LIST OF FIGURES

Figure 1. 1 Key and desirable criteria for selection of probiotic candidate
Figure 1. 2 Schematic representation of basic steps involved in the isolation of novel
probiotics7
Figure 1. 3 Schematic representation of 16S-23S rRNA gene intergenic spacer region
of lactobacilli14
Figure 1. 4 Schematic representation of intestinal epithelial junction
Figure 1. 5 Transwell apparatus for studying epithelial barrier function
Figure 2. 1 Ethidium bromide stained 0.8% agarose gel of 16s-23S rRNA gene
intergenic region PCR amplification63
Figure 2. 2 Ethidium bromide stained 0.8% agarose gel of 16s-23S rRNA gene
intergenic region analysed following PCR amplification63
Figure 3. 1 Adhesion of lactobacilli to HT-29 cell-line
Figure 3. 2 Adhesion of lactobacilli to Caco-2 cell-line
Figure 3. 3 Adhesion of EPEC to HT-29 cells following competition with, inhibition
by, and displacement by various lactobacilli
Figure 3. 4 Adhesion of EPEC to Caco-2 cells following competition with, inhibition
by, and displacement by various lactobacilli
Figure 4. 1 TEER assay with Caco-2 cell-lines
Figure 4. 2 TEER assay with HT-29 cell-lines. Effect of lactobacilli strains on TEER
of EPEC O26:H11 infected HT-29 monolayers97
Figure 4. 3 Effect of lactobacilli strains on permeability of latex beads across EPEC
O26:H11 infected Caco-2 monolayers98
Figure 4. 4 Effect of lactobacilli strains on the permeability of FITC-inulin across
EPEC O26:H11-infected HT-29 monolayers99
Figure 4. 5 Fold expression of mRNA specific for tight junction proteins in EPEC
O26:H11-infected HT-29 cells with and without lactobacilli treatment101
Figure 4. 6 Immunofluorescence staining of claudin-1 protein in Caco-2 cell line 103
Figure 4. 7 Immunofluorescence staining of claudin-4 protein in Caco-2 cell line 104
Figure 4. 8 Immunofluorescence staining of JAM-1 protein in Caco-2 cell line 105
Figure 4. 9 Immunofluorescence staining of occludin protein in Caco-2 cell line 106
Figure 4. 10 Immunofluorescence staining of ZO-1 protein in Caco-2 cell line 107

Figure 5. 1 Experimental design for colitis induction by DSS followed by la	ctobacilli
treatment	116
Figure 5. 2 Body weight changes in mice from different groups	
Figure 5. 3 Length of colon at the end of the experiment	
Figure 5. 4 Relative expression levels of mRNA encoding different tight jun	nction (TJ)
proteins	
Figure 5. 5 Colon sections of mice from different groups	
Figure 5. 6 Histological scores of mice in different groups	