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To study a chemical reaction, one needs to get information about energetics and 

bonding in molecules or between molecules and a catalytic surface. Through electronic 

structure calculation, one can obtain this information and study the system of interest. 

With the improvement of the theoretical methods, the electronic structure problem is 

approximately solved to get the energetics of model catalytic systems at a desirable 

accuracy level with acceptable computational cost. This chapter briefly introduces theory 

and models used for electronic structure calculation together with geometry optimization 

to develop a basic understanding of the catalytic systems studied in this thesis work. 

2.1 Density functional theory 

The accurate description of the structure and dynamics of many-body systems 

and the solution of the Schrödinger equation is a complex problem in the field of 

theoretical physics and computational material science. Materials are formed by atoms 

that in turn are made of nuclei and electrons. The description of the nucleus belongs to 

classical theory because of the heavy mass as compared to electrons. The strongly 

localized wave function of the nucleus differs from the electrons which exhibit overlapped 

orbitals. The interaction of electrons is subjected to both, stationary nuclei in terms of 

the attractive Coulomb force and the repulsive Coulomb force with neighboring 

electrons. The interaction phenomenon of electrons specifically makes the electronic 

structure calculation more complex in terms of many‐body problems. To determine the 

systematic theory for the electronic structure calculations, Hohenberg, Kohn, and Sham 

established a theory termed density functional theory (DFT). DFT has been recognized 

as an “enabling technology” for materials modeling [1]. In the formulation of DFT, the 

electron density distribution function 𝑛(𝑟) is used instead of many electrons wave 

functions 𝜓(𝑟φ, 𝑟ϵ,  𝑟ϯ …… …𝑟կ ) to determine the ground state energy E for any system 

consisting of N nuclei and electrons [2].  
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Figure 2.1: From many-body problem to density functional theory (DFT). Born-
Oppenheimer approximation, Hohenberg-Kohn theorem and Kohn-Sham ansatz. 
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Hohenberg-Kohn theorems: 
Theorem 1 (Existence theorem) - For any system of interacting particles in an 
external potential 𝑉ր֓֏(𝑟)⃗, the potential 𝑉ր֓֏(𝑟)⃗ is determined uniquely, except for a 
constant, by the ground state particle density 𝑛Ј(𝑟)⃗. 
Theorem 2 (Variational principle) - A universal functional for the energy 𝐸[𝑛] in 
terms of the density 𝑛(𝑟)⃗ can be defined, valid for any external potential 𝑉ր֓֏(𝑟)⃗. 
For any particular 𝑉ր֓֏(𝑟)⃗, the exact ground state of the system is the global 
minimum value of this functional and density 𝑛(𝑟)⃗ that minimizes the functional is 
the exact ground state density 𝑛Ј(𝑟)⃗. 

 

Kohn-Sham ansatz: Ground state density of 
the many-body interacting system is equal to 
density of an auxiliary non-interacting 
independent particle system. 
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This reduces the solution of a many-body problem to that of a single-particle 

Schrödinger equation with ground-state density distribution. Any crystalline material 

can be treated as a system of heavy nucleus and electrons interacting with each other 

based on quantum mechanics. The ground state energy of this system can be evaluated 

by solving the corresponding many-body Schrödinger equation [3]: 

𝐻̂𝜓 = 𝐸𝜓                                            (2.1) 

where 𝐻̂ is the many particles Hamiltonian, 𝜓 is the many-body wave function and E is 

the ground-state total energy. In the case of a hydrogen (H) atom which possesses one 

electron and one proton, one can solve the above equation exactly. However, for the 

crystal structures with many electrons and ions systems, it is treated with complex 

interactions of the electron and ions. The Hamiltonian for such a system of interacting 

electrons and nuclei can be written as follows: 

𝐻̂ = 𝑇ր̂ + 𝑇։̂ + 𝑉։̂։ + 𝑉ր̂ր + 𝑉ր̂։                              (2.2) 

where 𝑇։̂ and 𝑇ր̂  are the kinetic energy operator for the nuclei and electrons, respectively. 

