List of Figures

Figure 1 A quorum sensing model based on acyl homoserine lactone signalling systems	7
Figure 2 Structure of some representative AHLs	7
Figure 3 Soft rot caused due to quorum sensing in <i>Pectobacterium carotovorum</i> subsp. <i>carotovorum</i>	12
Figure 4 LasI/LasR and RhlI/RhlR quorum sensing in Pseudomonas aeruginosa	14
Figure 5 Diversity of quorum quenching enzymes and inhibitors in different species of bacteria, Archaea and Eukaryote	18
Figure 6 Distribution of quorum quenching enzymes in various bacterial genera	32
Figure 7 Representative culture of <i>Bacillus</i> sp. isolated from root sample	41
Figure 8 Screening of isolates for C6-HSL degrading ability	41
Figure 9 Genotypic characterization of selected isolates	43
Figure 10 Dendrogram based on ARDRA analysis showing three major clusters of the two AHL degrading isolates	enty 44
Figure 11 B. subtilis Pls8 inhibiting the growth of PccBR1	56
Figure 12 B. aerius Pls17 showing maceration on potato host tissue	57
Figure 13 Influence of <i>Bacillus</i> isolates on 3-oxo-C6HSL accumulation and growth of <i>Pcc</i> BR1 in co-culture assays	58
Figure 14 Effect of AHL degrading <i>Bacillus</i> isolates on virulence enzymes production by <i>PccBR1</i>	59
Figure 15 In vitro soft rot attenuation assay on different host of PccBR1	61
Figure 16 In vitro curative biocontrol of potato soft rot caused by PccBR1	62
Figure 17 In vitro preventive biocontrol assay	63
Figure 18 In planta assay for biocontrol of spoilage of bean sprouts caused by PccBR1 on susceptible variety of mung bean (Vigna radiata)	n 65
Figure 19 Strategy for cloning of adeH	78
Figure 20 AHL degrading enzyme in Lysinibacillus sp. Gs50 cells	83
Figure 21 Characterisation of AHL degrading enzyme of Lysinibacillus sp. Gs50	84
Figure 22 Cloning of gene responsible for AHL degradation in Lysinibacillus sp. Gs50	86

Figure 23 Expression of recombinant adeH in E.coli BL21(DE3)	87
Figure 24 Degradation of different chain length AHLs by <i>Lysinibacillus</i> sp. Gs50 and <i>E.c</i> BL21(DE3) pET22b(+)/adeH	coli 88
Figure 25 Soft rot attenuation assay of <i>E.coli</i> BL21 (DE3) pET22b(+)/adeH caused by <i>Pcc</i> BR1	88
Figure 26 Purificcation of active AdeH	89
Figure 27 AdeH is an AHL lactonase	90
Figure 28 Multiple sequence alignment of AdeH and other representative AHL lactonase	s 92
Figure 29 Neighbor-joining tree of AHL lactonases belonging to the metallo- β -lactamase phosphotriesterase and α/β hydrolase-fold family based on amino acid sequences	e, 93
Figure 30 Quantification of C6-HSL using Agar diffusion bioassay	94
Figure 31 Biochemical characterization of AdeH	96
Figure 32 Influence of temperature on quorum quenching activity of <i>Lysinibacillus</i> sp. G	s50 108
Figure 33 Influence of pH on quorum quenching activity of Lysinibacillus sp. Gs50	108
Figure 34 Influence of substrate concentration on quorum quenching activity of <i>Lysinibacillus</i> sp. Gs50	109
Figure 35 Comparison of <i>P. aeruginosa</i> PAO1 wild type and <i>P. aeruginosa</i> PAO1 (<i>lasI</i> -) treated mung bean plant growth parameters	<i>rhlI-</i> 112
Figure 36 CSLM images of validation of P. aeruginosa PAO1 strains	113
Figure 37 CSLM images of different plant root samples for visualizing active QS on mur bean roots	ng 116
Figure 38 In vitro degradation of C4-HSL and 3-oxo-C12HSL by Lysinibacillus sp. Gs50) 117
Figure 39 In planta virulence attenuation of P. aeruginosa PAO1 by quorum quenching Lysinibacillus sp. Gs50	119
Figure 40 CSLM micrograph of <i>P. aeruginosa</i> PAO1-gfp and <i>Lysinibacillus</i> sp. Gs50 co inoculated plant root	- 120