Contents

List of Figures	iv
List of Tables	x
CHAPTER 1 Heterogeneous Catalysis: A Sustainable Future	1
1.1 Heterogeneous catalysis	2
1.2 Transition-metal nanoclusters and nanoalloys	7
1.2.1 Supported clusters	10
1.3 Reaction mechanism for CO oxidation	13
$1.4~{ m CO_2}~{ m hydrogenation}$	14
1.5 Thesis motivation and objectives	
1.6 Thesis organization	
References	
CHAPTER 2 Theoretical Background and Computational Methods	25
2.1 Density functional theory	
2.2 The Kohn-Sham theory	
2.2.1 Exchange and correlation functionals	
2.2.2 Plane-wave and pseudopotentials	
2.2.3 Geometry optimization	
2.2.4 van der Walls corrections	
2.3 Analysis of the electronic properties	
2.3.1 Density of states (DOS)	
2.3.2 Charge density analysis	
2.3.3 Electronic reactivity descriptors	
2.4 Density functional perturbation theory	
2.5 Transition state determination	
2.5.1 Regular NEB method	
2.5.2 Climbing image NEB method	
2.6 Computational codes and visualization softwares	

References
CHAPTER 3 Poisoning-free CO oxidation over Ni _n Cu Cluster
3.1 Introduction
3.2 Computational methods and theoretical analysis
3.3 Results and Discussion
3.3.1 Ni _{n+1} and Ni _n Cu clusters $(1 \le n \le 12)$
3.3.2 Ni K-edge XANES57
3.3.3 Structural stability and energetics
3.3.4 CO adsorption over Ni_{n+1} and Ni_nCu clusters $(1 \leq n \leq 12) \ldots 61$
3.3.5 Electronic properties
3.3.6 Charge density difference75
3.3.7 Work-function analysis
3.3.8 CO oxidation reaction pathway77
3.4 Conclusions
References
CHAPTER 4 Mechanistic insight into Pd_mCu_n Clusters: Implication to the CO_2
Hydrogenation
4.1 Introduction
4.2 Computational details
4.3 Results and Discussion
4.3.1 Structural stability and electronic properties of $I_h\ Pd_mCu_n\ clusters\ldots 93$
$4.3.2 \ Raman \ spectra \ of \ I_h \ Pd_mCu_n \ clusters 102$
$4.3.3 \ Adsorption \ of \ CO_2 \ molecule \ over \ I_h \ Pd_mCu_n \ clusters 105$
$4.3.4 \text{ CO}_2$ conversion into hydrocarbon fuels on $I_h Pd_5Cu_8$ cluster 109
4.4 Conclusions
References
CHAPTER 5 Determining the CO Oxidation Activity of Supported Pt ₃ M Clusters
5.1 Introduction

5.2 Computational details	
5.3 Results and Discussion	
5.3.1 Structural and electronic properties of $Cu_2O(111)$ su	rface 134
5.3.2 Pt ₄ and Pt ₃ X (X = Co & Au) supported on $Cu_2O(11)$	1) surface 136
5.3.3 CO adsorption on supported clusters	
5.3.4 L-H reaction mechanism for CO oxidation	
5.4 Conclusions	
References	
CHAPTER 6 Conclusions and Future Prospects	
6.1 Summary	
6.2 Future Scope	
APPENDIX	
A.1 Determination of the lowest-energy structures of Ni_{n+1} clust	ers 161
A.2 Determination of the lowest-energy structures of Ni_nCu cluster	sters 162
A.3 Determination of point-group symmetry (structure) of clusters $(1 \le n \le 12)$	
A.4 Determination of structural stability and relative energetic	s 164
A.5 Theoretical analysis of quantum chemical descriptors	
A.6 Adsorption energetics of CO on Ni_{n+1} and Ni_nCu clusters	