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Abstract In the present work, we introduce the function representing a rapidly con-
vergent power serieswhich extends thewell-known confluent hypergeometric function
1F1[z] as well as the integral function f (z) = ∑∞

n=1
zn
n!n considered by Sikkema (Dif-

ferential operators and equations, P. Noordhoff N. V., Djakarta, 1953). We introduce
the corresponding differential operators and obtain infinite order differential equations,
for which these new special functions are the eigen functions. First we establish some
properties, as the order zero of these entire (integral) functions, integral representa-
tions, differential equations involving a kind of hyper-Bessel type operators of infinite
order. Thenwe emphasize on the special cases, especially the corresponding analogues
of the exponential, circular and hyperbolic functions, called here as �-H exponential
function, �-H circular and �-H hyperbolic functions. At the end, the graphs of these
functions are plotted using the Maple software.
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1 Introduction

The hypergeometric function [4,11] is denoted and defined by

2F1

[
a, b; z
c;

]

=
∞∑

n=0

(a)n (b)n
(c)n

zn

n! , (1)

where c �= 0,−1,−2, . . . and |z| < 1.
When one of the numerator parameters is allowed to tend to infinity, then this

function reduces to the lower order hypergeometric function which is termed as the
confluent hypergeometric function. Thus, for each z interior to the disk |z| = 1,

lim
b→∞

∞∑

n=0

(a)n

(c)n n!
(b)n
bn

zn =
∞∑

n=0

(a)n

(c)n n! z
n = 1F1

[
a; z
c;

]

. (2)

The function 2F1 is analytic in the unit disk, but the confluent function 1F1 has the
series convergent for all finite values of |z|, and is an entire function.

In 1953, Sikkema [12, p. 6] considered the entire (integral) function

f (z) =
∞∑

n=1

zn

n!n (3)

of order zero.
We introduce here a new class of special functions suggested by the power series

representations (1), (2) and (3), as follows.

Definition 1 For z ∈ C, define the �-Hypergeometric function (�-H function) as

H

[
a; z
b; (c : �);

]

=
∞∑

n=0

(a)n

(b)n (c)�nn

zn

n! , (4)

where (α)n = Γ (α+n)
Γ (α)

, a, � ∈ C with �(�) ≥ 0, and b, c ∈ C/{0,−1,−2, . . .}.
Remark 1 We note that

H

[
a; z
b; (c : 0);

]

= 1F1

[
a; z
b;

]

.

2 Main results

2.1 Convergence

The series in (4) is convergent for all z ∈ C which is proven in the following theorem.
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Theorem 1 If �(�) ≥ 0 and � (
c� − �

2 + 1
)

> 0, then the �-H function is an entire
function of z.

Proof Put

(a)n

(b)n (c)�nn n! = ϕn,

then using the Cauchy–Hadamard formula:

1

R
= lim

n→∞ sup n
√|ϕn|,

we have

1

R
= lim

n→∞ sup

∣
∣
∣
∣
∣

∞∑

n=0

(a)n

(b)n (c)�nn n!

∣
∣
∣
∣
∣

1
n

= lim
n→∞ sup

∣
∣
∣
∣
Γ (b)

Γ (a)

∣
∣
∣
∣

1
n
∣
∣
∣
∣
Γ (a + n)

Γ (b + n)

∣
∣
∣
∣

1
n ×

∣
∣
∣
∣

Γ (c)

Γ (c + n)

∣
∣
∣
∣

� 1

Γ
1
n (n + 1)

.

Now applying the Stirling’s asymptotic formula [4] for large n, given by

Γ (α + n) ∼ √
2πe−(α+n) (α + n)(α+n−1/2), (5)

with α = a, b, c, 1 in turn, we get

1

R
∼

∣
∣
∣
∣
Γ (c)√
2π

∣
∣
∣
∣

�

lim
n→∞ sup

∣
∣
∣
∣
Γ (b)

Γ (a)

∣
∣
∣
∣

1
n

∣
∣
∣
∣
∣

√
2π e−(a+n) (a + n)a+n−1/2

√
2π e−(b+n) (b + n)b+n−1/2

∣
∣
∣
∣
∣

1
n

× 1
∣
∣e−(c+n) (c + n)c+n−1/2

∣
∣�

∣
∣
∣
√
2π e−(n+1) (n + 1)n+1−1/2

∣
∣
∣
1
n

=
∣
∣
∣
∣
Γ (c)√
2π

∣
∣
∣
∣

�

lim
n→∞ sup

∣
∣
∣
∣

1

nc�− �
2+1

( e

n

)�n
∣
∣
∣
∣

= 0,

provided that �(�) ≥ 0 and � (
c� − �

2 + 1
)

> 0. 
�

Remark 2 1. The series
∑

φnzn thus converges uniformly, in any compact subset of
C.

2. It may be observed that our new class of functions (4) preserves the entire function
property of (2).
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26 Ann Univ Ferrara (2016) 62:23–38

2.2 Order of �-H function

Theorem 2 If the conditions stated in Theorem 1 hold, then the �-H function is an
entire function of order zero.

Proof We use the result which states that if f (z) = ∑∞
n=0 anz

n is an entire function
then the order ρ( f ) of f [2,10] is given by

ρ( f ) = lim
n→∞ sup

n ln n

ln |ϕn|−1 . (6)

Now from the definition of the �-H function,

|ϕn|−1 =
∣
∣
∣
∣
Γ (a)

Γ (b)

Γ (b + n) Γ �n(c + n) Γ (n + 1)

Γ (a + n) Γ �n(c)

∣
∣
∣
∣ .

Hence,

ln |ϕn|−1 = | lnΓ (a) − lnΓ (b) + ln(Γ (b + n)) + �n ln(Γ (c + n))

+ ln(Γ (n + 1)) − ln(Γ (a + n)) − �n ln(Γ (c)|.

Since

lnΓ (r) ∼
(

r − 1

2

)

ln r − r + 1

2
ln

√
2π

for large r , we have

ln |ϕn|−1 ≤ |lnΓ (a) − lnΓ (b)|
+

∣
∣
∣
∣

(

b + n − 1

2

)

ln(b + n) − (b + n) + 1

2
ln

√
2π

∣
∣
∣
∣

+
∣
∣
∣
∣�n

[(

c + n − 1

2

)

ln(c + n) − (c + n) + 1

2
ln

√
2π

]∣
∣
∣
∣

+
∣
∣
∣
∣

(

n + 1 − 1

2

)

ln(n + 1) − (n + 1) + 1

2
ln

√
2π

∣
∣
∣
∣ + |�n(lnΓ (c))|

+
∣
∣
∣
∣

(

a + n − 1

2

)

ln(a + n) + (a + n) − 1

2
ln

√
2π

∣
∣
∣
∣ . (7)

But since

lim
n→∞

ln |ϕn|−1

n ln n

is unbounded as n increases without bound, hence it follows from (6) and (7) that

ρ

(

H

[
a; z
b; (c : �);

])

= lim
n→∞

n ln n

ln |ϕn|−1 = 0.


�
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Remark 3 It is proved that [1, Theorem1.1] “If f is entire and ρ( f ) is finite and is
not equal to a positive integer, then f has infinitely many zeros or it is a polynomial.”
Hence it follows that the �-H function has infinitely many zeros.

2.3 Integral representation

The integral representation occurs by routine calculations; which is obtained below.

Theorem 3 With �(b) > �(a) > 0, c, b �= 0,−1, . . . , and � (
c� − �

2 + 1
)

> 0,

H

[
a; z
b; (c : �);

]

= Γ (b)

Γ (a) Γ (b − a)

1∫

0

ta−1(1 − t)b−a−1

× H

[−; zt
−; (c : �);

]

dt. (8)

The proof follows readily in view of the technique adopted in [11, Ch.4, p.47].
The integral in (8) can be viewed also as fractional order integral of order b − a with
�(b − a) > 0, and makes the result expectable from this point of view (see ideas in
[5], also [9, Eq.(5.1), p. 245]).

However, the differential equation of the �-H function is derived with the aid of the
following operator.