𝑉ր̂ր, 𝑉ր̂։, and 𝑉։̂։ are the electrostatic potential energy operators for electron-electron, 

electron-nuclei, and nuclei-nuclei interactions respectively. The many-body Schrödinger 

equation can be rewritten as: 
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where 𝑖, 𝑗 are the indices consecutively for electron and nuclei, 𝑚ր, 𝑀ժ are the mass of 

electron and nuclei respectively, 𝑍ժ , Zի  defines the charges on different nuclei, 𝑹ժ −

 𝑹ի , 𝒓ք − 𝒓օ and 𝒓ք − 𝑹ժ  are the distances between nuclei-nuclei, electron-electron, 

and electron-nuclei respectively. The solution of Equation 2.1 gives the energy 

eigenstates i.e., the total energy of the system. Hence, the solution of the above equation 

is computationally costly and the solution is computationally feasible only for simple 



CHAPTER 2        

 

29 
 

Theoretical Background and 
Computational Methods 

systems. Therefore, some approximation is essential to determine the properties of 

complex systems. The stepwise improvement from many-body problem to density 

functional theory is presented in Figure 2.1 which includes Born-Oppenheimer 

approximation, Hohenberg-Kohn theorem, and Kohn-Sham ansatz [4-8]. 

2.2 The Kohn-Sham theory 

The basic interest is to calculate the ground state energy of many-electron systems 

through solving the many-body Schrödinger equation given in Equation 2.3. For a system 

with N electrons, there exist 3N variables leading to the complex solution of Equation 

2.3. The DFT depends on a density-based method where the interaction energy and 

potentials depend only on the density of electrons which decreases the computational 

cost. The approach of Kohn and Sham [7], published in 1965, turns DFT into a practical 

tool to obtain the ground state. The Kohn-Sham method is based on parameterization 

of the density 𝑛(𝑟)⃗ in terms of one-electron orbitals 𝜙ք(𝑟)⃗ (the summation is over all 

occupied states): 

𝑛(𝑟)⃗ =  ∑ 𝜙ք
∗(𝑟)⃗ք 𝜙ք(𝑟)⃗                                   (2.4)                                                        

and decomposition of the total energy functional according to: 

𝐸[𝑛] = 𝑇 [𝑛] + 𝐸թ [𝑛] + 𝐸֓վ[𝑛] + 𝐸ր֓֏[𝑛]                      (2.5)                                 

where, 

𝐸թ = ௳𝑛(𝑟)⃗𝑛(𝑟′⃗)
|𝑟 ⃗ − 𝑟′ܡܠܠܠܠܟ|

𝑑(𝑟)⃗𝑑(𝑟′⃗)                                (2.6) 

is the electrostatic electron-electron interaction in the Hartree approximation. Here,  

𝐸ր֓֏ = ௲𝑉ր֓֏(𝑟)⃗ 𝑛(𝑟)⃗𝑑(𝑟)⃗                                   (2.7) 

describes the interaction with the external field. 
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The contribution of the kinetic energy is approximated by that of non-interacting 

electrons in states 𝜙ք(𝑟)⃗, 

𝑇 [𝑛] =  ௽௲ 𝜙ք
∗(𝑟)⃗ ॼ− 1

2
⃗ϵॽ𝜙ք(𝑟)ܡܠܠܠܠܟ∇

ք
𝑑ϯ𝑟                           (2.8) 

All other contributions to the total energy are described by the so-called exchange-

correlation energy 𝐸֓վ[𝑛]. The one-electron orbitals are the variational quantities. 

Variation of the total energy functional 𝐸[𝑛] with respect to 𝜙ք
∗(𝑟)⃗ leads to an effective 

one-electron equation for the determination of the 𝜙ք(𝑟)⃗, the Kohn-Sham equations: 

া−1
2

ϵܡܠܠܠܠܟ∇ + ௲ 𝑛(𝑟஠⃗)
ੰ𝑟 ⃗ − 𝑟஠ੰܡܠܠܠܠܟ

𝑑ϯ𝑟஠ + 𝑉ր֓֏𝑟⃗ + 𝛿𝐸֓վ[𝑛(𝑟)⃗]
𝛿𝑛(𝑟)⃗ ি𝜙ք(𝑟)⃗ =  𝜀ք𝜙ք(𝑟)⃗           (2.9) 

               

The Kohn-Sham equations that describe electrons moving in a one-electron potential is 

given by 

𝑉րցց(𝑟)⃗ =  𝑉ր֓֏(𝑟)⃗ + ௲
𝑛ऺ𝑟஠ܡܠܠܠܠܟऻ

ੰ𝑟 ⃗ − 𝑟஠ੰܡܠܠܠܠܟ
𝑑ϯ𝑟஠ + 𝑉֓վ[𝑛(𝑟)⃗]                  (2.10)

         
 

where the exchange-correlation potential is given by the variational derivation of the 

exchange-correlation energy, 

𝑉֓վ[𝑛(𝑟)⃗] =  𝛿𝐸֓վ[𝑛(𝑟)⃗]
𝛿𝑛(𝑟)⃗

                                    (2.11) 

