Chapter 7

The ¢-/-V Bessel function

7.1 Introduction

The ¢-f-¥ exponential functions were introduced in Chapter 5. In this chapter,
the product of such exponential functions will be considered and it will be shown
that the product indeed generates the function which turns out to be a g-analogue
of the ¢-H Bessel function (¢-HBF) of Chapter 6.

In the following, the definitions of the ¢-¢-¥ exponential function and the ¢-¢-¥
trigonometric functions are restated.

(i) The ¢-¢-¥ exponential function denoted and defined in Chapter 5 is given by
(5.11)

6&(2361) = 1‘1’(1)

0; - 2"
ok, ] 2 (71)

with |2] < | /12 T W)™ and w0
If¢{=0o0rz= 0
e (21q) = eg(z) and ef(05q) = 1. (7.2)

By replacing z by iz in (7.1) provides in view of (5.45) and (5.46),

. . 0 (_1)n Z2n . o0 (_1)n 22n+1
i) elimg = ST Ly B2 (73)
; ()5 ; (43 Q)i
= cosy(z;q) +ising(z;q) (7.4)
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(i) 5 [ehlizsa) + ey (~imq)] = coshlz:0), (7.5)
(V) o [ehliza) — ch(~ia)] = sinf(z:) (7.6)
(v) cosy(—zq) = cosy(z;q), and sing(—zq) = —sing(z;q), (7.7)
and
(vi) cosy(z;q) = cos,(2), and sing(z;q) = sing(2). (7.8)

A g-analogue of ¢-binomial coefficient may be defined as follows.

Definition 7.1. For 0 < k < n, the ¢g-¢-binomial coefficient may be denoted and
defined by

n ©) B <q q)€n+1
k In—lk+1

. (@i (ot

Remark 7.2. For ¢/ = 0, the ¢-¢ binomial coefficient reduces to the ¢-binomial

coefficient .

For z1, 25 € C, if (z —1—22)( 9 denotes a g-f-analogue of (214 z2)" then this suggests

the ¢-¢ binomial theorem in the form:

n O
n n n—
(21 + 2y = E : {k} A7 2. (7.9)
k=0

q

This theorem may be used to prove the following g-f-analogue of the identity:

exp(z1 + 22) = exp(z1) exp(z2)

which will be used later on.

Lemma 7.3. For the q-0-V exponential function, there holds the identity:

ep(z1+2:9) = eg(2139) eg(2:9). (7.10)
Proof. From (7.1),
Zl + ZQ
6{1,(21 + 2954 Z Zn—i—elq)' (711)

=0 )
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In view of (7.9),

n In+1

1 (¢:q), _
0 ) n—k _k
ey(z1 +22;q9) = E - E ” 277" 2
v (q q)z +1 (q q)ﬁ k£k+1 (q q>€k+1 1 2

21 %
= § :§ : n—lk+1 )£k+1

o @a), T (4

n [e.o]

o0 k
o 21 29
S

=0 a9

= efy(zl;Q) 63(2’2;@-

]

Remark 7.4. Since from (7.2), e4(0;q) = 1; it further follows from (7.10) with

29 = —z; that

cy(2139) eg(—21:0) = ey —239) = ey(0q) = 1. (7.12)

As in the case of /-HBF and its GFR in Chapter 6, here also the Laurent
series expansion of the product of two ¢-¢-¥ exponential functions enables one to
define an f-extension of the ¢-Bessel function J,(ll)(z; q). The ¢-¢-V trigonometric
functions then help in deriving ¢-¢-analogues of certain properties of an extended

g-Bessel function. This function is defined as follows.