Definition 2 Let f (z) = ∑∞
n=1 anz

n, 0 �= z ∈ C, p ∈ N ∪ {0} and α ∈ C. Define

pΔ
Θ
α ( f (z)) =

{∑∞
n=1 an(α)

p
n−1(Θ + α − 1)pnzn, i f p ∈ N

f (z), i f p = 0
, (9)

where Θ is the Euler differential operator θ = z d
dz and

(Θ + α)r = (Θ + α)(Θ + α) · · · (Θ + α)
︸ ︷︷ ︸

r times

is a special case of the hyper-Bessel differential operators (see e.g., [5–7]).

We then have

Theorem 4 For � ∈ N ∪ {0}, a, z ∈ C, and b, c ∈ C/{0,−1,−2, . . .}, the function
w = H

[
a; z
b; (c : �);

]

satisfies the differential equation

{{
�Δ

θ
c

} {θ + b − 1} θ − z(θ + a)
}
w = 0, (10)

where the operator �Δ
θ
c is as defined in (9).
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Since the operator defined by (9) involves the infinite series, its applicability is
subject to the convergence of the series with the general term an fn(a, b, c, �; z), n ≥
0. This is proved in the following lemma.

Lemma 1 If � ∈ N∪{0}, w = H

[
a; z
b; (c : �);

]

= ∑∞
n=0 anz

n and
({

�Δ
θ
c

} {θ + b

−1} θ) w = ∑∞
n=0 fn(a, b, c, �; z), then ({

�Δ
θ
c

} {θ + b − 1} θ
)
is applicable to the

�-H function provided that

∞∑

n=0

an fn(a, b, c, �; z)

is convergent (cf. [12, Definition 11, p. 20]).

Proof Let

w = H

[
a; z
b; (c : �);

]

=
∞∑

n=0

(a)n

(b)n (c)�nn

zn

n! =
∞∑

n=0

anz
n .

Now

{{
�Δ

θ
c

} {θ + b − 1} θ
}
w = {

�Δ
θ
c

} {θ + b − 1} θ

( ∞∑

n=0

(a)n

(b)n (c)�nn

zn

n!

)

= {
�Δ

θ
c

} {θ + b − 1}
( ∞∑

n=1

(a)n

(b)n (c)�nn

zn

(n − 1)!

)

= {
�Δ

θ
c

}
( ∞∑

n=1

(a)n

(b)n (c)�nn

(n + b − 1) zn

(n − 1)!

)

=
∞∑

n=1

(a)n

(b)n−1 (c)�nn

(c)�n−1 (θ + c − 1)�n zn

(n − 1)! .

Since,

(θ + c − 1)�n zn = (n + c − 1)�n zn, n ∈ N,

we have

{{
�Δ

θ
c

} {θ + b − 1} θ
}
w =

∞∑

n=1

(a)n

(b)n−1 (c)�nn

(c)�n−1 (n + c − 1)�n zn

(n − 1)!

=
∞∑

n=1

(a)n

(b)n−1 (c)�nn−1

(c)�n−1 z
n

(n − 1)!

=
∞∑

n=1

(a)n

(b)n−1 (c)�n−�
n−1

zn

(n − 1)! (11)
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=
∞∑

n=0

(a)n+1

(b)n (c)�nn

zn+1

n! (12)

=
∞∑

n=0

fn(a, b, c, �; z).

To complete the proof of the lemma it suffices to show that

∞∑

n=0

an fn(a, b, c, �; z) =
∞∑

n=0

(a)n(a)n+1

(b)2n (c)2�nn

zn+1

(n!)2

is convergent.
Put

ζn = (a)2n (a + n) zn+1

(b)2n (c)2�nn (n!)2 = Γ 2(b)

Γ 2(a)

Γ 2(a + n) (a + n) Γ 2�n(c) zn+1

Γ 2(b + n) Γ 2�n(c + n) Γ 2(n + 1)
.

Now applying the Stirling’s asymptotic formula for large n given in (5), we have

|ζn| 1n ∼
∣
∣
∣
∣
Γ 2(b)

Γ 2(a)

∣
∣
∣
∣

1
n

∣
∣
∣e−(a+n)(a + n)a+n− 1

2
√
2π

∣
∣
∣
2
n

∣
∣
∣e−(b+n)(b + n)b+n− 1

2
√
2π

∣
∣
∣
2
n

× |a + n| 1n Γ 2�(c) |z|1+ 1
n

∣
∣
∣e−(c+n)(c + n)c+n− 1

2
√
2π

∣
∣
∣
2� ∣

∣
∣e−(n+1)(n + 1)n+1− 1

2
√
2π

∣
∣
∣
2
n

.

Hence,

lim
n→∞ sup |ζn| 1n ∼ lim

n→∞ sup

∣
∣
∣
∣
Γ (c)√
2π

∣
∣
∣
∣

2�

|z| 1
∣
∣n2c�−�+2

∣
∣

∣
∣
∣
e

n

∣
∣
∣
2n�

= 0,

when � (2c� − � + 2) > 0. 
�
Proof (of Theorem 4) From (12),

{{
�Δ

θ
c

} {(θ + b − 1)} θ
}
w =

∞∑

n=0

(a)n+1

(b)n (c)�nn

zn+1

n!

= z
∞∑

n=0

(a)n(a + n)

(b)n (c)�nn

zn

n!
= z(θ + a)w

which gives (10). 
�
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Remark 4 It is noteworthy here that when � = 0, the differential equation (10) reduces
to the form [4, Ch. 4.2, Eq. (2)]

[(θ + b − 1) θ − z(θ + a)]w = 0

which is the differential equation satisfied by w = 1F1

[
a; z
b;

]

.

To obtain the �-H function as the eigen function, we need to define yet another operator
as follows.

Definition 3 Let f (z) = ∑∞
n=0 anz

n, |z| < R, z �= 0, R > 0 and �(α) > 0 . Define

αH(γ :p)
β ( f (z)) =

[
Iα

(
z−1

{

pΔ
θ
γ

}
{θ + β − 1} θ

)]
( f (z)), (13)

where the operator pΔ
θ
γ is as defined in (9) and

Iα( f (z)) = z−α

z∫

0

tα−1 f (t)dt. (14)

Remark 5 Note that (14) is nothing but the fractional integral of order α with �(α) >

0.

Theorem 5 If � ∈ N ∪ {0} and �(a) > 0, then the �-H function is the eigen function
with respect to the operator aH(c:�)

b defined in (13). That is,

aH(c:�)
b

(

H

[
a; λz
b; (c : �);

])

= λ H

[
a; z
b; (c : �);

]

, λ ∈ C. (15)

Proof The applicability of this operator to the �-H function follows from the Lemma
1.

We first note that for z �= 0,

aH(c:�)
b

(

H

[
a; λz
b; (c : �);

])

=
[

Ia

{

z−1

(
{
�Δ

θ
c

} {(θ + b − 1)} θ

∞∑

n=0

λn , (a)n

(b)n (c)�nn n! z
n

)}]

.
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In view of (11), we have

aH(c:�)
b

(

H

[
a; λz
b; (c : �);

])

= Ia

{

z−1

[ ∞∑

n=1

λn (a)n

(b)n−1 (c)�n−�
n−1

zn

(n − 1)!

]}

=
∞∑

n=1

λn (a)n

(b)n−1 (c)�n−�
n−1 (n − 1)! z

−a

z∫

0

ta−1tn−1dt

=
∞∑

n=1

λn (a)n z−a

(b)n−1 (c)�n−�
n−1 (n − 1)!

[
za+n−1

a + n − 1

]

=
∞∑

n=1

λn (a)n−1 zn−1

(b)n−1 (c)�n−�
n−1 (n − 1)!

=
∞∑

n=0

λn+1 (a)n zn

(b)n (c)�nn n!

which proves (15). 
�
Remark 6 If z = 0, then we must have λ = 0.

3 Special cases

When the parameter b is absent and a = c = � = 1 in (4), then

H

[
1; z
−; (1 : 1);

]

= 1 +
∞∑

n=1

zn

n!n .