The Kohn-Sham equation can be simplified to the following form, 

া−1
2
ܡܠܠܠܟϵ + 𝑉րցց(𝑟)⃗ি𝜙ք(𝑟)⃗ =  𝜀ք𝜙ք(𝑟)⃗                        (2.12) 

The 𝜀ք in Eqn. (2.9) are introduced as Lagrange parameters to preserve the orthogonality 

of the one-electron Kohn-Sham orbitals 
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௲𝜙ք
∗(𝑟)⃗ 𝜙օ(𝑟)⃗𝑑ϯ𝑟 = 𝛿քօ                                    (2.13) 

they are not true excitation energies.  

The flowchart for solving the Kohn-Sham equation to achieve self-consistency is 

illustrated in Figure 2.2. 
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Figure 2.2: Schematic flowchart for finding self-consistent solutions of the Kohn-Sham 
equations. 
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2.2.1  Exchange and correlation functionals 

   The accuracy of the Kohn-Sham approach depends largely on the exchange-

correlation functional 𝐸֓վ[𝑛]. Kohn and Sham noticed that electrons in solids can often 

be considered to be close homogeneous electron gas, meaning that the effects of exchange 

and correlation are local. This gives rise to the local density approximation (LDA), 

𝐸֓վ
խեբ[𝑛] =  ௲𝜖֓վ

փ֊ֈ ॐ𝑛(𝑟)⃗॑𝑛(𝑟)⃗𝑑𝑟 ⃗                          (2.14) 

where 𝜖֓վ
փ֊ֈ is the energy of the exchange-correlation (xc) hole in the homogeneous 

electron gas of density 𝑛 [8-9]. 

A chemical system normally involves molecules which means a bigger change in density. 

Hence, It is not until the development of generalized-gradient approximates (GGAs), 

DFT is widely used in studying chemical reactions. The GGA type of xc energy depends 

both on the density and its gradient, which gives a big improvement over LDA. 

𝐸֓վ
ըըբ[𝑛] =  ௲𝑛(𝑟)⃗𝜖֓վ

փ֊ֈ ॐ𝑛(𝑟)⃗, ∇𝑛(𝑟)⃗॑𝑑𝑟 ⃗                     (2.15) 

                                    

Different flavors of GGA functionals have been developed, most notable ones are Perdew-

Burke-Ernzerh (PBE) [10], Perdew-Wang 91(PW91) [11], revised Perdew-Burke-Ernzerh 

(revPBE) [12] and revised Perdew-Burke-Ernzerh (RPBE) [13]. 

2.2.2  Plane-wave and pseudopotentials 

     The electron orbitals used to express the single-particle density as defined in 

Kohn-Sham equations may be expanded in terms of any convenient basis set. In 

practice, a plane wave basis set based on the Bloch theorem is used with several 

benefits: 

𝜓ֆ⃗
։(𝑟)⃗ =  ௽𝑐լܡܠܠܠܟ

։Ӵֆ⃗𝑒քॐֆ⃗+լ॑ܡܠܠܠܟ֍⃗

լܡܠܠܠܟ
                              (2.16) 
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 A plane-wave basis set is unbiased, it does not assume any preconceptions on the 

form of the problem. 

 Due to the Bloch theorem, plane-waves are the natural choice for the representation 

of electron orbitals in a periodic system. 

 The kinetic energy operator is diagonal in a plane-wave representation. Similarly, 

the potential is diagonal in real space. The use of Fast Fourier Transforms (FFT) 

in changing between these representations provides a large saving in computational 

cost. 

The main disadvantage of a plane-wave basis set is its inefficiency. The number of basis 

functions required to describe atomic wavefunctions accurately near a nucleus would be 

enormous. This difficulty is overcome by the use of pseudopotentials [14], which 

represent the potential of the ionic cores. This approximation is based on the assumption 

that only the valence electrons have a significant effect on the physical and chemical 

properties of the system. The pseudopotential represents the potential of the nucleus 

and the core electrons subject to the following conditions: 

 The valence wavefunction remains unchanged outside the core region (beyond 𝑟վ 

boundary). 

 The pseudo wavefunction within the core matches correctly at the boundary. 