Definition 7.5. Let R(¢) > 0,n € N U {0}, then the ¢-¢-¥ Bessel function or
briefly, the ¢-¢-UBF is denoted and defined by

¢ ()R (z/2)"
Jnw(230) = Z <q.q)£k:+l (q.q)érf];fk-i-l' (7.13)
=0 \4; 1 4)n

Remark 7.6. For ¢ = 0, the ¢-¢-WBF (7.13) reduces to g-analogue of Bessel function
23, Ex. 1.24, p.25]

I o (7 3 ( / 2" = JW(z; 7.14
-0 n

The convergence of the series in (7.13) is examined in

Theorem 7.7. If R({) > 0 then q-(-VBF is an analytic function of z.
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Proof. Consider

00 (2/2)n+2k
o (2:0) Z ek+1 s Zgnk

0 qqn+k

Then in view of the formula

(a;q)n =

Gt = |F[F|—CDEEA
21 g™ (g o)™
_ |2k |22 /4| k
R, 4 k) (10— @R [T+ 0+ k) (1= )] F
N 2%/4|
2

FZ"'k( 14+ k) 1‘\ Y3 +Z+k<1 +n4+ k) (1 _ q)€k+1+(n+k)(%+€+%)

Here using Stirling’s formula of ¢-Gamma function [41, Eq.(2.25), p.482]:

0q”®

) ~ (k) T (5 ) (- 0 e (7.15)

for large |z| with 0 < 6 < 1, one further gets

n n2 .
|z/2|% |Z2/4| )(1 _(])72&%2£1@72J~’T,E

|€n,k|E ~ ?R(Z)—l—l
1 1 1 LR k
(L+q)F Tpp (3) (1= 37070 eimamarss
o 1
o ginih |R(E+EHT)

(140t T (1) (- b0 (5

o gtk |TRO—%
Py
2/2F 1224 (1—g)*2 |
= (ent+1) __9p4+ Unt2) " R(n o1
(1 + C])5+72k | P (%) 6% ( k k)

for large k. Now from the Cauchy’s root test:

1
— = lim sup /&l
k—oo
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[22/4] (1 = q)f
1+ T%(3)

Y

hence it follows that the ¢-/~-WBF converges inside the open disk

I 1
2 = 2 [
1—gq 2

R(0)
(7.16)

[
Next, the relation: J_,(z;q) = (—1)"J.(z;q), for n negative integer, is also put in
the ¢-¢-form which will be used later in obtaining certain properties.

Lemma 7.8. For a negative integer n,
(_1)n Jﬁ,\p(ZS Q) = an,\l/(ZQ Q)- (7~17)

Proof. Consider the left hand member

o e (=1)® (z/2)"
CU ez = (21) ;(q;(@ﬁs)“ iq;/q;?ﬁfs“
Sy

— Z(

¢ q)t (q; )8ttt

s=0

Taking s + n = k, this simplifies to

T I S e Tl

p— (q; q)ik-i-l (q; q)ili—fn-i-l
= Je(z9).

7.2 Main results

For the ¢-¢-UBF, the generating function relation (GFR) will be derived first and

then the difference equation and integral representation.
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7.2.1 Generating function relation
The GFR is obtained in
Theorem 7.9. Fort # 0 and for all finite |z|,
i Jf;q,(z;q) =" <2 (t —t ) q) , (7.18)

n=—oo

where €5,(z;q) is as defined in (7.1).

Proof. Here the left hand member

Y Jhelzaot = Z @zqt”+z PR

n=—oo n=—oo
o0

= Z J () T Z T (2
n=0 n=0

q) t

In view of Lemma 7.8 and defining series (7.13), this may further be written as

Z Jﬁ,\y(zS q)t

= Z( Dk Jﬁ+1 w(2q) 71+ Z Jﬁ,\y(z; q) t"
n=0 n=0

> (_1)n+k+1 (2/2)n+2k+1 = 1

(Z/Q)nJer n

= +
n;() (q’ q)fk—H <q q>i11—&;€€fit—f+l n;() Ek—l—l (q q)flw:_—sz—i-l
io: %] n 2k+k+1 (Z/Q)n 2k+2k+1 t= n+2k—1
et (q, O (g @) !
% %]