Thus, H

[
1; z
−; (1 : 1);

]

− 1 gives the Sikemma’s function (3).

3.1 �-H exponential function

From (4) if a = b, then we have

H

[−; z
−; (c : �);

]

=
∞∑

n=0

zn

(c)�nn n! . (16)

This leads to define the �-H exponential function as follows:

Definition 4 The �-H exponential function is denoted and defined by

e�
H (z) = H

[−; z
−; (1 : �);

]

=
∞∑

n=0

zn

(n!)�n+1 , (17)

for all z ∈ C and �(�) ≥ 0.

123

Author's personal copy



32 Ann Univ Ferrara (2016) 62:23–38

Remark 7 Obviously, e0H (z) = ez and e�
H (0) = 1,

Remark 8 By taking � = 0 in (10) we get the reduced differential equation

(θ − z) w = 0,

where w = ez .

In order to derive the eigen function property for the �-H exponential function, we
consider the particular eigen function operator of Definition 3 when the parameter
a = b, as follows.

Definition 5 Let f (z) = ∑∞
n=0 anz

n , |z| < R, R > 0. Define the operator

pDM ( f (z)) = z−1
pΔ

θ
1 (θ( f (z))), (18)

where z �= 0, p ∈ N ∪ {0} and the operator pΔ
θ
1 is as defined in (9).

Remark 9 When a = b,

pDM = H(1:p)

where the operator H(1:p) is as defined in Definition 3.

It can be easily verified that if f (z) = ∑∞
n=0 anz

n and g(z) = ∑∞
n=0 bnz

n , |z| < R
then for α, β ∈ R

pDM (α f (z) + βg(z)) = α pDM ( f (z)) + β pDM (g(z)). (19)

In view of Lemma 1, the operator �DM is applicable to the �-H exponential function,
we thus have

Theorem 6 With � ∈ N ∪ {0}, the �-H exponential function is the eigen function of
the operator �DM as defined in (18), that is,

�DM

(
e�
H (λz)

)
= λ e�

H (λz), λ ∈ C. (20)

Proof From (18),

�DM

(
e�
H (λz)

)
= z−1

pΔ
θ
1

( ∞∑

n=0

λn

(n!)�n+1 (θ zn)

)

= z−1
∞∑

n=1

λn

(n!)�n(n − 1)! �Δ
θ
1(z

n)

= z−1
∞∑

n=1

λn

(n!)�n(n − 1)! ((n − 1)!)� (θ)�n(zn). (21)
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Now

(θ)�z = z(= (11)�z),

(θ)2�z2 =
(

z
d

dz
z
d

dz
. . .

d

dz
z
d

dz

)

︸ ︷︷ ︸
2� derivatives

z2

= (22)�z2.

In general,
(θ)�nzn = n�nzn, n = 1, 2, . . . . (22)

Using (22) in (21), we get

�DM

(
e�
H (λz)

)
= z−1

∞∑

n=1

λn

(n!)�n((n − 1)!)1−�
n�nzn

=
∞∑

n=1

λn

((n − 1)!)�n+1−�
zn−1

=
∞∑

n=0

λn+1 zn

(n!)�n+1

= λ e�
H (λz).

As an interesting view of the definition (17), we further have

e�
H (i z) =

∞∑

n=0

(i z)n

(n!)�n+1

=
∞∑

n=0

(i)2n (z)2n

((2n)!)2�n+1 +
∞∑

n=0

(i)2n+1 (z)2n+1

((2n + 1)!)2�n+�+1

=
∞∑

n=0

(−1)n (z)2n

((2n)!)2�n+1 + i
∞∑

n=0

(−1)n (z)2n+1

((2n + 1)!)2�n+�+1 . (23)

These infinite series are resembling with those of cosine and sine series. They are
further taken up in the Sect. 3.2.

3.2 �-H circular functions

From the first and second series in r.h.s of (23), we define the extended cosine and
sine functions respectively which are denoted here by cos�H (z) and sin�

H (z). In fact,
for any z ∈ C,
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�
(
e�
H (i z)

))
= �

(

H

[−; i z
−; (1 : �);

])

:= cos�H (z), (24)

and

�
(
e�
H (i z)

))
= �

(

H

[−; i z
−; (1 : �);

])

:= sin�
H (z), (25)

whence we have
e�
H (i z) = cos�H (z) + i sin�

H (z). (26)

Remark 10 It is noteworthy that cos0H (z) = cos(z), and sin0H (z) = sin(z).

Further,

1

2

[
e�
H (i z) + e�

H (−i z)
]

= 1

2

[ ∞∑

n=0

(i z)n

(n!)�n+1 +
∞∑

n=0

(−i z)n

(n!)�n+1

]

= 1

2

[

1 + i z

(1!)�+1 + (i z)2

(2!)2�+1 + · · ·

+1 + −i z

(1!)�+1 + (i z)2

(2!)2�+1 + · · ·
]

=
∞∑

n=0

(−1)n (z)2n

((2n)!)2�n+1

= cos�H (z)

and likewise,

1

2i

[
e�
H (i z) − e�

H (−i z)
]

= sin�
H (z).

We also find that

cos�H (0) = 1

2

[
e�
H (0) + e�

H (0)
]

= 1,

sin�
H (0) = 1

2i

[
e�
H (0) − e�

H (0)
]

= 0.

Remark 11 The operator (18) yields the identities:

1. �DM (cos�H (z)) = − sin�
H (z),

2. �DM (sin�
H (z)) = cos�H (z).

Just as the functions sin z and cos z are solutions of the equation d2 y
dz2

+ y = 0, the
�-H sine and �-H cosine functions are also solution of a differential equation. This is
shown in

Theorem 7 The �-H cosine and �-H sine functions are solutions of the differential
equation
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�D2
Mν + ν = 0.

Proof We first note that from (20),

�DM

(
e�
H (i z)

)
= i

(
e�
H (i z)

))
.

Hence,

�D2
M

(
e�
H (i z)

)
= �DM

(

�DM

(
e�
H (i z)

))
= �DM

(
i
(
e�
H (i z)

))
= −e�

H (i z).

Now using (26), this may be written as

�D2
M

(
cos�H (i z) + i sin�

H (i z)
)

= −
(
cos�H (i z) + i sin�

H (i z)
)

.

By making an appeal to the property (19) and comparing the real and imaginary parts,
we find that

�D2
M

(
cos�H (i z)

)
+ cos�H (i z) = 0 and �D2

M

(
sin�

H (i z)
)

+ sin�
H (i z) = 0.

3.3 �-H hyperbolic functions

Again from the definition of the �-H exponential function (17), we observe that

e�
H (z) =

∞∑

n=0

zn

(n!)�n+1

=
∞∑

n=0

z2n

((2n)!)2�n+1 +
∞∑

n=0

z2n+1

((2n + 1)!)2�n+�+1 . (27)

Let us denote the first series (with even powers of z) on r.h.s. by (cf. [3])

E(e�
H (z)) = E

(

H

[−; z
−; (1 : �);

])

= cosh�
H (z) (28)

which we call the hyperbolic �-H cosine function and the second series (with odd
powers of z) on r.h.s. by (cf. [3])

O(e�
H (z)) = O

(

H

[−; z
−; (1 : �);

])

= sinh�
H (z) (29)

which we call the hyperbolic �-H sine function.
Hence from (27),

e�
H (z) = cosh�

H (z) + sinh�
H (z). (30)

Remark 12 cosh0H (z) = cosh(z), and sinh0H (z) = sinh(z).
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Also note that

1

2

[
e�
H (z) + e�

H (−z)
]

= 1

2

[ ∞∑

n=0

zn

(n!)�n+1 +
∞∑

n=0

(−z)n

(n!)�n+1

]

= 1

2

[

1 + z

(1!)�+1 + z2

(2!)2�+1 + . . .

+1 + −z

(1!)�+1 + z2

(2!)2�+1 + . . .

