H) k. J—
z; (C]ﬁ+1—@)ij* (z%;1,r|q),= 0.
Jj= 1i/a
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(61)

(62)

(63)

(65)

(66)

(67)



Similar type of results for inequality relations and inverse series relation, one can
obtain for (51).
Next, the following inequalities contain ¢-GKP.

Theorem 34. If a, B, A >0, m,0,u, k,s € N, r € NU{0}, 0 < st <1 then the following

series inequality holds.

o¢] B(a*vﬁ»)‘uu') k. s k. k . S
Z m (x 7877/.’C.I> tms S (eqk (t)) [(q ?q ) ]

= (@@ am (@°+% @)oo
xBC(j’ﬁ”\’“) (xk % s, r|q). (68)

Theorem 35. If a, 5,A >0, m,0,u, k,s e N, re NU{0},0<t <1, 0<st <1 then

00 qskm(m—l)/Q bg,?»l'@’/\’“)(:tk;S,T|q) s
m=0 (qﬁJrl; Q)am
s X (_tqfk)sén mkn
< (F k(t) . (69)
(1) nZ::o (@™ Dan (@5 Dpnl™ (675 6%)n
Theorem 36. If 5, A € Ruo, m, 0, u, k, s € N, r € NU {0}, then
km
B m L1y @G0
B @il < (@i (1) 3
y ;0 (¢*;9);
k (kBA) () K.
% <<y>6 qk(—j—s-i-l).qk) B(m—j)* (y ’S’T‘Q)' (70)
T j (qBJrl; Q)k(m—j)
Em R o kj
@B, N Mmoo (—1 ]qskj(j+1)/2 skmj qﬁ+1;q ko z\ &
e anrla) < (3) 3 EREE e S (4)
y) = (@ (@565, k
k
y 3 —S «, a>‘7
X <(I) ¢*¢ );q’“> bl ("5, 7la). (71)
J
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