Z/Q)n 2k+2k tn 2k

1
+ZZ Ekz—l—l (q )En 20k+Lk+1

n=0 k=0 q7 q n—2k+k
n=0 k=0 (q Q)Ek"‘l (q’ q)ﬁn —Clk+1 - Ekz—i—l (q q)f;n k£k+1

]

S

nfljl
2

[

) [ - - o
_ (=1)"* (z/2)" £+ (" G2y o
= 1+ Z Z (¢ )EkJrl (q: fn—tk+1 + — (q; q)£k+1 (¢:9)

n=1 k=0

In—Fk+1
n—k
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Next, using Lemma 6.10, this simplifies to

o n 9\ n—2k
Z nw(20) - 1+ZZ( ek+1z</) 0kt 1
n=1

n=-—00 =0 q; q)n k
B i > ) Z/Q)n—s-k n—k
- YL ( n
n=0 k=0 ¢q); " (4 Q)e o
— (2/ Z/ 2)* ¢
- z( oS
n=0 k=0
B —z
- 2t 1
Finally, the GFR follows from Lemma 7.3. O]

7.2.2 Difference equation

The difference equation of the ¢-/-WBF is obtained by means of the infinite order
g-hyper-Bessel type difference operator which was defined in (3.5). This is restated
here.

Let f(2) = io: ang 2", 0# 2 € C, pe NU{0}, a € C and the difference operator

6, be deﬁner(bi:{’)y
0.f(2) = f(z) — f(2q). (7.19)
Define

Ooan a;q) (@@ 0, —q* P+ 1) 2 ifpeN
pANf(2) = n; 0 (45 0y (477 0 4 ) P (7.20)

f(=), if p=0.

Also, the lowering and raising operators defined in (6.20) and (6.21) are:

o0

Z (a— 1)k

k=0

and
o

a+f Z a+1)k

k=0

where f(z) = > ar, 2°%, a € R, and as suggested by (7.20), the operator:
k=0

AL (F(2) = A (04(f(2)))- (7.21)
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The following operator symbol will be used.
O = (014 (Ayz™ (N 0,) . (7.22)

With these operators, the difference equation of the ¢-¢-UBF is derived in

Theorem 7.10. For {,n € NU{0} and z # 0, w = J! y(2;q) satisfies the

difference equation

z—n+2

{ JOED ] w =0, (7.23)

where (O is as defined in (7.22).

Proof. Beginning with the left hand side operator:
OFD Ty w(2:9)

_ ~  (—D)F (z/2)n T
= O qu z " gAq Os_
(Ors sy uO-) (; (¢ ) (g5 )l
00 (—1)k pnth )

= 01+ ZA?wan ZA?\J
; 2042 (g ) (g )™

_ - (=1 0y (")
= OH_ gAq z " EAq n
M M kz:; on-+2k (q; Q)ik—H (C]; q)fl:]-fk—&-l

e (_1)k ZTL+]€
Ck+1

= 01+ gAq z " qu -
" M % 2mt2k (g3 ) (43 0) 7 (43 e

_ Oy, A f’: (—1)k <Q§Q)fl+k71 anwk otk
— N k .
. 22 (g ) (4 Q)" (6 Dnrn

Now in (3.10), ¢ = 1 gives

In+Lk
e(l;n—i-ﬂk Zn-‘rk: — (1 _ qn—i-k) Zn-i—k

Y

Hence
OSSN ER)

o At i (—1)k pnth
= 1+ 3 on-+2k (Q;Q)ik—H (q;q)ﬁn-i-ﬁk—é-i-l

k=0 n+k—1

_ o,y (T C1
= Uip Ay ont 2k tht1 Inlk—+1

=0 (Q§Q>k (QQQ)n+k_1
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- (—1)F 2
= O14 A E n
" < 22 (g ) (g (@)
> (—1)F (q;q)5_; 0% 2*
= 01+ < E 2n+2/€ ( : In+Lk—0+1
k=1

¢ OE (@ @)e-1 (@595
o (S OV a0
- + n
= 22 (g ) (g3 @)k (@5 )i

= Oy Z on+2k )Zk +1 ( Intlh—0+1

p (¢: 9 @Dyt

e l)k Z2k
= E : n+2k ( Zk +1 In+Ch—l+1
2 () )

1)k+1 2k+-2

- Z 2n+2k+2 )€k+1 (

=0

In+Llk+1
T Q)i

Z—n+2

]

Remark 7.11. The zero order ¢-(-UBF, that is w = J§ 4 (2; ¢) satisfies the difference
equation:
0 + 2w =0,

where U5 = (0,4 (A1) Oq).