 The pseudo wavefunction, as well its first derivative, must be continuous at the 

boundary: 

ձմ (𝑟)|֍=֍Ո
=  բզ (𝑟)|֍=֍Ո

 ∧  𝜕
ձմ 

𝜕𝑟
(𝑟)|֍=֍Ո

= 𝜕
բզ 

𝜕𝑟
(𝑟)|֍=֍Ո

          (2.17) 

          

(The indices PS and AE stand for pseudo and all-electron energies, respectively). The 

pseudo wavefunction is nodeless within the core region. 
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The graphical representation of the behavior of a wave function and potential is 

depicted in Figure 2.3 [15]. All the above-mentioned basic criteria have to be fulfilled for 

the pseudopotential to be usable. Further criteria have to be introduced for constructing 

various classes of pseudopotentials, such as ultra-soft (or Vanderbilt) pseudopotentials 

(USPP), norm-conserving pseudopotentials (NCPP), etc. The so-called projector-

augmented wave method (PAW) [16] is an improvement of the pseudopotential 

technique approach and was originally developed by P. Bloch [17]. It is based on a 

transformation of the pseudo wavefunction to the all-electron wavefunction. The all-

electron wavefunction 𝜓 consists of three parts: 

𝜓 = 𝜓̃+ ௽𝑐ք𝜙ք

։

ք
− ௽ 𝑐ք𝜙ք̃                                  (2.18)

։

ք
 

where 𝜓 ̃ is the pseudo wavefunction, ք are the all-electron partial waves and 𝜙ք̃ are the 

pseudo partial waves. A tilde is used to distinguish between the all-electron (AE) 

quantities and the pseudo (PS) quantities (such as 𝜓 ̃) representing only one part of the 

AE solution. The PS wavefunction is represented by plane-waves that are a good 

description of the wavefunction in regions far away from the nuclei but deviates 

Figure 2.3: Comparison of a wavefunction in the Coulomb potential of the nucleus 
(blue) to the one in the pseudopotential (red). The real and the pseudo wavefunction 
and potentials match above a certain cut-off radius (core radius) rc. Sketch inspired 
by Ref. [17]. 
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significantly from the AE wavefunction near the nucleus. Hence the AE partial waves ք 

are introduced to correct this error. These AE partial waves are calculated once as 

solutions of the radial part of the Schrodinger equation for the isolated atoms. Inside the 

so-called augmented (core) region, they deviate from the PS wavefunction, however 

outside this region they match. The AE partial waves ensure that the nodal structure of 

the wave function is physically correct near the nucleus. The contribution of the PS 

partial waves 𝜙ք̃, which are located near the atomic nuclei is subtracted from the PS 

wavefunction since this region is already included in the AE partial waves. Similar to 

the AE partial waves, the 𝜙ք̃ are constructed as solutions of the radial Schrödinger 

equation for isolated atoms fitted to match the PS wavefunction. 

2.2.3  Geometry optimization 

The calculations in this thesis concern exclusively optimized structures. Geometry 

optimization was performed by the minimization of the inter-atomic forces. Forces were 

calculated based on the Hellmann-Feynmann theorem [18] and fed into a Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimizer [19]. A structure was considered optimized 

when none of the inter-atomic forces exceeded the limit of 0.001 to 0.0001 eV/Å.  

 

 

 

 

 

 

 

 

 

 

 Figure 2.4: Flowchart of Geometry optimization. 
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The process of geometry optimization in the form of a flowchart is presented in Figure 

2.4 [20]. The Hohenberg-Kohn theorems and the Kohn-Sham equations can be extended 

to include spin, which makes it possible to treat magnetic systems [21-22]. It is possible 

to treat the spin-polarized system as if it had two different densities one for spin-up and 

one for spin-down. 

2.2.4  van der Walls corrections  

The standard DFT (with LDA and PBE) framework cannot provide an accurate 

description of the long-range dispersion forces i.e., very much required for the accurate 

prediction of the adsorption properties of molecules over transition metal systems. For 

the treatment of the long-range dispersion forces, the semi-empirical van der Waals 

corrections D2 and D3 proposed by S. Grimme [23-24] were employed. The sum of the 

total energy of self-consistent DFT (𝐸լմ−եէյ ) with the vdW correction (𝐸տք֎֋) is given 

by, 

𝐸եէյ+եϵ/եϯ = 𝐸լմ−եէյ + 𝐸տք֎֋                         (2.19) 

DFT-D2 scheme.  Adds a semiempirical dispersion potential (∼C6R−6) to the 

conventional Kohn−Sham DFT energy (𝐸լմ−եէյ ) with a suitable damping function 

(𝑓տռֈ֋) at small atomic distances. The dispersion correction has the form, 

𝐸տք֎֋ = −𝑆ϩ ௽ ௽
𝐶ϩ

քօ

𝑅քօ
ϩ  𝑓տֈ֋ ऺ𝑅քօऻ

կՆՙ

օ=ք+φ
                    (2.20)