]

=
∞∑

n=0

z2n

((2n)!)2�n+1

= cosh�
H (z). (31)

Similarly,

1

2

[
e�
H (z) − e�

H (−z)
]

= sinh�
H (z).

In particular,

cosh�
H (0) = 1

2

[
e�
H (0) + e�

H (0)
]

= 1, sinh�
H (0) = 1

2

[
e�
H (0) − e�

H (0)
]

= 0.

In parallel to Theorem 7, we have

Theorem 8 The hyperbolic �-H cosine and hyperbolic �-H sine functions are solu-
tions of the differential equation

�D2
Mν − ν = 0.

Proof One can see that from (31), (19) and (20),

�D2
M (cosh�

H (z)) − cosh�
H (z) = �D2

M

(
e�
H (z) + e�

H (−z)

2

)

−
(
e�
H (z) + e�

H (−z)

2

)

= 1

2

[
e�
H (z) + e�

H (−z) − e�
H (z) − e�

H (−z)
]

= 0.

Likewise,

�D2
M

(
sinh�

H (z)
)

− sinh�
H (z) = 0

can be verified. 
�
Remark 13 The new functions (4) can evidently be considered as extensions of the
generalized hypergeometric function 1F1+q (see [4, Ch.4]), reduced to the so-called
hyper-Bessel functions 0Fq if a = b, and being eigen functions of the hyper-Bessel

123

Author's personal copy



Ann Univ Ferrara (2016) 62:23–38 37

operators already mentioned in this paper (details in [5,7]). But now q in the second
index goes to infinity together with the summation index n in the power series. Then,
it is interesting to mention an analogy of the �-H circular and �-H hyperbolic functions
with the generalized cosine, sine and hyperbolic functions in the sense of [5], called
also r -even functions in [8]. These are special cases of the hyper-Bessel functions in
the same ways as the �-H circular and �-H hyperbolic functions come in the scheme
of the new �-Hypergeometric functions.

3.4 Graphs

Figures 1, 2 and 3 are the graphs of particular �-H functions.

Fig. 1 a Graph of e2H (x); b graph of e2H (−x) and c graph of e
1
2
H (−x2)

Fig. 2 a Graph of cos
5
14
H (x) and b Graph of sin1H (x)
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Fig. 3 a Graph of cosh3H (x) and b Graph of sinh
1
4
H (x)
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Abstract In the present work, we introduce a function representing a rapidly convergent
q-power series which extends the well-known basic hypergeometric function 2φ1[z]. We
introduce infinite order q-difference operators to obtain its difference equation. Besides this,
we also derive the eigen function property and contiguous functions relations for this function.
The work characterizes the q-exponential function which we refer to as q-�-Ψ exponential
function and derive its eigen function property by introducing an infinite order q-hyper-
Bessel type operator. The definitions of q-�-Ψ circular and q-�-Ψ hyperbolic functions
follow immediately. It is also shown that the product of two q-�-Ψ exponential functions
generates q-�-Ψ Bessel function.

Keywords Basic hypergeometric function · q-Contiguous function · q-Integral ·
q-Derivative · Eigen function

Mathematics Subject Classification 33D05 · 33D15 · 33D99 · 34A35

1 Introduction

Let 0 < q < 1. A q-analogue of factorial function

(a)n = a(a + 1)(a + 2) · · · (a + n − 1)

is defined by [4, Eq. (1.2.15) and (1.2.30), p. 3, 6]

B Meera H. Chudasama
meera.chudasama@yahoo.co.in

1 Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda,
Vadodara, Gujarat 390 002, India
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240 M. H. Chudasama

(a; q)n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if n = 0
(1 − a)(1 − aq) · · · (1 − aqn−1

)
, if n ∈ Z>0

[(
1 − aq−1

) (
1 − aq−2

) · · · (1 − aq−n
)]−1

, if n ∈ Z<0
(a;q)∞

(aqn;q)∞ if n ∈ C,

(1)

where a ∈ C in general, and (a; q)∞ :=
∞∏
k=0

(1 − aqk).

For a ≡ qa = q ,

(q; q)n = (1 − q)
(
1 − q2

) · · · (1 − qn
)

is q-analogue of n!.
In these notations, the q-hypergeometric function is defined as [4, Eq. (1.2.13), p. 3]

2φ1

[
a; b; z
c;

]

=
∞∑

n=0

(a; q)n (b; q)n

(c; q)n

zn

(q; q)n
(2)

which is an analytic function for |z| < 1 and a, b, c ∈ C with c �= 0,−1,−2, . . ..
Let us consider the series ∞∑

n=1

zn

(q; q)nn
. (3)

as a q-form of the integral function

∞∑

n=1

zn

n!n

due to Sikkema [8, p. 6]. The series in (3) leads us to extend the q-Hypergeometric series in
(2) which we define as follows.

Definition 1 For �(�) ≥ 0, c, d ∈ C/{0,−1,−2, . . .} and a, b, z ∈ C, define the function

Ψ

[
a; b; q; z
c; (d : �);

]

=
∞∑

n=0

(a; q)n (b; q)n

(c; q)n (d; q)�nn

zn

(q; q)n
. (4)

We shall call this function to be q-�-Ψ hypergeometric function and in brief, the q-�-Ψ
function.

The q-series in (3) is an evident special case of (4) when a = c, b = d = q and � = 1.

2 Main results

In this section,wederive difference equation, eigen function property and contiguous function
relations of the series (4); but first we investigate the convergence behavior.

2.1 Convergence

Theorem 1 If 0 < q < 1,�(�) > 0 then q-�-Ψ function is an analytic function of z.

Proof Put

(a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n
= ξn
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then in view of the formula

(a; q)n = Γq(a + n)

Γq(a)
(1 − q)n,

we have

|ξn | 1n =
∣
∣
∣
∣

(a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n

∣
∣
∣
∣

1
n

=
∣
∣
∣
∣

Γq(c)

Γq(a) Γq(b)

∣
∣
∣
∣

1
n
∣
∣
∣
∣
Γq(a + n) Γq(b + n)

Γq(c + n) Γq(n + 1)

∣
∣
∣
∣

1
n
∣
∣
∣
∣

Γq(d)

Γq(d + n) (1 − q)n

∣
∣
∣
∣

�

.

Here using Stirling’s formula of q-Gamma function [6, Eq. (2.25), p. 482]:

Γq(z) ∼ (1 + q)
1
2 Γq2

(
1

2

)

(1 − q)
1
2−z e

θqz

1−q−qz , (5)

for large |z| and 0 < θ < 1, we further have

|ξn | 1n ∼
∣
∣
∣
∣

Γq(c)

Γq(a) Γq(b)

∣
∣
∣
∣

1
n

∣
∣
∣
∣
∣
∣
∣

(1 + q)
1
2 Γq2

( 1
2

)
(1 − q)

1
2−(a+n) e

θ qa+n

1−q−qa+n

(1 + q)
1
2 Γq2

( 1
2

)
(1 − q)

1
2−(c+n) e

θ qc+n

1−q−qc+n

∣
∣
∣
∣
∣
∣
∣

1
n

×

∣
∣
∣
∣
∣
∣
∣

(1 + q)
1
2 Γq2

( 1
2

)
(1 − q)

1
2−(b+n) e

θ qb+n

1−q−qb+n

(1 + q)
1
2 Γq2

( 1
2

)
(1 − q)

1
2−(n+1) e

θ qn+1

1−q−qn+1

∣
∣
∣
∣
∣
∣
∣

1
n

×
∣
∣
∣Γ �

q (d) (1 − q)−�n
∣
∣
∣

∣
∣
∣
∣
∣
(1 + q)

1
2 Γq2

( 1
2

)
(1 − q)

1
2−(d+n) e

θ qd+n

1−q−qd+n

∣
∣
∣
∣
∣

�

=
∣
∣
∣
∣
∣

(1 − q)1+c−a−b Γq(c)

Γq(a) Γq(b)