7.2.3 The ¢-(-VBF integral

The g-Laurent’s theorem as considered by Ahmed Salem [47, Thm. 4.11, p.148-

150] reads in the following form.

Theorem 7.12. If f(z) is analytic function on the annulus surrounded by two
concentric circles C' and C' of center at the origin point with the point zy lies
inside C" where C" is completely contained in C, then at any point of the annulus,

f(2) can be expanded in the form

: (7.24)

where
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and

1 k-1 (*0,
by = 57 | W ( 7q)/k_l f(w) dw.
C/

He remarks in [47, Rem. 4.3, p.150] that the ¢-Laurent series (7.24) is
equivalent to the classical Laurent series when zy = 0. In view of this and using
the ¢-¢-U trigonometric functions (7.4), the ¢-f-analogue of the Bessel’s integral is
obtained in

)

R(L)
Theorem 7.13. Forn € Z and |z| < ‘ }%Z [y (%)’

™

1
J: y(2:q) = —/ [cosnb cosy(zsinb;q) + sinnf sing(zsinb;q)] dd.  (7.25)
’ 7r

0

Proof. The GFR of the ¢-¢-UBF obtained in Theorem 7.9 may be regarded as the
Laurent series expansion of the function e§, (g(t —t7h); q) ; valid near the essential
singularity t = 0. Then the coefficient in this series is given by

IR <z

Jﬁ,\y(z; q) = i u" el §(u — u_l);q> du, (7.26)

where the contour (0+) is a simple closed path encircling the origin « = 0 once in
the positive direction.

In (7.26), by choosing the particular path

0

u=-e" =cosf +isinb,

where 6 runs from —7 to 7, one finds

™

1 —n—1)i Z oy o - g
thq,(z; q) = - elmn=Dib oL (5(2z sin 6); q) ie’df (7.27)
1 . . o
= 5 (cosnf — isinnf) [cosy(zsinb; q) + ising(zsind; q)] db
7r

—Tr

1 -
= —/cosn@ cosy (zsind; q) df + —/sinn9 sing (zsin 6; q) dé
2m 2m

_% /sinne cosy (zsin@; q) df +/ cosnd siny (zsin6; q) df

= [1 + [2 + Ig + [4 (say).
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In view of (7.7), it may be seen that the integrands in I; and I, are even functions of

6 whereas the integrands in I3 and I are odd functions of 8, giving Is = I, = 0. [

R(0)
Remark 7.14. For ¢ = 0, |2| < ‘,/% [ (%)‘ implies |z| < 1; and (7.25)
reduces to the g-Bessel integral (cf. [53, Thm. 3.13, p.38])

I 1
I (zq) = Py /6_’”6 — do.
m (zel —ze v q>
o 2 2 )

Further, if ¢ — 1, then in view of (7.8) and (7.14), (7.25) reduces to the Bessel’s
integral [46, Theorem 40, p.114]:
1 [ .
Jn(z) = —/COS (nf — zsin ) do,

™
0

for integral n.

7.3 Other properties

Here a differential recurrence relation is derived and then with the help of the GFR

and the ¢-/-WBF integral representation, some other properties will be deduced.