կՆՙ−φ

ք=φ
 

DFT-D3 scheme.  Adds two-body, 𝐸(ϵ), and three-body, 𝐸(ϯ), energies to the 

conventional Kohn−Sham DFT energy (𝐸լմ−եէյ ). The dispersion correction has the 

form  𝐸տք֎֋  =  𝐸(ϵ) + 𝐸(ϯ). The 𝐸(ϵ) and 𝐸(ϯ) terms are given by the equations 

 𝐸(ϵ) = ௽ ௽ 𝑠։
𝐶։

բգ

𝑟բգ
։ 𝑓տӴ։(𝑟բգ)

։=ϩӴ΅Ӵφ …ӳӳբգ
                        (2.21) 

𝐸(ϯ) = ௽ 𝑓տӴ(ϯ)ऺ𝑟բ̅գդ)ऻ𝐸բգդ                              
բգդ

(2.22) 
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Here, Sn (also S6 in D2 correction) is a global scaling factor that depends only on the 

selected exchange-correlation functional (e.g., S6 = 1.00 and S8 = 0.72 for the PBE 

functional), 𝐶ϩ
քօ(𝑎𝑛𝑑 𝐶։

բգ) denotes the averaged nth - order dispersion coefficients for 

each ij(and AB) pair, Rij (𝑎𝑛𝑑 𝑟բգ) is the interatomic distance between the i and j (A 

and B) atoms, 𝑓տֈ֋(𝑎𝑛𝑑 𝑓տӴ։) is a damping function employed to avoid near-singularities 

for small 𝑟բգ distances, 𝑟բ̅գդ is the average radii of atom triples ABC, and 𝐸բգդ is the 

nonadditive triple dipole dispersion term.  

2.3 Analysis of the electronic properties  

There are powerful tools for analyzing the electronic structure and properties offered 

by state-of-the-art computational materials science. Few of them will be mentioned here, 

in particular, the density of states and charge density analysis. 

2.3.1  Density of states (DOS) 

An important quantity for many purposes is the density of states (DOS) per unit of 

energy E (and per unit of volume 𝜔 in the extended matter) [15],  

𝑔(𝐸) = 1
𝑁ֆ

 ௽௽𝛿ॐ𝜀քӴֆ⃗ − 𝐸॑ = 𝜔վրևև
(2𝜋)տ  ௲ 𝛿

 

գջ
ॐ𝜀քӴֆ⃗ − 𝐸॑𝑑𝑘⃗             (2.23)

ֆ⃗ք
 

           In the case of independent-particle states, where 𝜀քӴֆ⃗ denotes the energy of an 

electron (or phonon), 𝑛(𝐸) from Eqn. (2.23) is the number of independent-particle states 

per unit of energy. In principle, the calculation of integral in Eqn. (2.23) is not a trivial 

task. Three popular types of methodologies for this Brillouin zone integration are 

mentioned here: namely the linear tetrahedron method (LTM) by Jepsen and Andersen 

[25], modified tetrahedron method (MTM) by Bloch et al. [26], and the Gaussian 

broadening method (GBM) by Methfessel and Paxton [27]. Figure 2.5 illustrates the 

schematic general form of the DOS for bulk, 2D, 1D, and 0D materials. 
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The total density of states as defined by Eqn. (2.38) is a projection of all bands 

of the electronic band structure over all k-points. As one wishes to analyze space-resolved 

DOS in the real space, the local density of states (LDOS) may be defined as follows: 

 𝑔(𝑟,⃗ 𝐸) = ௽ ௽|𝜓քֆ⃗(𝑟)⃗|ϵ𝛿ॐ𝜀քӴֆ⃗ − 𝐸॑
ֆ⃗ք

                    (2.24) 

To study the interaction of atoms with each other, we define the projected density of 

states (PDOS): 

 𝑔(𝛼, 𝐸) = ௽௽|⟨𝜓ᆺֆ⃗(𝑟)⃗|𝜓քֆ⃗(𝑟)⃗⟩ |ϵ𝛿ॐ𝜀քӴֆ⃗ − 𝐸॑
ֆ⃗ք

               (2.25) 

where 𝜓ᆺֆ⃗ denotes orthonormal states to 𝜓քֆ⃗. The PDOS is in principle a projection of 

the DOS onto atomic orbitals. When plotting DOS spectra, attention is given to the 

position of the zero-point.  