∣
∣
∣
∣
∣

1
n ∣∣
∣
∣e

θ qa+n

1−q−qa+n

∣
∣
∣
∣

1
n
∣
∣
∣
∣e

θ qc+n

1−q−qc+n

∣
∣
∣
∣

− 1
n

×
∣
∣
∣
∣
∣
e

θ qb+n

1−q−qb+n

∣
∣
∣
∣
∣

1
n
∣
∣
∣
∣
∣
e

θ qn+1

1−q−qn+1

∣
∣
∣
∣
∣

− 1
n

∣
∣
∣Γ �

q (d) (1 − q)d�
∣
∣
∣

∣
∣
∣
∣
∣
Γq2

( 1
2

)
(1 − q2)

1
2 e

θ qd+n

1−q−qd+n

∣
∣
∣
∣
∣

�

for large n. Now from the Cauchy Hadamard formula:

1

R
= lim

n→∞ sup n
√|ξn |,

it follows that the radius of convergence

R =
∣
∣
∣
∣
∣
∣

(
1 − q2

) 1
2 Γq2

( 1
2

)

Γq(d) (1 − q)d

∣
∣
∣
∣
∣
∣

�

. (6)

Remark 1 From (6), it is evident that if � = 0 then q-�-Ψ function reduces to the basic
hypergeometric series representing 2φ1(a, b; c; q, z) with radius of convergence unity.
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2.2 q-Difference equation

The differential equation of q-�-Ψ function occurs for � ∈ N ∪ {0}, which is obtained by
means of the following operator.

Definition 2 Let f (z) = ∑∞
n=1 an,q zn , 0 �= z ∈ C, p ∈ N∪ {0}, α ∈ C and the difference

operator θq be defined by
θq f (z) = f (z) − f (zq). (7)

Define

pΔ
θq
α f (z) =

{∑∞
n=1 an,q (α; q)

p
n−1 (qα−1 θq − qα−1 + 1)pn zn, if p ∈ N

f (z), if p = 0.
(8)

Then we have

Theorem 2 For � ∈ N ∪ {0}, a, z ∈ C, and c, d ∈ C/{0,−1,−2, . . .}, the function w =
Ψ

[
a; b; q; z
c; (d : �);

]

satisfies the difference equation

[

�Δ
θq
d

{
qc−1θq − qc−1 + 1

}
θq − z

(
qaθq − qa + 1

) (
qbθq − qb + 1

)]
w = 0, (9)

where the operator �Δ
θq
d is as defined in (8).

Note 1 The operators �Δ
θq
d and θq do not commute.

The proof needs the following lemma which actually permits us to apply the operator{

�Δ
θq
d

} {
qc−1θq − qc−1 + 1

}
θq on the operand w.

For the sake of brevity, we put

{

�Δ
θq
d

} {
qc−1θq − qc−1 + 1

}
θq = cΛ

θq
(d,�) (10)

and as mentioned earlier, α ≡ qα. In this notation, we have

Lemma 1 If � ∈ N ∪ {0}, a, b, z ∈ C, c, d ∈ C/{0,−1,−2, . . .},

w = Ψ

[
a; b; q; z
c; (d : �);

]

=
∞∑

n=0

ξn zn

and cΛ
θq
{d,�}w = ∑∞

n=0 fn,q(a, b; c, (d : �); z) then the operator cΛ
θq
{d,�} is applicable to

the q-�-Ψ function provided that the series

∞∑

n=0

ξn fn,q(a, b; c, (d : �); z)

converges (cf. [8, Definition 11, p. 20]).
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Proof We begin with

cΛ
θq
(d,�)w

=
[{

�Δ
θq
d

} {
qc−1θq − qc−1 + 1

}]
( ∞∑

n=0

(a; q)n (b; q)n

(c; q)n (d; q)�nn

zn − znqn

(q; q)n

)

=
[{

�Δ
θq
d

} {
qc−1θq − qc−1 + 1

}]
( ∞∑

n=1

(a; q)n (b; q)n

(c; q)n (d; q)�nn

zn

(q; q)n−1

)

=
{

�Δ
θq
d

}
( ∞∑

n=1

(a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n−1

(
qc−1(zn − znqn) − zn

(
qc−1 − 1

))
)

=
{

�Δ
θq
d

}
( ∞∑

n=1

(a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n−1
zn

(
1 − qc+n−1)

)

=
{

�Δ
θq
d

}
( ∞∑

n=1

(a; q)n (b; q)n

(c; q)n−1 (d; q)�nn (q; q)n−1
zn
)

=
∞∑

n=1

(a; q)n (b; q)n

(c; q)n−1 (d; q)�nn (q; q)n−1
(d; q)�n−1

(
qd−1θq − qd−1 + 1

)�n
zn .

Here a little computations show that

(
qd−1θq − qd−1 + 1

)�n
zn =

(
1 − qn+d−1

)�n
zn .

We thus have

cΛ
θq
(d,�)w =

∞∑

n=1

(a; q)n (b; q)n (d; q)�n−1

(c; q)n−1 (d; q)�nn (q; q)n−1
(1 − qn+d−1)�nzn

=
∞∑

n=1

(a; q)n (b; q)n zn

(c; q)n−1 (d; q)�n−�
n−1 (q; q)n−1

(11)

=
∞∑

n=0

(a; q)n+1 (b; q)n+1 zn+1

(c; q)n (d; q)�nn (q; q)n

=
∞∑

n=0

fn(a, b; c, (d : �); z). (12)

To complete the proof of lemma, it suffices to show that

∞∑

n=0

ξn fn,q(a, b, c, (d : �); z) =
∞∑

n=0

(a; q)2n (b; q)2n (1 − aqn) (1 − bqn) zn+1

(c; q)2n (d; q)2�nn (q; q)2n
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is convergent. For that, take

|μn | = ∣
∣ξn fn,q(a, b; c, (d : �); z)∣∣

=
∣
∣
∣
∣
(a; q)2n (b; q)2n (1 − aqn) (1 − bqn) zn+1

(c; q)2n (d; q)2�nn (q; q)2n

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

Γq(a + n) Γq(b + n) Γq(c)

Γq(a) Γq(b) Γq(c + n) Γq(n + 1)

(
Γq(d)

Γq(d + n) (1 − q)n

)�n
∣
∣
∣
∣
∣

2

× ∣
∣
(
1 − aqn

) (
1 − bqn

)∣
∣ |z|n+1.

Once again applying the q-analogue of Stirling’s formula:

Γq(α + n) ∼ (1 + q)
1
2 Γq2

(
1

2

)

(1 − q)
1
2−α−n e

θ
qα+n

1−q−qα+n , (0 < θ < 1)

with α replaced by a, b, c and d in turn, then similar computations as in Theorem 1 yields

lim
n→∞ sup |μn | 1n =

∣
∣
∣
∣
∣

Γ 2
q (d) (1 − q)2d

(
1 − q2

)
Γ 2
q2
( 1
2

)

∣
∣
∣
∣
∣

�

|z|.

Hence lemma follows under the condition

|z| <

∣
∣
∣
∣
∣

(
1 − q2

)
Γ 2
q2
( 1
2

)

Γ 2
q (d) (1 − q)2d

∣
∣
∣
∣
∣

�

.

We now prove the theorem.

Proof of Theorem 2 From (12),

bΛ
θq
(c,�)w

=
∞∑

n=0

(a; q)n+1 (b; q)n+1 zn+1

(c; q)n (d; q)�nn (q; q)n

= z
∞∑

n=0

(a; q)n(qazn − qaznqn − qazn + zn) (b; q)n+1

(c; q)n (d; q)�nn (q; q)n

= z
(
qaθq − qa + 1

)
∞∑

n=0

(a; q)n (b; q)n+1 zn

(c; q)n (d; q)�nn (q; q)n

= z
(
qaθq − qa + 1

)
∞∑

n=0

(a; q)n (b; q)n
(
qbzn − qbznqn − qbzn + zn

)

(c; q)n (d; q)�nn (q; q)n

= z
(
qaθq − qa + 1

) (
qbθq − qb + 1

)
w.