7.3.1 Differential recurrence relation

In Chapter 5, it was proved that with respect to the operator defined in (5.37),
the ¢g-f-¥ exponential function is an eigen function. It is restated below.
In Chapter 5, the following operators was introduced.
For f(z) = i an 2", |2| < R,R >0, pe NU{0},
n=0

. Ooan a;q)?  ((1—=q) D2 2 if peN
Q%) = nZ:?l a (@@)h_y (1 —q) DY) p | (7.28)

f(z9), if p=0

where D7 is the g-analogue of hyper-Bessel differential operators (2.8) given by

(D)™ = DyzDy ... DyzDy,

-—
n derivatives
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and
DD = {m?q} 0,. (7.29)
This operator is also useful in deriving the differential recurrence relation.

Theorem 7.15. For / € NU {0},

2 DI G (20) = Ty (20) — To o (259). (7.30)

The theorem is proved by using the following lemma which describes the

eigen function property of the ¢-/-¥ exponential function.

Lemma 7.16. The q-(-V exponential function 6\11 ( (t —t71)5q) with t fived, is
an eigen function with respect to the operator ﬂ? as defined in (7.29). That

18,

P G- =30 A Ge=) - aa
for fized t.
Proof. Here

vy » D: ~(t—t~

ﬂ)gw’ ) |:€€I, (% (t_t ;CI))] = @Q <9q Z 2n q C] En-i—l )
(=" (2" — (2q)"
= (;( Qn)( .Z)enﬂzq )>

>DZ>" n

&=t (g (-
a Z 2% (¢; )% (¢; @)n—

n=1

Now applying the same procedure of deriving (5.42), one gets for n € N,

(1 _ q)én (]D)g)gn P (1 . qn)Kn Zn—l'

Hence
00 V4 n\fn n—1
(za) [0 (% . (t—t")" (;q) 1 (1 —q")™ 2
2[4 (30 -
[ (5 ) ; 2” (q q)n (q On1
B i (t _ t*l)” n—1
n—1 2" (g; C.I)f;n 1éJrl
(t . t_ )TL+1 Zn

WK

gn+1 (q, q)EnJrl

I
=)

n
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= Ly e (Z—i
= 5(— ) € 5(— 1) ) -
O
Proof. (of Theorem 7.15)
From Theorem 7.9,
z
efI,(Q(t—t > n_z_:oo lI,zq
By applying the operator gD 9 both the sides, it gives
P z z; n
ﬂ)g\f) [efp (5 (t— ﬂ Z D( ) \1: zq)) "
From Lemma 7.16, this may be rewritten as
1 -1y ¢ (7 -1 S (z:0) ( 70 n
St e (G-t50) = > DiY (uza) ¢
Once again using Theorem 7.9, one finds
Z /Dy (z39) vo(z9))
t - £ n —1 - £
:—ZJf;\I,zqt”“ ZJfL\qutnl
1 - 4 n 1 = 14 n
-9 Z Jnrw(z0) t ) Z Jn+1,\p(Z3Q)t :
On comparing the coefficients of t" both sides, the result follows. O]
The iteration of the relation (7.30) yields the following general formula.
Theorem 7.17. Ifn € NU{0} and k € N then (cf. [46, Ex. 7, p.121])
k NN - ke [ B qe
#(25) Sateia) = L0 (M) Hmaia. (132)

m=0
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Proof. For k =1, Theorem holds true from Theorem 7.15. That is,

2 qu qul/(z q) = Jn 1\1/(2 q) — Jﬁﬂ,@(%‘])-

Here, applying the operator 2 ﬂ)g\?q) both the sides, one finds that

. 2 Z. Z.
22 ( EDE\Z’(])) Jﬁ,\p(% q) = 2 ZDJ(W,q) Jﬁ—l,\p(z% q) —2 EDE\/I) J£+1,x11(2$ q)
= Jhow(z0) =27, 4(29) + Ty u(29)

22: < )Jﬁm_gm,\y(z; q). (7.33)

m=0

Similarly,

2 (Dl Q)) o (2:0)
= 2 fD(z;Q)JfL 2\11(2" q) —2 ED(Z;q) [QJﬁ,\IJ(ZS Q)} +2 Zpﬁ;q)ljﬁw,\y(z? q)
= Jﬁ ( ) 3J 1,\11(»2’; Q) + 3J€+1 @( Q) - J£+3,\IJ(Z§ CI)
3
Z ( )J£+3—2m,\y(2; q)-
m=0

The recursive procedure k-times, leads to the theorem. O]

Alternatively, this theorem can also be proved by using the principle of mathe-

matical induction on k.