 

 
The Fermi Energy EF refers to the energy of the highest occupied quantum state 

in a system of fermions at absolute zero temperature. As the Fermi energy EF appears 

in all DOS spectra, it is shifted to zero energy level in periodic systems, where the 

spectrum is usually continuous. For molecules or other localized clusters, the Fermi 

Figure 2.5: Schematic illustration of broken symmetry and functional form of the 
density of states in 1D, 2D, and 3D confined materials [28]. 
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energy is arbitrarily shifted to the value 𝐸է = φ
ϵ (𝐸թհծհ + 𝐸խնծհ), i.e., the average 

value between the lowest unoccupied (LUMO) and highest-occupied (HOMO) electronic 

state. Molecules usually have electronic states at discrete energy values, thus giving a 

straight line. 

2.3.2  Charge density analysis 

The charge density in general is defined as the amount of charge in a specified volume. 

As it depends on the position vector 𝑟,⃗ in quantum mechanics, it can refer to the spatial 

charge distribution over the volume of a molecule or a unit cell of a periodic solid. The 

electronic charge density is related to the wavefunction by the equation, 

 

𝑛(𝑟)⃗ =  𝑒ϵ ௽ |𝜓։ֆ⃗(𝑟)⃗|ϵ
։ֆ⃗∈֊վվ

                                 (2.26) 

                                                                 

Where e is the charge of an electron (e = 1.6021733·10−19 Coulomb), 𝜓։ֆ⃗(𝑟)⃗ is the 

wavefunction of the 𝑛֏փ electron band and the sum in (2.26) goes over occupied 

electronic states only. The visualization of the charge density helps elucidate the bonding 

of atoms to each other and it is preferably made by the means of plotting 3D iso-surfaces 

(a surface for a discrete iso-value) or 2D contour plots (a set of iso-contours). 

2.3.3  Electronic reactivity descriptors 

Looking into the electronic structure of the system, the reactivity descriptors can be 

described efficiently. In essence to this, the d-band model for the spin-polarized DFT 

calculations has been adopted to determine the electronic descriptors introduced by 

Bhattacharjee and co-workers (modification of Nørskov and Hammer d-band model) [29-

30], i.e., d-band center (𝜀տ), d-band width (𝑊տ) and fractional filling (𝑓և) of d-band (for 

both spin-up and spin-down states) for representative systems using Eqns. 2.27 and 2.29. 

The 𝜀տ was computed as the first moment of the density of states projected on the d-

band about the Fermi level (EF) and is expressed as, 
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𝜀տ =  
∫ (𝐸 − 𝐸է )𝐷տ(𝐸)𝑑𝐸զԱ

−�

∫ 𝐷տ(𝐸)𝑑𝐸զԱ

−�

                              (2.27) 

The 𝑊տ was computed as the square root of the second moment of the d-band density 

of states projected on the d-band about the 𝜀տ and is expressed as, 

𝑊տ = 
∫ 𝐷տ(𝐸)[(𝐸 − 𝐸է ) − 𝜀տ]ϵ𝑑𝐸զԱ

−�

∫ 𝐷տ(𝐸)𝑑𝐸զԱ

−�

                            (2.28) 

The 𝑓և was taken as the integral overstates up to the Fermi level divided by the integral 

over all states as, 

𝑓և = 
∫ 𝐷տ(𝐸)𝑑𝐸զԱ

−�
∫ 𝐷տ(𝐸)𝑑𝐸�
−�

                                     (2.29) 

where, 𝐷տ(𝐸) ( = ,) is the DOS projected on the d-states of the TM, E is the 

energy and EF is the Fermi energy of the system. Figure 2.6 illustrates the schematic of 

the spin-polarized DOS of the transition metal with the electronic reactivity descriptors. 

 

Figure 2.6: Schematic illustration of the spin-polarized DOS of the transition metal 
with the electronic reactivity descriptors. 
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2.4 Density functional perturbation theory  

Recently, the response of the atoms to electric fields has become applicable for 

interpreting macroscopic parameters such as linear optical properties [31]–the static 

dielectric tensor, the piezoelectric tensor, the vibrational frequencies, and the matrix of 

the Born effective charges. Density-functional perturbation theory (DFPT) or linear 

response (LR) theory for vibrational spectra starts from the following expression [32-33]: 