Hence (9) holds.
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2.3 Eigen function property

We recall the q-integral formula of an integrable function f (z) which is given by [4, Eq.
(1.11.1), p. 19]

Iq f (z) =
z∫

0

f (t)dq t = z (1 − q)

∞∑

n=0

f
(
zqn

)
qn . (13)

In order to obtain q-�-Ψ function as an eigen function, we need to define two more operators
using following definitions.

Definition 3 Let f (z) = ∑∞
n=1 an,q zn, 0 �= |z| < R, R > 0 and α ∈ C with �(α) ≥ 1.

Define

Iα
q f (z) = z−α

1 − q
Iq
(
zα−1 f (z)

)
. (14)

Definition 4 Let f (z) = ∑∞
n=0 an,q zn, 0 �= |z| < R, R > 0, p ∈ N ∪ {0} and α, β ∈ C

with �(α, β) ≥ 1. Define

δ
αE(γ :p)

β f (z) =
[
I β
q Iα

q z−1
δΛ

θq
(γ,p)

]
f (z), (15)

where δΛ
θq
(γ,p) and Iα

q are as defined in (10) and (14) respectively.

In these notations, we prove

Theorem 3 If � ∈ N ∪ {0} and �(a, b) ≥ 1 then the q-�-Ψ function is an eigen function
with respect to the operator c

aE(d:�)
b defined in (15). That is,

c
aE(d:�)

b

(

Ψ

[
a; b; q; λz
c; (d : �);

])

= λ Ψ

[
a; b; q; λz
c; (d : �);

]

, λ ∈ C. (16)

Proof The applicability of this operator to the q-�-Ψ function follows from Lemma 1.
Now for z �= 0,

c
aE(d:�)

b

(

Ψ

[
a; b; q; λz
c; (d : �);

])

=
[

I bq I
a
q z−1

cΛ
θq
(d,�)

( ∞∑

n=0

λn (a; q)n (b; q)n zn

(c; q)n (d; q)�nn (q; q)n

)]

.
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In view of (11),

c
aE(d:�)

b

(

Ψ

[
a; b; q; λz
c; (d : �);

])

= I bq I aq

[ ∞∑

n=1

λn (a; q)n (b; q)n

(c; q)n−1 (d; q)�n−�
n−1

zn−1

(q; q)n−1

]

= I bq

{
z−a

1 − q
Iq

[ ∞∑

n=1

λn (a; q)n (b; q)n

(c; q)n−1 (d; q)�n−�
n−1

za+n−2

(q; q)n−1

]}

= I bq

{
z−a

1 − q

∞∑

n=1

λn (a; q)n (b; q)n

(c; q)n−1 (d; q)�n−�
n−1 (q; q)n−1

z(1 − q)

∞∑

k=0

(
zqk

)a+n−2
qk
}

= I bq

{
z−a

1 − q

∞∑

n=1

λn (a; q)n (b; q)n

(c; q)n−1 (d; q)�n−�
n−1 (q; q)n−1

z(1 − q) za+n−2
∞∑

k=0

qk(a+n−1)

}

= I bq

∞∑

n=1

λn (a; q)n (b; q)n

(c; q)n−1 (d; q)�n−�
n−1 (q; q)n−1

zn−1

1 − qa+n−1

= I bq

∞∑

n=1

λn (a; q)n−1 (b; q)n zn−1

(c; q)n−1 (d; q)�n−�
n−1 (q; q)n−1

.

In the similar manner, by applying operator I bq we finally arrive at

c
aE(d:�)

b

(

Ψ

[
a; b; q; λz
c; (d : �);

])

=
∞∑

n=1

λn (a; q)n−1 (b; q)n−1 zn−1

(c; q)n−1 (d; q)�n−�
n−1 (q; q)n−1

= λ

∞∑

n=0

λn (a; q)n (b; q)n

(c; q)n (d; q)�nn

zn

(q; q)n
.

Thus the theorem.

2.4 Contiguous function relations

The contiguous function relations for basic hypergeometric series have been derived by
Swarttouw [9]. Our attempt made in this direction led us to the following identities:

(cq−1 − a)Ψ = cq−1(1 − a)Ψ (a+) − a(1 − cq−1)Ψ (c−), (17)

(1 − c) Ψ = (1 − a) Ψ (a+, c+) − (c − a) Ψ (c+, zq), (18)

(cq−1 − b)Ψ = cq−1(1 − b)Ψ (b+) − b(1 − cq−1)Ψ (c−), (19)

and

(1 − c) Ψ = (1 − b) Ψ (b+, c+) − (c − b) Ψ (c+, zq), (20)

in which the function notations carry the following meaning.
We take

Ψ = Ψ

[
a; b; q; z
c; (d : �);

]

,
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then

Ψ (a+) := Ψ

[
aq; b; q; z
c; (d : �);

]

,

Ψ (a−) := Ψ

[
aq−1; b; q; z
c; (d : �);

]

,

Ψ (a+, c+) := Ψ

[
aq; b; q; z
cq; (d : �);

]

,

Ψ (c+, zq) := Ψ

[
a; b; q; zq
cq; (d : �);

]

.

The functions Ψ (b+), Ψ (b−), Ψ (c+), Ψ (c−) are defined similarly.
Now with

ξn = (a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n
,

we have

Ψ =
∞∑

n=0

ξnz
n

whence the following series representations are evident.

Ψ (a+) =
∞∑
n=0

1−aqn

1−a ξn zn, Ψ (a−) =
∞∑
n=0

1−aq−1

1−aqn−1 ξn zn,

Ψ (b+) =
∞∑
n=0

1−bqn

1−b ξn zn, Ψ (b−) =
∞∑
n=0

1−bq−1

1−bqn−1 ξn zn,

Ψ (c+) =
∞∑
n=0

1−c
1−cqn ξn zn, Ψ (c−) =

∞∑
n=0

1−cqn−1

1−cq−1 ξn zn,

Ψ (d+) =
∞∑
n=0

(1−d)�n

(1−dqn)�n
ξn zn, Ψ (d−) =

∞∑
n=0

(1−dqn−1)�n

(1−dq−1)�n
ξn zn .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

Now, the q-derivative operator Dq is defined by [4, Ex. (1.12), p. 22]

Dq f (z) = f (z) − f (zq)

z(1 − q)
. (22)

If zDq = Θq then

ΘqΨ =
∞∑

n=0

(1 − qn)

(1 − q)
ξn zn (23)

whence we have
(

aΘq + 1 − a

1 − q

)

Ψ = a
∞∑

n=0

(1 − qn)

(1 − q)
ξn zn + 1 − a

1 − q

∞∑

n=0

ξn zn

=
∞∑

n=0

ξn
zn

1 − q
[a − aqn + 1 − a]

= 1 − a

1 − q
Ψ (a+). (24)
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Also,

(

cq−1Θq + 1 − cq−1

1 − q

)

Ψ = cq−1
∞∑

n=0

(1 − qn)

(1 − q)
ξn zn + 1 − cq−1

1 − q

∞∑

n=0

ξn zn

=
∞∑

n=0

ξn
zn

1 − q

[
cq−1 − cqn−1 + 1 − cq−1]

= 1 − cq−1

1 − q
Ψ (b−). (25)

Eliminating Θq from (24) and (25), yields (17).
Next, for z �= 0, using the technique adopted in the proof of Lemma 1 and Theorem 3, we

have
{
I bq z−1

�Δ
θq
d

}
(θqΨ )

=
{

�Δ
θq
d

}
( ∞∑

n=0

(a; q)n (b; q)n

(c; q)n (d; q)�nn

zn − znqn

(q; q)n

)

=
{
I bq z−1

�Δ
θq
d

}
( ∞∑

n=1

(a; q)n (b; q)n

(c; q)n (d; q)�nn

zn

(q; q)n−1

)

=
{
I bq z−1

�Δ
θq
d

}
( ∞∑

n=1

(a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n−1
zn
)