Proof. (Alternate proof Theorem 7.17)
For k =1, it is true from Theorem 7.15. Now suppose that the theorem holds for

k =some positive integer r. That is,

T

r (D7) St = S0 () et (30

m=0

Then to prove that for k = r + 1 the theorem holds true. In fact,

or+1 ( ﬂ)g‘?q))rﬂ Jﬁ o(2:9)
= 2,0 < ( e ) \I'(Z;(D)
= 2,D;" (Z < )Jé+r am,w (% CI))

= 2y §\4 [( 1)"J, n—i-r\I/(Z q) +r(- )T_l ‘]7€+7"—27\I/(Z; qQ)+...+ Jﬁ—r,\y(Z;Q)] :
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Once again using Theorem 7.15, one gets

ort! ( @D(Z‘q))r+1 e
= ()" (20 = Jope (O] (=0 [ ge(20) — T w(20)]
+...+ [Jﬁ 1rw(29) _J£+1 r\p(z'Q)]
= (- 1)”1Jﬁ+1+w(2; Q)+ (=1 + D w(0) + o 4 T e(250)

r—+1
Jra1-m r+1
= Z i ( > J£+r+172m,\11<2; q)

m

as desired. O

In the following theorems, some other properties are extended.

Theorem 7.18. There hold the identities (cf. [46, Ex.2, p.120]):

cosh(z1q) = Jou(ziq) +2> (=1)" Jj, 4(2:0), (7.35)
n=1
sing (z;9) = 22 ‘]2n+1\Il z;q). (7.36)

Proof. From the GFR of the ¢-¢-UBF (7.18) and the identity (7.17),

€y (g(t—t‘lsq)) = i Jrw(zq)t

= Jow(zq) + i JEg(zq) " + i I w(zig) "
n=1 n=1
= Jou(#q +Z wo(z) [+ (=D)" . (7.37)
Taking t = 4, and thereby ¢t ! = —i, one gets
lizna) = Toglza) 3 Ty(zia) [+ ()" i
n=1
— el + Y () [ (P

n=1

£ Ha () [P 4 (<1 i Cra)
n=0
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Finally, in view of (7.4), this gives

cosy(z;q) +ising(z9) = Jou(zq) +2) (1) S u(z0)

n=1
oo

+2i Y (=) Ty (2 9)-
n=0

On comparing the real and imaginary parts, the theorem follows. O

Theorem 7.19. There hold the identities (cf. [46, Ex.3, p.120)):

cosy (zsing (6;9)iq) = Jou(2:0) +2 ) S, u(21q) cosy(2n8;q), (7.38)

n=1

sing (zsin§ (6;9);9) = 2 Jriw(2iq) sing((2n+1)6; ). (7.39)

n=0
Proof. In (7.37), substituting t = €4 (if), the ¢-f-¥ exponential function, one finds
Y4 E 0 0 R 0 .
€y B (6\11(2 1q) — ey (—i ,C])) 1 q

= Jow(z0) + DT u(z1q) [ey(ind; q) + (—1)" ef(—inb; q)]

n=1
= Ju(z0) + D T u(z0) [€4(2in6; q) + (—1)™ ef(~2inb; ¢)]
n=1
+)  Tw(z50) [eh((2n + 1)ib; q) + (—1)"F e (—(2n + 1)if; q)]
n=0
= Jow(z0) +2> J4, 4(2;q) cosy(2n6; q)
n=1

+2i > T4 e(2:q) sing((2n +1)6;q).

n=0

From (7.6),

<§ (e5(i0; q) — ey (—i6;q)) ;q>

= ¢4 (izsin(6;9); q)