𝜕ϵ𝐸(𝑅ܡܠܠܠܟ)
𝜕𝑅ܡܠܠܠܟք𝜕𝑅ܡܠܠܠܟօ

= 𝜕𝐹ք⃗

𝜕𝑅ܡܠܠܠܟօ
= ௲

𝜕𝑛ճܡܠܠܠܠܟ(𝑟)⃗
𝜕𝑅ܡܠܠܠܟօ

𝜕𝑉ճܡܠܠܠܠܟ(𝑟)⃗
𝜕𝑅ܡܠܠܠܟք

𝑑𝑟⃗ + ௲ 𝑛ճܡܠܠܠܠܟ(𝑟)⃗
𝜕ϵ𝑉ճܡܠܠܠܠܟ(𝑟)⃗
𝜕𝑅ܡܠܠܠܟք𝜕𝑅ܡܠܠܠܟօ

𝑑𝑟⃗ + 
𝜕ϵ𝐸ք֊։ॐ𝑅॑ܡܠܠܠܟ
𝜕𝑅ܡܠܠܠܟք𝜕𝑅ܡܠܠܠܟօ

  (2.30) 

which relates the second derivatives of the total energy 𝐸(𝑅ܡܠܠܠܟ) to the ground-state electron 

density 𝑛ճܡܠܠܠܠܟ(𝑟)⃗ and to the linear response of the charge density to a displacement of the 

ions, 𝜕𝑛(𝑟)⃗/𝜕𝑅ܡܠܠܠܟք. 

The 𝑉ճܡܠܠܠܠܟ(𝑟)⃗ stands for the electron-ion interaction and 𝐸ք֊։(𝑅ܡܠܠܠܟ) is the direct ion-

ion interaction. Within DFPT, the charge-density and wave-function linear response to 

a perturbation of a wave-vector 𝑞 ⃗ is given by a closed set of equations which can be 

solved in terms of lattice-periodic functions and is decoupled from a similar equation for 

other Fourier components of the same perturbation. Only sums over occupied orbitals 

are involved [31]. In a dipole approximation, the intensity of the infrared active modes 

may be calculated [34] in terms of the oscillator strengths [35] determined by the Born 

effective charges and the displacement vectors: 

𝐼(𝜔) = ௽ | ௽ ௽ 𝑍ᆺᆻ
∗ (𝑙)

ϯ

ᆻ=φ 

ծ

և=φ
𝑒ᆻ(𝑙)

ϯ

ᆺ=φ
|ϵ                          (2.31) 

where 𝑒ᆻ(𝑙) is the normalized vibrational eigenvector of the ωth mode,  and  indicate 

the Cartesian polarizations, l labels the different atoms of the system, and 𝑍ᆺᆻ
∗ (𝑙) is the 

Born effective charge tensor of the lth atom. The ionic effective charges 𝑍ᆺᆻ
∗ (𝑙) are from 

the computational point of view essentially the second derivatives of the energy of the 

molecule with respect to an applied electric field and the amplitude of a vibrational 

distortion. As such, they are directly accessible to second-order density-functional 
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perturbation theory (DFPT) [36-37], which looks to be a very powerful and accurate 

method to compute the vibrational properties of extended systems [38]. The Born 

effective charge [39] (also called a transverse or dynamic charge) of a crystalline system, 

defined as the induced polarization due to a unit sublattice displacement, is a 

fundamental quantity connecting the electrostatic fields of the lattice to its phononic 

properties [40]. It contains important information not only about the electronic structure 

and the bonding properties of the system but also about the coupling of its longitudinal- 

and transverse-optical phonon modes to the external infrared radiation. The 𝑍ᆺᆻ
∗ (𝑙) is to 

be understood as a coefficient of proportionality between a change of macroscopic 

polarization in direction  caused by an atomic displacement in direction  under 

conditions of zero external field. Furthermore, the intensity of each normal mode as a 

result of Eqn. (2.31) is a scalar number and it is directly comparable with experimental 

absorption intensities. 

2.5 Transition state determination 

2.5.1   Regular NEB method 

An elastic band with N + 1 images can be denoted by [R0, R1, R2, . . ., RN], where 

the end points, R0 and RN, are fixed and given by the energy minima corresponding to 

the initial and final states. The N  1 intermediate images are adjusted by the 

optimization algorithm. In the NEB method [41-42], the total force acting on an image 

is the sum of the spring force along the local tangent and the true force perpendicular 

to the local tangent,  

𝐹ք = 𝐹ք
֎ੰ ‖ − ∇𝐸(𝑅ք)ੰ ⊥                               (2.32) 

where the true force is given by 

∇𝐸(𝑅ք)| ⊥ = ∇𝐸(𝑅ք) − ∇𝐸(𝑅ք) 𝜏ք̂                         (2.33) 

Here, E is the energy of the system, a function of all the atomic coordinates, and 𝜏֖ࣣ  is 

the normalized local tangent at image 𝑖. The spring force is  
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   𝐹ք

֎|‖ = 𝑘(|𝑅ք+φ − 𝑅ք| − |𝑅ք − 𝑅ք−φ|) 𝜏ք̂                       (2.34) 

where k is the spring constant. An optimization algorithm is then used to move the 

images according to the force in Eqn. (2.32). The images converge on the MEP with 

equal spacing if the spring constant is the same for all the springs. Typically, none of 

the images lands at or even near the saddle point, and the saddle point energy needs to 

be estimated by interpolation. 