= I bq z−1
∞∑

n=1

(a; q)n (b; q)n

(c; q)n (d; q)�nn (q; q)n−1
(d; q)n−1

(
qd−1θq − qd−1 + 1

)�n
zn

= I bq z−1
∞∑

n=1

(a; q)n (b; q)n (d; q)�n−1

(c; q)n (d; q)�nn (q; q)n−1

(
1 − qn+d−1

)n�

zn

= I bq z−1
∞∑

n=1

(a; q)n (b; q)n zn

(c; q)n (d; q)�n−�
n−1 (q; q)n−1

=
∞∑

n=1

(a; q)n (b; q)n−1 zn−1

(c; q)n (d; q)�n−�
n−1 (q; q)n−1

=
∞∑

n=0

(a; q)n+1 (b; q)n zn

(c; q)n+1 (d; q)�nn (q; q)n

=
∞∑

n=0

1 − aqn

1 − cqn
ξn zn (26)

= 1 − a

1 − c
Ψ (a+, c+). (27)

Now in (26), putting

1 − aqn

1 − cqn
= 1 + cqn − aqn

1 − cqn
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we find that
{
I bq z−1

�Δ
θq
d

}
(θqΨ )

=
∞∑

n=0

(

1 + cqn − aqn

1 − cqn

)

ξnz
n

=
∞∑

n=0

ξnz
n +

∞∑

n=0

c − a

1 − c

1 − c

1 − cqn
ξn (zq)n

= Ψ + c − a

1 − c
Ψ (c+, zq). (28)

The relation (18) now follows from (26) and (28).
Since the q-�-Ψ function (4) is symmetric in its numerator parameters a and b, the iden-

tities (19) and (20) follow immediately from (17) and (18) respectively.

3 Particular q-�-Ψ functions

3.1 q-�-Ψ Exponential function

In (4), if the parameters a, b and c are absent then

Ψ

[−; q; z
−; (d : �);

]

=
∞∑

n=0

zn

(d; q)�nn (q; q)n
, (�(�) ≥ 0). (29)

This function characterizes the q-exponential function. In fact for d = 1, the above series
would reduce to

Ψ

[−; q; z
−; (1 : �);

]

=
∞∑

n=0

zn

(q; q)�n+1
n

.

This enables us to define q-�-Ψ exponential function as follows:

Definition 5 The q-�-Ψ exponential function is denoted and defined by

e�
Ψ (z; q) =

∞∑

n=0

zn

(q; q)�n+1
n

, (30)

for all z ∈ C and �(�) ≥ 0.

Remark 2 Obviously, e0Ψ (z; q) = eq(z), |z| < 1 and e�
Ψ (0; q) = 1.

Eventually, when the parameters a and b are absent, the difference equation obtained in
Theorem 2 would reduce to the form

({

�Δ
θq
1

}
θq − z

)
w = 0 (31)
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which is satisfied by w = e�
Ψ (z; q). This can be verified as follows.

[{

�Δ
θq
1

}
θq

]
w =

{

�Δ
θq
1

} ∞∑

n=0

1

(q; q)�n+1
n

(
zn − znqn

)

=
∞∑

n=1

(q; q)�n−1 (θq)
�n zn

(q; q)�nn (q; q)n−1

=
∞∑

n=1

(q; q)�n−1 (1 − qn)�n zn

(q; q)�nn (q; q)n−1

=
∞∑

n=1

(q; q)�n−1 z
n

(q; q)�nn−1 (q; q)n−1

=
∞∑

n=1

zn

(q; q)�n−�
n−1 (q; q)n−1

= z w.

Note 2 The case � = 0 in (31) yields the equation

(θq − z) w = 0,

where

w = eq(z) =
∞∑

n=0

zn

(q; q)n
, |z| < 1

is a q-exponential function.

In order to derive eigen function property for q-�-Ψ exponential function, we introduce a
differential operator as follows.

Definition 6 Let f (z; q) = ∑∞
n=0 an,q zn , |z| < R, R > 0, p ∈ N∪{0}. Define an operator

pΩ
Dz
q

α =
{∑∞

n=1 an,q (α; q)
p
n−1

(
(1 − q) Dz

q

)pn
zn, if p ∈ N

f (z; q), if p = 0
, (32)

where Dz
q is the q-hyper-Bessel type operator given by (cf. [5])

(Dz
q)

n = DqzDq . . . DqzDq
︸ ︷︷ ︸

n derivatives

in which Dq is q-differential operator defined in (22).

With this, we have

Theorem 4 The q-�-Ψ exponential function is an eigen function of the operator

�Dq
M =

({

�Ω
Dz
q

1

}
θq

)
, (33)

where �Ω
Dz
q

1 is as defined in (32). That is,

�Dq
M

(
e�
Ψ (q; λz)

)
= λ e�

Ψ (q; λz), λ ∈ C. (34)
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Proof We begin with

�Dq
M

(
e�
Ψ (q; λz)

)
=
({

�Ω
Dz
q

1

}
θq

)
[ ∞∑

n=0

λn zn

(q; q)�n+1
n

]

=
({

�Ω
Dz
q

1

})
[ ∞∑

n=1

λn zn

(q; q)�nn (q; q)n−1

]

=
∞∑

n=1

λn

(q; q)�nn (q; q)n−1
(q; q)�n−1

(
(1 − q)Dz

q

)�n
zn .

Now it can be easily verified that for n = 1,

(1 − q)�
(
Dz
q

)�

z = (1 − q)� .

For n = 2,

(1 − q)2�
(
Dz
q

)2�
z2 = (

1 − q2
)2�

z.

In general for n ∈ N,

(1 − q)n�
(
Dz
q

)n�

zn = (
1 − qn

)�n
zn−1.

Hence

�Dq
M

(
e�
Ψ (q; λz)

)
=

∞∑

n=1

λn

(q; q)�nn (q; q)n−1
(q; q)�n−1

(
1 − qn

)�n
zn−1

=
∞∑

n=1

λn zn−1

(q; q)�n−�
n−1 (q; q)n−1

=
∞∑

n=0

λn+1 zn

(q; q)�n+1
n

= λ e�
Ψ (q; λz).

Note 3 If f (z; q) = ∑∞
n=0 an,q zn and g(z; q) = ∑∞

n=0 bn,q zn , |z| < R then for α, β ∈ R
and p ∈ N ∪ {0},

pDq
M (α f (z; q) + β g(z; q)) = α pDq

M ( f (z; q)) + β pDq
M (g(z; q)). (35)

Interestingly, in view of definition (30),

e�
Ψ (q; i z) =

∞∑

n=0

(i z)n

((q; q)n)�n+1

=
∞∑

n=0

(i)2n (z)2n

(q; q)2�n+1
2n

+
∞∑

n=0

(i)2n+1 (z)2n+1

(q; q)2�n+�+1
2n+1

=
∞∑

n=0

(−1)n (z)2n

(q; q)2�n+1
2n

+ i
∞∑

n=0

(−1)n (z)2n+1

(q; q)2�n+�+1
2n+1

. (36)

These infinite series are resembling with those of q-cosine and q-sine series. They are further
taken up in Sect. 3.2.
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3.2 q-�-Ψ Circular functions

The first and second series in r.h.s of (36), extend the q-cosine and q-sine functions [4,
Ex. 1.14, p. 23] respectively which are denoted here by cos�Ψ (z; q) and sin�

Ψ (z; q). In fact
for any z ∈ C,

�(e�
Ψ (q; i z))) = �

(

Ψ

[−; q; i z
−; (1 : �);

])

:= cos�Ψ (z; q) (37)

and

�(e�
Ψ (q; i z))) = �

(

Ψ

[−; q; i z
−; (1 : �);

])

:= sin�
Ψ (z; q) (38)

which implies that
e�
Ψ (q; i z) = cos�Ψ (z; q) + i sin�

Ψ (z; q). (39)

Remark 3 It is noteworthy that cos0Ψ (z; q) = cosq(z), and sin0Ψ (z; q) = sinq(z).