= cosy(zsing (0;q); q) + ising (zsin (6;q); q),

hence the result follows by comparison of the real and imaginary parts. O
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Theorem 7.20. For n € Z, there hold (cf. [46, Ez.3, p.120]):
n 4 2 l :
1+ (=1" Jou(z5q) = %/cosne cosy(zsin6; q) dé, (7.40)
0
n 4 2 . ./ .
1—(=1)" J,4(2;9) = —/smn9 sing (zsin 0; q) d6. (7.41)
’ T
0
Further,
14 1 /¢ .
Jonw(2:q) = —/cos?n@ cosy (zsin6; q) db, (7.42)
’ 7r
1
Jani1w(z1q) = —/sm (2n 4+ 1)0 sinf (zsin6; q) df (7.43)
’ T
0
and
/cos(Qn—l— 1) costy(zsinf;q) d = 0, (7.44)
0
/sin2n9 sing (zsinf;q) dd = 0. (7.45)

0

Proof. The ¢-(-UBF integral (7.25),

™

1
Jhe(zq) = %/[cos nf cosy(zsind;q) + sinnd sing (zsinb;q)] do. (7.46)

0

Hence

>]|,_.

‘]fn\I! Z q

that is,

/cos —nf) cosy(zsinb;q) + sin(—nf) sing(zsinb; q)] do,
0

(=1)"JE y(2:q) = l/[cos nf cosy (zsin 0; q) — sinnd sing (z sin 6; q)] d6(7.47)
’ 7r

0

Here adding (subtracting) (7.46) and (7.47) one obtains (7.40) ((7.41)).

By considering even ordered ¢-¢-WBF in (7.40) and odd ordered ¢-¢-UBF in (7.41)
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yield (7.42) and (7.43) respectively.
Similarly, if the order n is an odd (even) integer, then (7.40) ((7.41)) furnishes
(7.44) ((7.45)). O

7.3.2 Addition formula

Theorem 7.21. For the q-(-V BF, there holds (cf. [59, Sec. 2.4, 2.5, p.30])

Jﬁ’\p<21+22;q> = Z J v(z159) J,_ m‘l,(zg;q). (7.48)

m=—00

Proof. On substituting z = z; + 25 in the contour integral (7.26) and then using
the property (7.10), one obtains

(0+)
1 R |
Jﬁ\y(zl —|—22,q) - u—n—l e{p (Zl +22) (u U )’q du
’ 2mi 2
(0+)
1 Cn— 21 Z
= 3 by <§(U—U 1)#1) ey <—(U—U 1)#1) du
(04) .
1
= 5= w L m_zoo Jf;b’q,(zl,q) U ef}, (z—(u — u’l);q> du
(04+)
1 . z _
= mZOOJ v(215¢ 5 / um™ el <§(u —u 1);q) du.
Once again making an appeal to (7.26), (7.48) occurs. O
Corollary 7.22. The series relation:
Jﬁq/ZZq ngzq/Zq nm‘llzq +22 an\pZQ) ‘]n-i—m\I/(Z q)

(7.49)
holds.

Proof. 1f z; = 25 = z, then (7.48) reduces to

Jow(22q) = Z ot (70) Ty w(250)

m=—0oQ

m=0

m=—0oQ
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= ZJ (2;9) nmmzq+z

m=—0oQ

+ Y The(za) T e(z09).

m=n+1

This in view of (7.17), gives

Jrl;,‘ll(2z;q> = ZJZ w(2:0) Jymw(ziq +Z
m=0 m=1
+ ) U™ Trw(20) Jpime(2:9)

= D Inu(20) Jumu(zia +2Z

Remark 7.23. For £ =0 and ¢ — 1, this result reduces to

ZJ +2Z

\qu nm\IJ(ZQ)

\1/ z; Q) Jn+m\I/(Z Q)

Jﬁm Z Q) Jn-i—m\Il(Z Q)

n+m(z)
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