2.5.2  Climbing image NEB method 

The climbing image NEB (CI-NEB) method constitutes a small modification to the NEB 

method. Information about the shape of the MEP is retained, but a rigorous convergence 

to a saddle point is also obtained. This additional feature does not add any significant 

computational effort. After a few iterations with the regular NEB, the image with the 

highest energy 𝑖ֈռ֓ is identified. The force on this one image is not given by Eqn. (2.32) 

but rather by, 

𝐹քՒՆ՝
= −∇𝐸ॐ𝑅քՒՆ՝

॑ + 2∇𝐸ॐ𝑅քՒՆ՝
॑|‖ = −∇𝐸ॐ𝑅քՒՆ՝

॑ + 2∇𝐸ॐ𝑅քՒՆ՝
॑ 𝜏ք̂ՒՆ՝

𝜏ք̂ՒՆ՝
 (2.35) 

This is the full force due to the potential with the component along with the elastic band 

inverted. 

 

Figure 2.7: Density functional theory calculations of the minimum energy path for CH4

dissociative adsorption on an Ir(111) surface [43].  
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The maximum energy image is not affected by the spring forces at all. Henkelman et al. 

[43] gave an example about the CH4 molecule dissociated on the Ir(111) surface for 

comparing the calculated results from NEB and CI-NEB methods, as shown in Figure 

2.7. It can be seen clearly from Figure 2.7 that the regular NEB results in a low resolution 

of the barrier, and the interpolation underestimate the activation energy. On the 

contrary, with the CI-NEB method, it is possible to locate the climbing image at the 

saddle point and to give a precise barrier. Obviously, CI-NEB method is better than the 

regular NEB method in searching transition state, which makes it a more appropriate 

choice for us to study the chemical reaction and to find the corresponding transition 

state. Qualitatively, the climbing image moves up the potential energy surface along the 

elastic band and down the potential surface perpendicular to the band. The other images 

in the band serve the purpose of defining the one degree of freedom for which 

maximization of the energy is carried out. Since the images in the band eventually 

converge to the MEP, they give a good approximation to the reaction coordinate around 

the saddle point. As long as the CI-NEB method converges, the climbing image will 

converge to the saddle point. Since all the images are being relaxed simultaneously, there 

is no additional cost of turning one of the images into a climbing image. 

2.6 Computational codes and visualization softwares 

This section contains the brief information and introduction of codes and visualization 

packages utilized throughout the thesis work. 

 Quantum ESPRESSO package 

The density functional theory calculations in this thesis are performed using the software 

package Quantum ESPRESSO [44-45], which is an Open-Source Package and is freely 

available to researchers around the world under the terms of the GNU General Public 

License. 
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All the structural (optimization), relative energetic, electronic, magnetic, adsorption 

properties, and especially catalytic activity presented in this thesis have been calculated 

using this package. 

 GAUSSIAN09 package 

Gaussian  is a very popular and widely used simulation software due to its user-friendly 

interface to predict energies, molecular structures, spectroscopic data (NMR, IR, UV, 

etc), and much more advanced calculations. It is released in 1970 by John Pople and his 

research group at Carnegie-Mellon University as Gaussian 70 .  It has been continuously 

updated. In this thesis work, calculations of Raman spectra and optical properties of 

pure and bimetallic nanoclusters have been investigated using the Gaussian09  package 

[46].  

 FDMNES package 

Finite Difference Method Near-Edge Structure (FDMNES) is a user-friendly ab 

initio (uses DFT) code [47-48] devoted to the simulation of the K edges of all the 

chemical elements. In this thesis work, XANES spectra of pure and bimetallic 

nanoclusters were calculated using the finite difference method (FDM) and 

Hedin−Lundqvist exchange−correlation potential as implemented in the FDMNES ab 

initio package.  

Throughout the thesis, all the pictorial representations of structures, HOMO-LUMO, 

and charge density differences were prepared using the XCrySDen [49] and Vesta 

visualization packages [50].
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