Further,

1

2

[
e�
Ψ (q; i z) + e�

Ψ (q;−i z)
]

= 1

2

[ ∞∑

n=0

(i z)n

(q; q)�n+1
n

+
∞∑

n=0

(−i z)n

(q; q)�n+1
n

]

= 1

2

[

1 + i z

((q; q)1)�+1 + (i z)2

(q; q)2�+1
2

+ · · ·

+1 + −i z

(q; q)�+1
1

+ (i z)2

(q; q)2�+1
2

+ · · ·
]

= 1

2

[

2

(

1 − z2

(q; q)2�+1
2

+ z4

(q; q)4�+1
4

− · · ·
)]

=
∞∑

n=0

(−1)n z2n

(q; q)2�n+1
2n

= cos�Ψ (z; q)

and likewise,

1

2i

[
e�
Ψ (q; i z) − e�

Ψ (q;−i z)
]

= sin�
Ψ (z; q).

Also, simple calculations show that

cos�Ψ (0; q) = 1

2

[
e�
Ψ (0; q) + e�

Ψ (0; q)
]

= 1,

sin�
Ψ (0; q) = 1

2i

[
e�
Ψ (0; q) − e�

Ψ (0; q)
]

= 0.

Remark 4 The operator (33) yields

1. �Dq
M (cos�Ψ (z; q)) = − sin�

Ψ (z; q),

2. �Dq
M (sin�

Ψ (z; q)) = cos�Ψ (z; q).

Just as the functions sin z and cos z are solutions of the equation d2 y
dz2

+y = 0, these generalized
functions are also the solutions of a differential equation. This is shown in
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Theorem 5 The q-�-Ψ cosine and sine functions are solutions of the differential equation

(
�Dq

M

)2
ν + ν = 0.

Proof We first note that from (34),

�Dq
M

(
e�
Ψ (q; i z)

)
= i

(
e�
Ψ (q; i z))

)
.

Hence,

(
�Dq

M

)2
(
e�
Ψ (q; i z)

)
= �Dq

M

(

�Dq
M

(
e�
Ψ (q; i z)

))
= �Dq

M

(
i
(
e�
Ψ (q; i z)

))
= −e�

Ψ (q; i z).

Now using (39), this may be written as

(
�Dq

M

)2
(
cos�Ψ (q; i z) + i sin�

Ψ (q; i z)
)

= −
(
cos�Ψ (q; i z) + i sin�

Ψ (q; i z)
)

.

By making an appeal to the property (35) and comparing real and imaginary parts, we find
that

(
�Dq

M

)2
(
cos�Ψ (q; i z)

)
+ cos�Ψ (q; i z) = 0,

and

(
�Dq

M

)2
(sin�

Ψ (q; i z)) + sin�
Ψ (q; i z) = 0.

3.3 q-�-Ψ Hyperbolic functions

Again from the definition of q-�-Ψ exponential function (30), we observe that

e�
Ψ (z; q) =

∞∑

n=0

zn

(q; q)�n+1
n

=
∞∑

n=0

z2n

(q; q)2�n+1
2n

+
∞∑

n=0

z2n+1

(q; q)2�n+�+1
2n+1

. (40)

Let us denote the first series (with even powers of z) on r.h.s. by (cf. [1, Eq. (3.15), p. 487])

E(e�
Ψ (z; q)) = E

(

Ψ

[−; q; z
−; (1 : �);

])

= cosh�
Ψ (z; q) (41)

which we call hyperbolic q-�-Ψ cosine function and the second series (with odd powers of
z) on r.h.s. by (cf. [1, Eq. (3.16), p. 487])

O(e�
Ψ (z; q)) = O

(

Ψ

[−; q; z
−; (1 : �);

])

= sinh�
Ψ (z; q) (42)

which we call hyperbolic q-�-Ψ sine function.
Hence from (40),

e�
Ψ (z; q) = cosh�

Ψ (z; q) + sinh�
Ψ (z; q). (43)
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Remark 5 cosh0Ψ (z; q) = coshq(z), and sinh0Ψ (z; q) = sinhq(z).

Also note that

1

2

[
e�
Ψ (z; q) + e�

Ψ (−z; q)
]

= 1

2

[ ∞∑

n=0

zn

(q; q)�n+1 +
∞∑

n=0

(−z)n

(q; q)�n+1

]

= 1

2

[

1 + z

(q; q)�+1
1

+ z2

(q; q)2�+1
2

+ · · ·

+1 + −z

(q; q)�+1
1

+ z2

(q; q)2�+1
2

+ · · ·
]

= 1

2

[

2

(

1 + z2

(q; q)2�+1
2

+ z4

(q; q)4�+1
4

+ · · ·
)]

=
∞∑

n=0

z2n

(q; q)2�n+1
2n

= cosh�
Ψ (z; q). (44)

Similarly,

1

2

[
e�
Ψ (z; q) − e�

Ψ (−z; q)
]

= sinh�
Ψ (z; q).

In particular,

cosh�
Ψ (0; q) = 1

2

[
e�
Ψ (0; q) + e�

Ψ (0; q)
]

= 1,

sinh�
Ψ (0; q) = 1

2

[
e�
Ψ (0; q) − e�

Ψ (0; q)
]

= 0.

In parallel to Theorem 5, we have

Theorem 6 The hyperbolic q-�-Ψ cosine and sine functions are solutions of the differential
equation

(�DM )2 ν − ν = 0.

Proof One can see that from (44), (35) and (34),

(�DM )2 (cosh�
Ψ (z; q)) − cosh�

Ψ (z; q)

= (�DM )2

(
e�
Ψ (z; q) + e�

Ψ (−z; q)

2

)

−
(
e�
Ψ (z; q) + e�

Ψ (−z; q)

2

)

= 1

2

[
e�
Ψ (z; q) + e�

Ψ (−z; q) − e�
Ψ (z; q) − e�

Ψ (−z; q)
]

= 0.

Likewise,

(�DM )2 sinh�
Ψ (z; q) − sinh�

Ψ (z; q) = 0

follows.
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4 q-�-Ψ Bessel function

Having motivated by the classical theory of Bessel function [7, Ch. 6], in particular the
generating function relation [7, Theorem 39, p. 113]:

e
zt
2 e

−z
2t =

∞∑

n=−∞
Jn(z) t

n

and its q-extension

Eq

(
zt

2

)

Eq

(−z

2t

)

=
∞∑

n=−∞
Jn(z : q) tn

due to Dattoli and Torre [2,3], we consider the product of two q-�-Ψ exponential functions
and proceed as follows.

Let

M�(z, t; q) = e�
Ψ

(
zt

2

)

e�
Ψ

(−z

2t

)

=
∞∑

r=0

∞∑

s=0

(−1)s zr+s tr−s

2r+s (q; q)�r+1
r (q; q)�s+1

s
.

Taking s = r − n and putting (q; q)r−n = (q; q)−n (q−n+1; q)r for n ≤ 0, this gives

M�(z, t; q) =
∞∑

n=−∞

∞∑

r=n

(−1)r−nzr+r−n tr−r+n

2r+r−n (q; q)�r+1
r (q; q)�r−�n+1

r−n

=
∞∑

n=−∞

∞∑

r=0

(−1)r z2r+n

22r+n (q; q)�r+1
r (q; q)�r+�n+1

r+n

tn . (45)

It is worth mentioning here that when � = 0, the inner infinite series on the r. h. s. reduces
to the series for q-Bessel function J (1)

ν (z; q) (cf. [4, Ex. 1.24, p. 25]). Hence for � > 0, the
inner series provides an extension to J (1)

ν (z; q). We denote it by J �
n,Ψ (z; q) and call it q-�-Ψ

Bessel function. In fact, we have

Definition 7 For � ∈ N ∪ {0}, z ∈ C, the q-�-Ψ Bessel function J �
n,Ψ (z; q) is defined as

J �
n,Ψ (z; q) =

∞∑

k=0

(−1)k

(q; q)�k+�n+1
k+n (q; q)�k+1

k

( z

2

)n+2k
. (46)

The series relation in (45), thus provides us the generating function relation of q-�-Ψ Bessel
function in the form:

e�
Ψ

(
zt

2

)

e�
Ψ

(−z

2t

)

=
∞∑

n=−∞
J �
n,Ψ (z; q) tn .
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